Overuse Injuries in Sport: a Comprehensive Overview R

Total Page:16

File Type:pdf, Size:1020Kb

Overuse Injuries in Sport: a Comprehensive Overview R Aicale et al. Journal of Orthopaedic Surgery and Research (2018) 13:309 https://doi.org/10.1186/s13018-018-1017-5 REVIEW Open Access Overuse injuries in sport: a comprehensive overview R. Aicale1*, D. Tarantino1 and N. Maffulli1,2 Abstract Background: The absence of a single, identifiable traumatic cause has been traditionally used as a definition for a causative factor of overuse injury. Excessive loading, insufficient recovery, and underpreparedness can increase injury risk by exposing athletes to relatively large changes in load. The musculoskeletal system, if subjected to excessive stress, can suffer from various types of overuse injuries which may affect the bone, muscles, tendons, and ligaments. Methods: We performed a search (up to March 2018) in the PubMed and Scopus electronic databases to identify the available scientific articles about the pathophysiology and the incidence of overuse sport injuries. For the purposes of our review, we used several combinations of the following keywords: overuse, injury, tendon, tendinopathy, stress fracture, stress reaction, and juvenile osteochondritis dissecans. Results: Overuse tendinopathy induces in the tendon pain and swelling with associated decreased tolerance to exercise and various types of tendon degeneration. Poor training technique and a variety of risk factors may predispose athletes to stress reactions that may be interpreted as possible precursors of stress fractures. A frequent cause of pain in adolescents is juvenile osteochondritis dissecans (JOCD), which is characterized by delamination and localized necrosis of the subchondral bone, with or without the involvement of articular cartilage. The purpose of this compressive review is to give an overview of overuse injuries in sport by describing the theoretical foundations of these conditions that may predispose to the development of tendinopathy, stress fractures, stress reactions, and juvenile osteochondritis dissecans and the implication that these pathologies may have in their management. Conclusions: Further research is required to improve our knowledge on tendon and bone healing, enabling specific treatment strategies to be developed for the management of overuse injuries. Keywords: Fractures, Stress fracture, Overuse injuries, Osteochondritis dissecans, Tendinopathy Background players to relatively large changes, or spikes, in load dur- The specific definition of overuse injury was most com- ing periods with higher training and match loads [4]. monly based on the concept of an injury occurring in The tendons transfer the force produced from muscular the absence of a single, identifiable traumatic cause [1]. contraction to the bone. In most instances, sports-related Professional soccer players sustain on average 2.0 injur- tendinopathies present well-defined histopathological le- ies per season, which cause them to miss 37 days in a sions, providing an explanation for the chronicity of symp- 300-day season on average [2]. Following the updated in- toms which often occur in athletes with tendinopathies jury etiology model, training and match load contribute, [5–8]. together with intrinsic and extrinsic risk factors, to the The aim of the present article is to investigate the multifactorial and dynamic etiology of injury [3]. Not physiopathology, clinical presentation, diagnostic tools, only excessive loading and insufficient recovery, but also and management of the most common overuse sport in- underpreparedness may increase injury risk by exposing juries. In particular, we focus on tendinopathy, stress re- action, stress fracture, and juvenile osteochondritis * Correspondence: [email protected] dissecans, which are the most frequent lesion caused by 1Department of Musculoskeletal Disorders, School of Medicine and Dentistry, University of Salerno, Salerno, Italy overuse. Furthermore, in the first part of this study, to Full list of author information is available at the end of the article © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Aicale et al. Journal of Orthopaedic Surgery and Research (2018) 13:309 Page 2 of 11 better understand the changes of the bone, muscle, and Stress reactions of the musculoskeletal system may be tendon structures, we mention different mechanisms interpreted as possible precursors of stress fractures. present in an overuse situation. Biological tissues, in contrast to artificial products, can Overuse tendinopathy induces in the affected tendon react in numerous and complex ways. This can lead not pain and swelling, and associated decreased load tolerance only to a continual weakening of the tissue, but also to and function during exercise of the limb [9, 10]. Various adaption phenomena in response to overuse. The causes types of tendon degeneration have been described at elec- of such stress reactions are still unclear. tron microscopy, namely (a) hypoxic degeneration, (b) Juvenile osteochondritis dissecans (JOCD) is a frequent hyaline degeneration, (c) mucoid or myxoid degeneration, cause of pain in adolescents, both athletes and (d) fibrinoid degeneration, (e) lipoid degeneration, (f) cal- non-athletes. JOCD is characterized by delamination and cification, and (g) fibrocartilaginous and bony metaplasia localized necrosis of the