Skeletal Dysplasias: What Every Bone Health Clinician Needs to Know

Total Page:16

File Type:pdf, Size:1020Kb

Skeletal Dysplasias: What Every Bone Health Clinician Needs to Know Curr Osteoporos Rep DOI 10.1007/s11914-017-0392-x PEDIATRICS (L WARD AND E IMEL, SECTION EDITORS) Skeletal Dysplasias: What Every Bone Health Clinician Needs to Know Sarah M. Nikkel1 # Springer Science+Business Media, LLC 2017 Abstract the first international nomenclature of constitutional diseases Purpose of Review This review highlights how skeletal dys- of bones was published [1]. There have been numerous revi- plasias are diagnosed and how our understanding of some of sions over the years, with the last coming out in 2015 [2]. The these conditions has now translated to treatment options. Nosology and Classification of Genetic Skeletal Disorders Recent Findings The use of multigene panels, using next- divides the conditions into 42 groups based on gene families generation sequence technology, has improved our ability to (i.e., the FGFR3 group), phenotypic presentation (i.e., quickly identify the genetic etiology, which can impact man- acromicric dysplasia), and pathophysiology (i.e., lysosomal agement. There are successes with the use of growth hormone disorders), among others. There are 436 disorders with 364 in individuals with SHOX deficiencies, asfotase alfa in genes described, indicating that for a number of conditions a hypophosphatasia, and some promising data for c-type natri- genetic etiology has yet to be found. However, this is not the uretic peptide for those with achondroplasia. full explanation as one gene may be responsible for more than Summary One needs to consider that a patient with short stat- one condition (COL2A1 mutations cause achondrogenesis ure has a skeletal dysplasia as options for management may be type 2, hypochondrogenesis, spondyloepiphyseal dysplasia available. congenital, Kniest and Stickler syndromes) or a condition may be due to more than one gene (multiple epiphyseal dys- Keywords Skeletal dysplasias . Enzyme replacement plasia is caused by mutations in SLC26A2, COMP, MATN3, therapy . Gene panels . Radiographs . C-type natriuretic COL9A1, COL9A2,andCOL9A3, with the gene(s) for some peptide individuals yet to be found). The nosology allows for consis- tency when diagnosing the conditions and ensuring that rare syndromes are given the same name. The grouping of like with like has facilitated the ability to define the natural history, Introduction the genetic etiology, and pathophysiology of a dysplasia. It is an exciting time as pharmacological treatments are present The understanding of skeletal dysplasias has come a long way and emerging for a number of these conditions. since they were initially categorized into two groups: short limb (achondroplasia) and short trunk (Morquio). In 1970, Diagnosis This article is part of the Topical Collection on Pediatrics There are many ways in which a skeletal dysplasia may present: it may be suspected in utero with the finding of * Sarah M. Nikkel short long bones or abnormal mineralization on prenatal [email protected] ultrasound, diagnosed in childhood due to disproportionate short stature or fractures, or be detected when X-rays are 1 Provinical Medical Genetics Program, BC Women’sHospitaland Health Centre, University of British Columbia, 4500 Oak Street, done for an unrelated reason. Regardless of the presenting Vancouver, BC V6H 3N1, Canada complaint, the next step is gathering a detailed medical Curr Osteoporos Rep history to obtain clues as to the potential etiology. The fam- can result in biochemical disturbances, thus the results may ily medical history may help determine if the condition is provide important clues for the diagnosis. X-linked likely to be de novo or inherited, and the possible pattern of hypophosphatemia is characterized by low serum phosphate inheritance. A parent who has or had the same clinical fea- levels, hypophosphatasia has low alkaline phosphatase levels tures (including short stature—remember to measure both (sometimes with elevations in calcium), and Jansen type of parents!) can narrow the differential diagnosis as it is likely metaphyseal chondrodysplasia has elevations in calcium with to indicate an autosomal dominant condition. Knowing that low or low-normal PTH levels. the parents are consanguineous increases the likelihood that the condition could be recessive, but new