subchondral bone, with or with- [11]. Healing of tendinopathic tendons relies on the intrin- out the involvement of the overlying articular cartilage sic ability of tenocytes to respond to the stimulus induced [28–31]. The etiology remains unclear, but repetitive by the injury to the surrounding tissue matrix [12, 13]and microtrauma, such as that typical of overuse injury, is con- consists of a cellular response including apoptosis (pro- sidered the significant factor leading to JOCD [28, 29]. grammed cell death), chemotaxis, proliferation, and differ- entiation [14]. The mechanism underlying the precise The role of inflammation and molecular factors in sequence of these events, which balance the effectiveness overuse injuries of healing and any subsequent predisposition to repetitive The effects of an altered inflammatory response damage, remains obscure. In this model, the question arises as to why the healing The essence of tendinopathy is a “failed healing re- response is successful in some individuals but fails in sponse.” This model suggests that, after an acute insult to others. More importantly, can we identify factors which the tendon, an early inflammatory response that would may increase the risk of this ineffective healing re- normally result in successful injury resolution veers to- sponse? For example, the incidence of tendinopathy is ward an ineffective healing response [15], with degener- increased in individuals with obesity and decreased insu- ation and proliferation of tenocytes, disruption of collagen lin sensitivity, as seen in patients with type 1 and type 2 fibers, and subsequent increase in non-collagenous matrix diabetes mellitus (T1/T2DM) [10, 32–34]. Evidence for a [7, 16–19](Table1). chronic, low-grade inflammatory state in obesity is rep- Poor training technique and a variety of risk factors may resented principally by marked increases in plasma levels predispose players to lower limb overuse injuries affecting of proinflammatory cytokines such as tumor necrosis the bone, including stress reactions to full-fledged stress factor (TNF)-a and interleukin (IL)-6, and proinflamma- fractures. The underlying principle of the bone response tory chemokines such as monocyte chemoattractant pro- to stress is Wolff’s law, whereby changes in the stresses tein (MCP)-1 [34]. imposed on the bone lead to changes in its internal archi- Patients with type 1 and type 2 diabetes exhibit a less tecture [20, 21]. Stress fractures, defined as microfractures effective healing response [35]. Recently, it has been of the cortical bone tissue, affect thousands of athletes per demonstrated the presence of an independent relation- year [22, 23]. Certain subpopulations, including runners, ship between impaired insulin sensitivity and the devel- gymnasts, and female athletes, exhibit higher rates of opment of chronic low-grade inflammation through a stress fractures [24, 25]. If left untreated, a stress fracture protein, the levels of which are normally physiologically can progress to a complete fracture of a bone, which may inhibited by insulin, called FOXO1, a key upregulator of require surgical fixation [26]. In addition, factors contrib- the proinflammatory cytokine IL-b [35]. uting to stress fractures increase the risk for osteoporosis, Considering the influence that a prolonged state of a substantial long-term health concern [27]. low-grade systemic inflammation may have on the heal- ing process after acute tendon injury, it must be appreci- Table 1 Types of tendon collagens ated that tendon healing is a delicate and prolonged Types of MW Quantity (%) Localization process even under optimal physiological conditions [10, collagens 34]. Even minor disruptions to any of the noted healing Type I 95.000
Recommended publications
  • Hypophosphatasia Could Explain Some Atypical Femur Fractures
    Hypophosphatasia Could Explain Some Atypical Femur Fractures What we know Hypophosphatasia (HPP) is a rare genetic disease that affects the development of bones and teeth in children (Whyte 1985). HPP is caused by the absence or reduced amount of an enzyme called tissue-nonspecific alkaline phosphatase (TAP), also called bone-specific alkaline phosphatase (BSAP). The absence of TAP raises the level of inorganic pyrophosphate (Pi), which prevents calcium and phosphate from creating strong, mineralized bone. Without TAP, bones can become weak. In its severe form, HPP is fatal and happens in 1/100,000 births. Because HPP is genetic, it can appear in adults as well. A recent study has identified a milder, more common form of HPP that occurs in 4 of 1000 adults (Dahir 2018). This form of HPP is usually seen in early middle aged adults who have low bone density and sometimes have stress fractures in the feet or thigh bone. Sometimes these patients lose their baby teeth early, but not always. HPP is diagnosed by measuring blood levels of TAP and vitamin B6. An elevated vitamin B6 level [serum pyridoxal 5-phosphate (PLP)] (Whyte 1985) in a patient with a TAP level ≤40 or in the low end of normal can be diagnosed with HPP. Almost half of the adult patients with HPP in the large study had TAP >40, but in the lower end of the normal range (Dahir 2018). The connection between hypophosphatasia and osteoporosis Some people who have stress fractures get a bone density test and are treated with an osteoporosis medicine if their bone density results are low.
    [Show full text]
  • Fibular Stress Fractures in Runners
    Fibular Stress Fractures in Runners Robert C. Dugan, MS, and Robert D'Ambrosia, MD New Orleans, Louisiana The incidence of stress fractures of the fibula and tibia is in­ creasing with the growing emphasis on and participation in jog­ ging and aerobic exercise. The diagnosis requires a high level of suspicion on the part of the clinician. A thorough history and physical examination with appropriate x-ray examination and often technetium 99 methylene diphosphonate scan are re­ quired for the diagnosis. With the advent of the scan, earlier diagnosis is possible and earlier return to activity is realized. The treatment is complete rest from the precipitating activity and a gradual return only after there is no longer any pain on deep palpation at the fracture site. X-ray findings may persist 4 to 6 months after the initial injury. A stress fracture is best described as a dynamic tigue fracture, spontaneous fracture, pseudofrac­ clinical syndrome characterized by typical symp­ ture, and march fracture. The condition was first toms, physical signs, and findings on plain x-ray described in the early 1900s, mostly by military film and bone scan.1 It is a partial or incomplete physicians.5 The first report from the private set­ fracture resulting from an inability to withstand ting was in 1940, by Weaver and Francisco,6 who nonviolent stress that is applied in a rhythmic, re­ proposed the term pseudofracture to describe a peated, subthreshold manner.2 The tibiofibular lesion that always occurred in the upper third of joint is the most frequent site.3 Almost invariably one or both tibiae and was characterized on roent­ the fracture is found in the distal third of the fibula, genograms by a localized area of periosteal thick­ although isolated cases of proximal fibular frac­ ening and new bone formation over what appeared tures have also been reported.4 The symptoms are to be an incomplete V-shaped fracture in the cor­ exacerbated by stress and relieved by inactivity.