dominant disor- Radiology ders in children of such parents are just as frequent as they are in the children of non-consanguineous parents. One may X-rays are still the most important diagnostic imaging tool also consider certain diagnoses based on the ethnicity of the when investigating dysplasias. One needs the right images at family. For example, cartilage hair hypoplasia (RMRP)is the appropriate age, as cardinal findings may only emerge more common in those of Finnish or Amish ancestry and with time or be present at a specific stage (i.e., the double Desbuquois (CANT1) is seen more frequently in the Korean patella sign in recessive multiple epiphyseal dysplasia is only population. present when the knee starts to ossify (ages 3–6years)until A complete review of systems may generate important bone maturation). However, what a skeletal dysplasia survey clues to aid in the diagnosis. Many dysplasias are associated entails from center to center can vary. Watson et al. [4]pro- with non-skeletal features, such as congenital heart disease in posed a standardization for imaging with the hope of facilitat- Ellis-van Creveld, ocular anomalies in the type II or type XI ing earlier diagnosis and reducing radiation exposure. Their collagen-associated conditions, pancreatic insufficiency in list of standardized images include anteroposterior (AP) and Shwachman-Diamond syndrome, or Hirschsprung disease in lateral of the skull, lateral of the thoracolumbosacral spine, AP cartilage hair hypoplasia. Thus, one should ask about all body of the chest, AP the of pelvis, AP of one upper limb, AP of one systems. lower limb, and dorsopalmar of the left hand (this also allows Body proportions can provide important clues towards bone age to be done). Examples of abnormal bone morphol- making a diagnosis: is there macrocephaly or microcephaly, ogy obtained from such imaging are shown in Fig. 1.Unless is there rhizomelic or mesomelic shortening, or is there there is a clinical indication of asymmetry, only one limb brachydactyly? When such a finding is present, the differential needs to be imaged. They also suggested that there be at least diagnosis can be narrowed. The Handbook of Physical a one-year interval between studies to allow time for the man- Measurements [3] is an excellent resource for normative ifestation of new findings. Outside of their protocol, they sug- values of all sorts of anthropometric measurements and de- gested other films may be needed but should be directed by scribes how to obtain such measurements correctly. At a min- the suspected differential diagnosis. imum, head circumference, height, and arm span should be measured. In the early years of life, arm span is typically less Skeletal Dysplasia Gene Panels than the height, and after the first decade of life it typically exceeds height. An arm span measurement that is much great- The advent of next-generation sequencing has greatly im- er than the height when plotted on a normative curve may proved our ability to molecularly diagnose genetic condi- suggest spine involvement/platyspondyly. A quick way to de- tions, and most laboratories, commercial and academic cen- termine upper limb proportions is looking at where the wrist ter affiliated, use this technology. A patient may present crease is in comparison to the shoulder when the elbow is fully with a non-specific dysplasia or be too young for some of flexed. If the crease is at or above the shoulder, this suggests the cardinal features to be present on radiographs. There rhizomelia. If it is midway along the humerus, this suggests may also be significant prognostic implications regarding mesomelic shortening of the limb. survival dependent upon the diagnosis, thus an urgency to There are a number of conditions that can mimic a skeletal get this information. In these instances, a skeletal dysplasia dysplasia in a growing child, such as hypothyroidism resulting gene panel can greatly reduce the time to diagnosis and can in epiphyseal changes or vitamin D deficiency causing be more cost- and time-efficient rather than testing gene by metaphyseal changes. Thus, doing some basic blood work gene. However, not all gene panels are created equally and may result in a diagnosis that can be resolved with treatment. different laboratories have different approaches to their Suggested investigations include thyroid stimulating hormone analyses. The American College of Medical Genetics (TSH), 25-hydroxy vitamin D, 1,25-dihydroxyvitamin D, (ACMG) has a clinical practice guideline for clinical labo- parathyroid hormone (PTH), serum phosphate, calcium, cre- ratory standards for next-generation sequencing [5], which atinine, alkaline phosphatase, and urinary calcium, phosphate, the lab should follow. One should ensure that a panel con- and creatinine. As well, the pathogenesis of some dysplasias tains all the genes under consideration and there is Curr Osteoporos Rep a b c e f d Fig. 1 Platyspondyly in a patient with a spondyloepiphseal dysplasia ossification of the capital femoral epiphyses, and a patient with d (COL2A1) and in a patient with b brachyolmia (TRPV4)—note the hypochondroplasia (FGFR3) with an unremarkable pelvis but short difference in shape and proportions of the vertebral bodies. A patient femoral necks. Metaphyseal changes in a patient
Recommended publications
  • The National Economic Burden of Rare Disease Study February 2021
    Acknowledgements This study was sponsored by the EveryLife Foundation for Rare Diseases and made possible through the collaborative efforts of the national rare disease community and key stakeholders. The EveryLife Foundation thanks all those who shared their expertise and insights to provide invaluable input to the study including: the Lewin Group, the EveryLife Community Congress membership, the Technical Advisory Group for this study, leadership from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH), the Undiagnosed Diseases Network (UDN), the Little Hercules Foundation, the Rare Disease Legislative Advocates (RDLA) Advisory Committee, SmithSolve, and our study funders. Most especially, we thank the members of our rare disease patient and caregiver community who participated in this effort and have helped to transform their lived experience into quantifiable data. LEWIN GROUP PROJECT STAFF Grace Yang, MPA, MA, Vice President Inna Cintina, PhD, Senior Consultant Matt Zhou, BS, Research Consultant Daniel Emont, MPH, Research Consultant Janice Lin, BS, Consultant Samuel Kallman, BA, BS, Research Consultant EVERYLIFE FOUNDATION PROJECT STAFF Annie Kennedy, BS, Chief of Policy and Advocacy Julia Jenkins, BA, Executive Director Jamie Sullivan, MPH, Director of Policy TECHNICAL ADVISORY GROUP Annie Kennedy, BS, Chief of Policy & Advocacy, EveryLife Foundation for Rare Diseases Anne Pariser, MD, Director, Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health Elisabeth M. Oehrlein, PhD, MS, Senior Director, Research and Programs, National Health Council Christina Hartman, Senior Director of Advocacy, The Assistance Fund Kathleen Stratton, National Academies of Science, Engineering and Medicine (NASEM) Steve Silvestri, Director, Government Affairs, Neurocrine Biosciences Inc.
    [Show full text]
  • Hypophosphatasia Could Explain Some Atypical Femur Fractures
    Hypophosphatasia Could Explain Some Atypical Femur Fractures What we know Hypophosphatasia (HPP) is a rare genetic disease that affects the development of bones and teeth in children (Whyte 1985). HPP is caused by the absence or reduced amount of an enzyme called tissue-nonspecific alkaline phosphatase (TAP), also called bone-specific alkaline phosphatase (BSAP). The absence of TAP raises the level of inorganic pyrophosphate (Pi), which prevents calcium and phosphate from creating strong, mineralized bone. Without TAP, bones can become weak. In its severe form, HPP is fatal and happens in 1/100,000 births. Because HPP is genetic, it can appear in adults as well. A recent study has identified a milder, more common form of HPP that occurs in 4 of 1000 adults (Dahir 2018). This form of HPP is usually seen in early middle aged adults who have low bone density and sometimes have stress fractures in the feet or thigh bone. Sometimes these patients lose their baby teeth early, but not always. HPP is diagnosed by measuring blood levels of TAP and vitamin B6. An elevated vitamin B6 level [serum pyridoxal 5-phosphate (PLP)] (Whyte 1985) in a patient with a TAP level ≤40 or in the low end of normal can be diagnosed with HPP. Almost half of the adult patients with HPP in the large study had TAP >40, but in the lower end of the normal range (Dahir 2018). The connection between hypophosphatasia and osteoporosis Some people who have stress fractures get a bone density test and are treated with an osteoporosis medicine if their bone density results are low.