    [Show full text]
  • A Novel Germline Mutation of ADA2 Gene In
    International Journal of Molecular Sciences Case Report A Novel Germline Mutation of ADA2 Gene in Two “Discordant” Homozygous Female Twins Affected by Adenosine Deaminase 2 Deficiency: Description of the Bone-Related Phenotype Silvia Vai 1,†, Erika Marin 1,† , Roberta Cosso 2 , Francesco Saettini 3, Sonia Bonanomi 3, Alessandro Cattoni 3, Iacopo Chiodini 1,4 , Luca Persani 1,4 and Alberto Falchetti 1,2,* 1 Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; [email protected] (S.V.); [email protected] (E.M.); [email protected] (I.C.); [email protected] (L.P.) 2 IRCCS, Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; [email protected] 3 Department of Pediatrics, Università degli Studi di Milano-Bicocca, Fondazione MBBM, San Gerardo Hospital, 20100 Monza, Italy; [email protected] (F.S.); [email protected] (S.B.); [email protected] (A.C.) 4 Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20122 Milan, Italy * Correspondence: [email protected] † These authors equally contributed to this paper. Abstract: Adenosine Deaminase 2 Deficiency (DADA2) syndrome is a rare monogenic disorder preva- lently linked to recessive inherited loss of function mutations in the ADA2/CECR1 gene. It consists Citation: Vai, S.; Marin, E.; Cosso, R.; of an immune systemic disease including autoinflammatory vasculopathies, with a frequent onset Saettini, F.; Bonanomi, S.; Cattoni, A.; at
    [Show full text]
  • Vitamin D and Bone Health
    1150 17th Street NW Suite 850 Washington, D.C. 200361 Bone Basics 1 (800) 231-4222 TEL ©National Osteoporosis Foundation 2013 1 (202) 223-2237 FAX www.nof.org Vitamin D and Bone Health Vitamin D plays an important role in protecting your bones. It may also help prevent other conditions including certain cancers. Your body requires vitamin D to absorb calcium. Children need vitamin D to build strong bones, and adults need it to keep bones strong and healthy. When people do not get enough vitamin D, they can lose bone. Studies show that people with low levels of vitamin D have lower bone density or bone mass. They are also more likely to break bones when they are older. Severe vitamin D deficiency is rare in the United States. It can cause a disease known as osteomalacia where the bones become soft. In children, this is known as rickets. These are both different conditions from osteoporosis. NOF Recommendations for Vitamin D The National Osteoporosis Foundation (NOF) recommends that adults under age 50 get 400-800 International Units (IU) of vitamin D every day, and that adults age 50 and older get 800-1,000 IU of vitamin D every day. Some people need more vitamin D. There are two types of vitamin D supplements. They are vitamin D2 and vitamin D3. Previous research suggested that vitamin D3 was a better choice than vitamin D2. However, more recent studies show that vitamin D3 and vitamin D2 are fairly equal for bone health. Vitamin D3 is also called cholecalciferol. Vitamin D2 is also called ergocalciferol.
    [Show full text]
  • Long Term Treatment of Recurring Pathological Fractures Due to Mccune Albright Syndrome: Case Report and Literature Review
    Vol.2, No.9, 562-567 (2013) Case Reports in Clinical Medicine http://dx.doi.org/10.4236/crcm.2013.29142 Long term treatment of recurring pathological fractures due to Mccune Albright Syndrome: Case report and literature review Yoshvin Sunnassee, Yuhui Shen, Rong Wan, Jianqiang Xu, Weibin Zhang* Department of Orthopedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Traumatology and Orthopedics, Shanghai, China; *Corresponding Author: [email protected] Received 17 June 2013; revised 15 July 2013; accepted 10 August 2013 Copyright © 2013 Yoshvin Sunnassee et al. This is an open access article distributed under the Creative Commons Attribution Li- cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2013 are reserved for SCIRP and the owner of the intel- lectual property Yoshvin Sunnassee et al. All Copyright © 2013 are guarded by law and by SCIRP as a guardian. ABSTRACT mentation, precocious puberty and polyostotic fibrous dysplasia (PFD) [1,2]. Patients with PFD have poor bone McCune Albright syndrome is a rare genetic quality and are liable to pathological fractures. We here- disorder which is characterized by café au lait by report the case of a male patient who is treated for 7 skin pigmentation, precocious puberty and poly- years in our center for recurring pathological fractures of ostotic fibrous dysplasia. Treating recurring pa- the femur due to MAS. When the patient was first seen, thological fractures due to Albright syndrome is he presented with a shepherd’s crook deformity of the a very challenging endeavor, and more so when proximal femur.