    [Show full text]
  • Marble Bone Disease: a Rare Bone Disorder
    Open Access Case Report DOI: 10.7759/cureus.339 Marble Bone Disease: A Rare Bone Disorder Eswaran Arumugam 1 , Maheswari Harinathbabu 2 , Ranjani Thillaigovindan 1 , Geetha Prabhu 1 1. Prosthodontics, Thai Moogambigai Dental College and Hospital 2. Oral Medicine and Radiology, Siva Multi Speciality Dental Clinic Corresponding author: Eswaran Arumugam, [email protected] Abstract Osteopetrosis, or marble bone disease, is a rare skeletal disorder due to a defective function of the osteoclasts. This defect renders bones more susceptible to osteomyelitis due to decreased vascularity. This disorder is inherited as autosomal dominant and autosomal recessive. Healthcare professionals should urge these patients to maintain their oral health as well as general health, as this condition makes these patients more susceptible to frequent infections and fractures. This case report emphasizes the signs and symptoms of marble bone disease and presents clinical and radiographic findings. Categories: Physical Medicine & Rehabilitation, Miscellaneous Keywords: osteopetrosis, marble bone disease, autosomal recessive, dense sclerotic bone Introduction Osteopetrosis (literally "stone bone," also known as marble bone disease or Albers-Schonberg disease) is an extremely rare inherited disorder where the bones harden and become denser. The disorder can cause osteosclerosis. The estimated prevalence of osteopetrosis is 1 in 100,000 to 500,000. It presents in two major clinical forms-a benign autosomal dominant form and a malignant autosomal recessive form. The autosomal dominant adult (benign) form is associated with few, if any, symptoms, and the autosomal recessive infantile (malignant) form is typically fatal during infancy or early childhood if untreated [1]. A rarer autosomal recessive (intermediate) form presents during childhood with some signs and symptoms of malignant osteopetrosis.
    [Show full text]
  • Abstracts from the 9Th Biennial Scientific Meeting of The
    International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):15 DOI 10.1186/s13633-017-0054-x MEETING ABSTRACTS Open Access Abstracts from the 9th Biennial Scientific Meeting of the Asia Pacific Paediatric Endocrine Society (APPES) and the 50th Annual Meeting of the Japanese Society for Pediatric Endocrinology (JSPE) Tokyo, Japan. 17-20 November 2016 Published: 28 Dec 2017 PS1 Heritable forms of primary bone fragility in children typically lead to Fat fate and disease - from science to global policy a clinical diagnosis of either osteogenesis imperfecta (OI) or juvenile Peter Gluckman osteoporosis (JO). OI is usually caused by dominant mutations affect- Office of Chief Science Advsor to the Prime Minister ing one of the two genes that code for two collagen type I, but a re- International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):PS1 cessive form of OI is present in 5-10% of individuals with a clinical diagnosis of OI. Most of the involved genes code for proteins that Attempts to deal with the obesity epidemic based solely on adult be- play a role in the processing of collagen type I protein (BMP1, havioural change have been rather disappointing. Indeed the evidence CREB3L1, CRTAP, LEPRE1, P4HB, PPIB, FKBP10, PLOD2, SERPINF1, that biological, developmental and contextual factors are operating SERPINH1, SEC24D, SPARC, from the earliest stages in development and indeed across generations TMEM38B), or interfere with osteoblast function (SP7, WNT1). Specific is compelling. The marked individual differences in the sensitivity to the phenotypes are caused by mutations in SERPINF1 (recessive OI type obesogenic environment need to be understood at both the individual VI), P4HB (Cole-Carpenter syndrome) and SEC24D (‘Cole-Carpenter and population level.
    [Show full text]
  • A Novel Germline Mutation of ADA2 Gene In
    International Journal of Molecular Sciences Case Report A Novel Germline Mutation of ADA2 Gene in Two “Discordant” Homozygous Female Twins Affected by Adenosine Deaminase 2 Deficiency: Description of the Bone-Related Phenotype Silvia Vai 1,†, Erika Marin 1,† , Roberta Cosso 2 , Francesco Saettini 3, Sonia Bonanomi 3, Alessandro Cattoni 3, Iacopo Chiodini 1,4 , Luca Persani 1,4 and Alberto Falchetti 1,2,* 1 Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; [email protected] (S.V.); [email protected] (E.M.); [email protected] (I.C.); [email protected] (L.P.) 2 IRCCS, Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; [email protected] 3 Department of Pediatrics, Università degli Studi di Milano-Bicocca, Fondazione MBBM, San Gerardo Hospital, 20100 Monza, Italy; [email protected] (F.S.); [email protected] (S.B.); [email protected] (A.C.) 4 Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20122 Milan, Italy * Correspondence: [email protected] † These authors equally contributed to this paper. Abstract: Adenosine Deaminase 2 Deficiency (DADA2) syndrome is a rare monogenic disorder preva- lently linked to recessive inherited loss of function mutations in the ADA2/CECR1 gene. It consists Citation: Vai, S.; Marin, E.; Cosso, R.; of an immune systemic disease including autoinflammatory vasculopathies, with a frequent onset Saettini, F.; Bonanomi, S.; Cattoni, A.; at
    [Show full text]
  • Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in A
    Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in a novel member of the chromodomain gene family cause CHARGE syndrome. L.E.L.M. Vissers1, C.M.A. van Ravenswaaij1, R. Admiraal2, J.A. Hurst3, B.B.A. de Vries1, I.M. Janssen1, W.A. van der Vliet1, E.H.L.P.G. Huys1, P.J. de Jong4, B.C.J. Hamel1, E.F.P.M. Schoenmakers1, H.G. Brunner1, A. Geurts van Kessel1, J.A. Veltman1. 1) Dept Human Genetics, UMC Nijmegen, Nijmegen, Netherlands; 2) Dept Otorhinolaryngology, UMC Nijmegen, Nijmegen, Netherlands; 3) Dept Clinical Genetics, The Churchill Hospital, Oxford, United Kingdom; 4) Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, CA. CHARGE association denotes the non-random occurrence of ocular coloboma, heart defects, choanal atresia, retarded growth and development, genital hypoplasia, ear anomalies and deafness (OMIM #214800). Almost all patients with CHARGE association are sporadic and its cause was unknown. We and others hypothesized that CHARGE association is due to a genomic microdeletion or to a mutation in a gene affecting early embryonic development. In this study array- based comparative genomic hybridization (array CGH) was used to screen patients with CHARGE association for submicroscopic DNA copy number alterations. De novo overlapping microdeletions in 8q12 were identified in two patients on a genome-wide 1 Mb resolution BAC array. A 2.3 Mb region of deletion overlap was defined using a tiling resolution chromosome 8 microarray. Sequence analysis of genes residing within this critical region revealed mutations in the CHD7 gene in 10 of the 17 CHARGE patients without microdeletions, including 7 heterozygous stop-codon mutations.
    [Show full text]
  • Supporting Information
    Supporting Information Torkamani et al. 10.1073/pnas.0802403105 Materials and Methods kinase sequences used to generate conserved motifs, as in Kannan Kinase Identifiers. Kinase protein and DNA reference sequences et al. (3), the Gibbs motif sampling method identifies characteristic were obtained from Kinbase. These reference sequences were motifs for each individual subdomain of the kinase catalytic core, used as the basis to assign various gene identifiers (including which are then used to generate high confidence motif-based Ensembl gene IDs, HGNC gene symbols, and Entrez gene IDs) Markov chain Monte Carlo multiple alignments based upon these to every known human protein kinase. Ultimately, only eukary- motifs (4). These subdomains compromise the core structural otic protein kinases, that is, all human protein kinases except components of the protein kinase catalytic core. Intervening re- those belonging to the atypical protein kinase family, were gions between these subdomains were not aligned. considered in this study. The various gene identifiers were assigned as follows: Ensembl Mapping to Multiple Alignments and Generation of Logo Figures. A Gene ID’s were determined for each protein kinase by BLAST- nonredundant set of SNPs was generated to be mapped to the ing the reference Kinbase protein sequence against the Ensembl alignment computationally. That is, if multiple disease or com- ࿝ database (www.ensembl.org/Homo sapiens/blastview). The En- mon SNPs have been observed at a particular position within a sembl Gene ID of the top hit was assigned to the protein kinase. particular protein kinase, it is only considered once in our The Ensembl Gene ID was then used as a query in Biomart analysis.