    [Show full text]
  • Neurofibromatosis with Pancreatic Duct Obstruction and Steatorrhoea
    Postgrad Med J: first published as 10.1136/pgmj.43.500.432 on 1 June 1967. Downloaded from 432 Case reports References KORST, D.R., CLATANOFF, D.V. & SCHILLING, R.F. (1956) APPLEBY, A., BATSON, G.A., LASSMAN, L.P. & SIMPSON, On myelofibrosis. Arch. intern. Med. 97, 169. C.A. (1964) Spinal cord compression by extramedullary LEIBERMAN, P.H., ROSVOLL, R.V. & LEY, A.B. (1965) Extra- haematopoiesis in myelosclerosis. J. Neurol. Neurosurg. medullary myeloid tumors in primary myelofibrosis. Psychiat. 27, 313. Cancer, 18, 727. ASK-UPMARK, E. (1945) Tumour-simulating intra-thoracic LEIGH, T.F., CORLEY, C.C., Jr, HUGULEY, C.M. & ROGERS, heterotopia of bone marrow, Acta radiol. (Stockh.), 26, J.V., Jr (1959) Myelofibrosis. The general and radiologic 425. in 25 cases. Amer. J. 82, 183. BRANNAN, D. (1927) Extramedullary hematopoiesis in findings proved Roentgenol. anaemias. Bull. Johns Hopk. Hosp. 41 104. LOWMAN, R.M., BLOOR, C.M. & NEWCOMB, A.W. (1963) CLOSE, A.S., TAIRA, Y. & CLEVELAND, D.A. (1958) Spinal Thoracic extramedullary hematopoiesis. Dis. Chest. 44, cord compression due to extramedullary hematopoiesis. 154. Ann. intern. Med. 48, 421. MALAMOS, B., PAPAVASILIOU, C. & AVRAMIS, A. (1962) CRAVEN, J.D. (1964) Renal glomerular osteodystrophy. Tumor-simulating intrathoracic extramedullary hemo- Clin. Radiol. 15, 210. poiesis. Report of a case. Acta radiol. (Stockh.), 57, 227. DENT, C.E. (1955) Clinical section. Proc. roy. Soc. Med. 48, 530. PITCOCK, J.A., REINHARD, E.H., JUSTUS, B.W. & MENDEL- DODGE, O.G. & EVANS, D. (1956) Haemopoiesis in a pre- SOHN, R.S. (1962) A clinical and pathological study of 70 sacral tumor (myelolipoma).
    [Show full text]
  • Osseous Manifestations of Primary Hyperparathyroidism: Imaging Findings
    Hindawi International Journal of Endocrinology Volume 2020, Article ID 3146535, 10 pages https://doi.org/10.1155/2020/3146535 Review Article Osseous Manifestations of Primary Hyperparathyroidism: Imaging Findings Jackson Bennett ,1 James W. Suliburk ,2 and Fanny E. Moro´n 3 1School of Medicine, Baylor College of Medicine, Houston, TX, USA 2Department of Surgery, Baylor College of Medicine, Houston, TX, USA 3Department of Radiology, Baylor College of Medicine, Houston, TX, USA Correspondence should be addressed to Fanny E. Mor´on; [email protected] Received 13 September 2019; Revised 10 December 2019; Accepted 8 January 2020; Published 21 February 2020 Academic Editor: Giorgio Borretta Copyright © 2020 Jackson Bennett et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Primary hyperparathyroidism is a systemic endocrine disease that has significant effects on bone remodeling through the action of parathyroid hormone on the musculoskeletal system. -ese findings are important as they can aid in distinguishing primary hyperparathyroidism from other forms of metabolic bone diseases and inform physicians regarding disease severity and complications. -is pictorial essay compiles bone-imaging features with the aim of improving the diagnosis of skeletal in- volvement of primary hyperthyroidism. 1. Introduction the symptomatic classical variant in some individuals [2, 4]. Other HPT disease subtypes include secondary and tertiary Hyperparathyroidism (HPT) is an endocrine disorder de- disease, which are primarily seen in patients with chronic fined by a state of inappropriately increased levels of renal disease and posttransplant patients [7].