    [Show full text]
  • Repercussions of Inborn Errors of Immunity on Growth☆ Jornal De Pediatria, Vol
    Jornal de Pediatria ISSN: 0021-7557 ISSN: 1678-4782 Sociedade Brasileira de Pediatria Goudouris, Ekaterini Simões; Segundo, Gesmar Rodrigues Silva; Poli, Cecilia Repercussions of inborn errors of immunity on growth☆ Jornal de Pediatria, vol. 95, no. 1, Suppl., 2019, pp. S49-S58 Sociedade Brasileira de Pediatria DOI: https://doi.org/10.1016/j.jped.2018.11.006 Available in: https://www.redalyc.org/articulo.oa?id=399759353007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative J Pediatr (Rio J). 2019;95(S1):S49---S58 www.jped.com.br REVIEW ARTICLE ଝ Repercussions of inborn errors of immunity on growth a,b,∗ c,d e Ekaterini Simões Goudouris , Gesmar Rodrigues Silva Segundo , Cecilia Poli a Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro, RJ, Brazil b Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Curso de Especializac¸ão em Alergia e Imunologia Clínica, Rio de Janeiro, RJ, Brazil c Universidade Federal de Uberlândia (UFU), Faculdade de Medicina, Departamento de Pediatria, Uberlândia, MG, Brazil d Universidade Federal de Uberlândia (UFU), Hospital das Clínicas, Programa de Residência Médica em Alergia e Imunologia Pediátrica, Uberlândia, MG, Brazil e Universidad del Desarrollo,
    [Show full text]
  • Inherited Renal Tubulopathies—Challenges and Controversies
    G C A T T A C G G C A T genes Review Inherited Renal Tubulopathies—Challenges and Controversies Daniela Iancu 1,* and Emma Ashton 2 1 UCL-Centre for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK 2 Rare & Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children National Health Service Foundation Trust, Levels 4-6 Barclay House 37, Queen Square, London WC1N 3BH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-2381204172; Fax: +44-020-74726476 Received: 11 February 2020; Accepted: 29 February 2020; Published: 5 March 2020 Abstract: Electrolyte homeostasis is maintained by the kidney through a complex transport function mostly performed by specialized proteins distributed along the renal tubules. Pathogenic variants in the genes encoding these proteins impair this function and have consequences on the whole organism. Establishing a genetic diagnosis in patients with renal tubular dysfunction is a challenging task given the genetic and phenotypic heterogeneity, functional characteristics of the genes involved and the number of yet unknown causes. Part of these difficulties can be overcome by gathering large patient cohorts and applying high-throughput sequencing techniques combined with experimental work to prove functional impact. This approach has led to the identification of a number of genes but also generated controversies about proper interpretation of variants. In this article, we will highlight these challenges and controversies. Keywords: inherited tubulopathies; next generation sequencing; genetic heterogeneity; variant classification. 1. Introduction Mutations in genes that encode transporter proteins in the renal tubule alter kidney capacity to maintain homeostasis and cause diseases recognized under the generic name of inherited tubulopathies.
    [Show full text]
  • Hypochondroplasia
    Arch Dis Child: first published as 10.1136/adc.53.11.868 on 1 November 1978. Downloaded from Arch Dis Child: first published as 10.1136/adc.53.11.868 on 1 November 1978. Downloaded from Archives of Disease in Childhood, 1978, 53, 868-872 Hypochondroplasia J. F. T. GLASGOW, N. C. NEVIN, AND P. S. THOMAS From the Departments of Child Health and Medical Genetics, Queen's University ofBelfast, and Department of Radiology, Royal Belfast Hospitalfor Sick Children SUMMARY Clinical, radiological, and genetic features are described in 3 patients with hypo- chondroplasia. Early recognition of this disorder is possible from the abnormal body proportions with short limbs and lumbar lordosis without facial stigmata of achondroplasia. Radiological confirmation is possible provided a full skeletal survey is made. Two of our patients had a large head. Hypochondroplasia is one of the milder varieties of Table 1 Anthropometric data in patients with chondrodystrophy, resembling a mild form of hypochondroplasia achondroplasia. Affected individuals are slightly Anthropometric data Case I Case 2 Case 3 short in stature with short arms and legs (Kozlowski, 1965, 1973; Beals, 1969; Dorst, 1969; Hall, 1969; At 3 At 7 Murdock, 1969; Walker et al., 1971). Although Age at measurement (years) 8-75 3.0 7.5 9-0 hypochondroplasia appears to be fairly common Height (cm) 107.7 (3) 92.7 (50) 113.7 (10) 119.0 (3) (Rimoin, 1975) there have been few cases described. Weight (kg) 21.6 (10) 16.4 (90) 20.0 (10) 35.6 (90) Skull circumference copyright. We describe the clinical, radiological, and genetic (cm) 53-7 52-5 56-0 50.5 features in 3 patients.