    [Show full text]
  • Fracture Healing Complications in Patients Presenting with High-Energy Trauma Fractures and Bone Health Intervention Debra L
    Scientific Poster #116 Polytrauma OTA 2014 Fracture Healing Complications in Patients Presenting with High-Energy Trauma Fractures and Bone Health Intervention Debra L. Sietsema, PhD1,2; Michael D. Koets, BS3; Clifford B. Jones, MD1,2; 1Orthopaedic Associates of Michigan, Grand Rapids, Michigan, USA; 2Michigan State University, Grand Rapids, Michigan, USA; 3Wayne State University School of Medicine, Detroit, Michigan, USA Purpose: Approximately 5%-10% of fractures will have healing complications of nonunion or malunion. Altered bone metabolism is one of many contributing factors to abnormal bone healing. Trauma patients may have many of the risk factors for osteoporosis which when combined with a high-impact injury can lead to poor fracture healing. The purpose of this study was to determine fracture healing complications following high-energy trauma in those who have had bone health follow-up. Methods: From 2011 through 2012, 522 consecutive adults with high-energy trauma frac- tures received treatment in a Level I trauma center, were seen in an outpatient clinic for bone health, and retrospectively evaluated. 96 patients were excluded due to insufficient chart data, resulting in 426 patients in the study. Patients had a full workup consisting of mechanism of traumatic fracture(s), radiologic determination of healing, health and medi- cation history, physical examination, bone health laboratory values drawn inpatient, and dual x-ray absorptiometry (DXA) outpatient when physically feasible. Vitamin D 50,000 IU was given following trauma presentation prior to initial laboratory draw and continued maintenance dose was dependent on laboratory results. Individualized bone health life- style behavioral counseling, treatment and prescription were provided as indicated.
    [Show full text]
  • Nephrology II BONE METABOLISM and DISEASE in CHRONIC KIDNEY DISEASE
    Nephrology II BONE METABOLISM AND DISEASE IN CHRONIC KIDNEY DISEASE Sarah R. Tomasello, Pharm.D., BCPS Reviewed by Joanna Q. Hudson, Pharm.D., BCPS; and Lisa C. Hutchison, Pharm.D., MPH, BCPS aluminum toxicity. Adynamic bone disease is referred to as Learning Objectives low turnover disease with normal mineralization. This disorder may be caused by excessive suppression of PTH 1. Analyze the alterations in phosphorus, calcium, vitamin through the use of vitamin D agents, calcimimetics, or D, and parathyroid hormone regulation that occur in phosphate binders. In addition to bone effects, alterations in patients with chronic kidney disease (CKD). calcium, phosphorus, vitamin D and PTH cause other 2. Classify the type of bone disease that occurs in patients deleterious consequences in patients with CKD. Of these, with CKD based on the evaluation of biochemical extra-skeletal calcification and increased left ventricular markers. mass have been documented and directly correlated to an 3. Construct a therapeutic plan individualized for the stage increase in cardiovascular morbidity and mortality. The goal of CKD to monitor bone metabolism and the effects of of treatment in patients with CKD and abnormalities of bone treatment. metabolism is to normalize mineral metabolism, prevent 4. Assess the role of various treatment options such as bone disease, and prevent extraskeletal manifestations of the phosphorus restriction, phosphate binders, calcium altered biochemical processes. supplements, vitamin D agents, and calcimimetics In 2003, a non-profit international organization, Kidney based on the pathophysiology of the disease state. Disease: Improving Global Outcomes, was created. Their 5. Devise a therapeutic plan for a specific patient with mission is to improve care and outcomes for patients with alterations of phosphorus, calcium, vitamin D, and CKD worldwide by promoting, coordinating, collaborating, intact parathyroid hormone concentrations.
    [Show full text]
  • Osteoporosis/Bone Health in Adults As a National Public Health Priority
    Position Statement Osteoporosis/Bone Health in Adults as a National Public Health Priority This Position Statement was developed as an educational tool based on the opinion of the authors. It is not a product of a systematic review. Readers are encouraged to consider the information presented and reach their own conclusions. Osteoporosis is a widespread metabolic bone disease characterized by decreased bone mass and poor bone quality. It leads to an increased frequency of fractures of the hip, spine, and wrist. Osteoporosis is a global public health problem currently affecting more than 200 million people worldwide. In the United States alone, 10 million people have osteoporosis, and 18 million more are at risk of developing the disease. Another 34 million Americans are at risk of osteopenia, or low bone mass, which can lead to fractures and other complications. Low bone mass is a growing global health burden, and likely reflects only a small part of the true burden of osteoporosis, given that bone mineral density (BMD) does not indicate other important components of bone strength. Fragility fractures have a morbidity and mortality related to them that may be avoided more effectively if information is provided in clinical and public health prevention and management programs.14 Eighty percent of people who suffer osteoporosis are females.1 Although more commonly seen in females, osteoporosis in males remains underdiagnosed and underreported.8 The lifetime risk for fracture may be rising in certain populations, specifically Hispanic females. According to the 2004 Surgeon General's Report on Bone Health and Osteoporosis, the prevalence of osteoporosis in Hispanic females is similar to that found in Caucasian females.
    [Show full text]
  • Postpartum Osteoporosis Associated with Proximal Tibial Stress Fracture
    Skeletal Radiol (2004) 33:96–98 DOI 10.1007/s00256-003-0721-2 CASE REPORT I. A. Clemetson Postpartum osteoporosis associated A. Popp K. Lippuner with proximal tibial stress fracture F. Ballmer S. E. Anderson Received: 18 July 2003 Abstract A 33-year-old woman pre- We discuss the presence of a post- Revised: 27 October 2003 sented with acute nonspecific knee partum stress fracture in a hitherto Accepted: 28 October 2003 pain, 6 months postpartum. MR im- undescribed site in a patient who had Published online: 9 January 2004 aging, computed tomography and lactated following an uncomplicated ISS 2004 radiography were performed and a pregnancy and had no other identifi- I. A. Clemetson ()) · S. E. Anderson proximal tibia plateau insufficiency able cause for a stress fracture. Department of Radiology, fracture was detected. Bone densi- University Hospital of Bern, Inselspital, tometry demonstrated mild postpar- Keywords Tibial insufficiency 3010 Bern, Switzerland e-mail: [email protected] tum osteoporosis. To our knowledge fracture · Postpartum osteoporosis · Tel.: +41-31-6322527 these findings have not been de- Dual-energy X-ray absorptiometry · Fax: +41-31-6324874 scribed in this location and in this MR imaging of the knee · clinical setting. The etiology of the Radiography A. Popp · K. Lippuner atraumatic fracture of the tibia is Department of Osteology, University Hospital of Bern, Inselspital, presumed to be due to a low bone 3010 Bern, Switzerland mineral density. The bone loss was probably due to pregnancy, lactation F. Ballmer and postpartum hormonal changes. Knee and Sports Medicine Unit, Lindenhofspital Bern, There were no other inciting causes 3012 Bern, Switzerland and the patient was normocalcemic.
    [Show full text]
  • The Effect of Concentrated Bone Marrow Aspirate in Operative Treatment of Fifth Metatarsal Stress Fractures
    Weel et al. BMC Musculoskeletal Disorders (2015) 16:211 DOI 10.1186/s12891-015-0649-4 STUDY PROTOCOL Open Access The effect of concentrated bone marrow aspirate in operative treatment of fifth metatarsal stress fractures; a double-blind randomized controlled trial Hanneke Weel1*, Wouter H. Mallee1, C. Niek van Dijk1, Leendert Blankevoort1, Simon Goedegebuure3, J. Carel Goslings2, John G. Kennedy4 and Gino M. M. J. Kerkhoffs1* Abstract Background: Fifth metatarsal (MT-V) stress fractures often exhibit delayed union and are high-risk fractures for non- union. Surgical treatment, currently considered as the gold standard, does not give optimal results, with a mean time to fracture union of 12-18 weeks. In recent studies, the use of bone marrow cells has been introduced to accelerate healing of fractures with union problems. The aim of this randomized trial is to determine if operative treatment of MT-V stress fractures with use of concentrated blood and bone marrow aspirate (cB + cBMA) is more effective than surgery alone. We hypothesize that using cB + cBMA in the operative treatment of MT-V stress fractures will lead to an earlier fracture union. Methods/Design: A prospective, double-blind, randomized controlled trial (RCT) will be conducted in an academic medical center in the Netherlands. Ethics approval is received. 50 patients will be randomized to either operative treatment with cB + cBMA, harvested from the iliac crest, or operative treatment without cB + cBMA but with a sham-treatment of the iliac crest. The fracture fixation is the same in both groups, as is the post-operative care.. Follow up will be one year.
    [Show full text]