    [Show full text]
  • SKELETAL DYSPLASIA Dr Vasu Pai
    SKELETAL DYSPLASIA Dr Vasu Pai Skeletal dysplasia are the result of a defective growth and development of the skeleton. Dysplastic conditions are suspected on the basis of abnormal stature, disproportion, dysmorphism, or deformity. Diagnosis requires Simple measurement of height and calculation of proportionality [<60 inches: consideration of dysplasia is appropriate] Dysmorphic features of the face, hands, feet or deformity A complete physical examination Radiographs: Extremities and spine, skull, Pelvis, Hand Genetics: the risk of the recurrence of the condition in the family; Family evaluation. Dwarf: Proportional: constitutional or endocrine or malnutrition Disproportion [Trunk: Extremity] a. Height < 42” Diastrophic Dwarfism < 48” Achondroplasia 52” Hypochondroplasia b. Trunk-extremity ratio May have a normal trunk and short limbs (achondroplasia), Short trunk and limbs of normal length (e.g., spondylo-epiphyseal dysplasia tarda) Long trunk and long limbs (e.g., Marfan’s syndrome). c. Limb-segment ratio Normal: Radius-Humerus ratio 75% Tibia-Femur 82% Rhizomelia [short proximal segments as in Achondroplastics] Mesomelia: Dynschondrosteosis] Acromelia [short hands and feet] RUBIN CLASSIFICATION 1. Hypoplastic epiphysis ACHONDROPLASTIC Autosomal Dominant: 80%; 0.5-1.5/10000 births Most common disproportionate dwarfism. Prenatal diagnosis: 18 weeks by measuring femoral and humeral lengths. Abnormal endochondral bone formation: zone of hypertrophy. Gene defect FGFR fibroblast growth factor receptor 3 . chromosome 4 Rhizomelic pattern, with the humerus and femur affected more than the distal extremities; Facies: Frontal bossing; Macrocephaly; Saddle nose Maxillary hypoplasia, Mandibular prognathism Spine: Lumbar lordosis and Thoracolumbar kyphosis Progressive genu varum and coxa valga Wedge shaped gaps between 3rd and 4th fingers (trident hands) Trident hand 50%, joint laxity Pathology Lack of columnation Bony plate from lack of growth Disorganized metaphysis Orthopaedics 1.
    [Show full text]
  • Overuse Injuries in Sport: a Comprehensive Overview R
    Aicale et al. Journal of Orthopaedic Surgery and Research (2018) 13:309 https://doi.org/10.1186/s13018-018-1017-5 REVIEW Open Access Overuse injuries in sport: a comprehensive overview R. Aicale1*, D. Tarantino1 and N. Maffulli1,2 Abstract Background: The absence of a single, identifiable traumatic cause has been traditionally used as a definition for a causative factor of overuse injury. Excessive loading, insufficient recovery, and underpreparedness can increase injury risk by exposing athletes to relatively large changes in load. The musculoskeletal system, if subjected to excessive stress, can suffer from various types of overuse injuries which may affect the bone, muscles, tendons, and ligaments. Methods: We performed a search (up to March 2018) in the PubMed and Scopus electronic databases to identify the available scientific articles about the pathophysiology and the incidence of overuse sport injuries. For the purposes of our review, we used several combinations of the following keywords: overuse, injury, tendon, tendinopathy, stress fracture, stress reaction, and juvenile osteochondritis dissecans. Results: Overuse tendinopathy induces in the tendon pain and swelling with associated decreased tolerance to exercise and various types of tendon degeneration. Poor training technique and a variety of risk factors may predispose athletes to stress reactions that may be interpreted as possible precursors of stress fractures. A frequent cause of pain in adolescents is juvenile osteochondritis dissecans (JOCD), which is characterized by delamination and localized necrosis of the subchondral bone, with or without the involvement of articular cartilage. The purpose of this compressive review is to give an overview of overuse injuries in sport by describing the theoretical foundations of these conditions that may predispose to the development of tendinopathy, stress fractures, stress reactions, and juvenile osteochondritis dissecans and the implication that these pathologies may have in their management.
    [Show full text]