Drones in Passenger and Freight Transport
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessing Feasibility of the Delivery Drone
Assessing Feasibility of the Delivery Drone By: Blane Butcher and Kok Weng Lim Topic Areas: Strategy, Transportation, Last Mile Advisor: Dr. Justin Boutilier Summary: Blane is from Cleveland, Weng is from Kuala Lumpur, Ohio. He graduated from Malaysia. He holds a Master’s Cornell University with a in Engineering Management Bachelor of Science in from University Putra Mechanical Engineering in Malaysia. His background is 2012. He is a helicopter pilot in risk management, internal in the United States Navy auditing, and quality with experience in aviation management with Sime Darby maintenance and quality (Malaysian Conglomerate) in assurance. China and Southeast Asia. Background KEY INSIGHTS Getting into the delivery drone industry requires careful alignment of business and strategy for a company. Examining the important aspects of the 1. Constraints are a critical component to drone industry to align them with the company understand and consider when exploring strategy is the first step. delivery drones in a transportation network. Drone flight range, payload, and Amazon, Boeing, UPS, FedEX, and DHL are just a cost of operation are currently the most few of the companies that have been experimenting difficult constraints to address. with delivery drones. Most of the momentum in drones seems to be in the medical industry. There 2. Applications in the medical industry are also a number of emerging delivery drone constitute most of the current delivery companies such as Matternet and Flirtey. drone applications. Major transportation companies like UPS, Amazon, and DHL Given the activity in the drone industry, it is important have all shown active participation in to understand their technological capabilities and delivery drone research. -
3.0 the Autonomous Transportation System (ATS)
3.0 The Autonomous Transportation System (ATS) Concept The world is on the cusp of a completely new mode of transportation using electric powered, networked, fully autonomous vehicles. A new Autonomous Transportation System (ATS) is needed to facilitate this transformation within the U.S., to include standards for the development, manufacture and operation of autonomous Aerial Vehicles (AVs) and Ground Vehicles (GVs). This document proposes strategic-level standards for the ATS and for autonomous AVs and GVs, to enable safe, secure, reliable and swift transport of cargo and human passengers. Further, it proposes standards to safely incorporate traditional manually operated ground vehicles, pilot-controlled aircraft, and smalls drones into the system – initially and perpetually. Topics, features, and design solutions presented in this document are the proposed strategic- level standards. The proposed new ATS includes the people, facilities, and hardware/software (HW/SW) required to manage, operate, and monitor all GVs operating on the ground, and all AVs operating within the authorized public airspace. The standards will ensure cargo, passengers, and people and property on the ground are kept safe, now and into the future. OVER’s vision and intention is that this proposed ATS be discussed and revised as necessary by transportation and aerospace industry experts, government experts (DOT, FAA, etc.), and the American public. Once revised, it can provide a baseline for final standards to govern the design, production, integration and operation of large, fully autonomous GVs traversing public roads and AVs flying within the public airspace. The final ATS will ensure that all autonomous GVs/AVs are safe, secure, reliable and fully compatible with the HW, SW, networking and communication requirements, regardless of manufacturer, or will not be allowed to operate. -
Design Perspectives on Delivery Drones
C O R P O R A T I O N Design Perspectives on Delivery Drones Jia Xu For more information on this publication, visit www.rand.org/t/RR1718z2 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2017 RAND Corporation R® is a registered trademark. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. Support RAND Make a tax-deductible charitable contribution at www.rand.org/giving/contribute www.rand.org Preface Delivery drones may become widespread over the next five to ten years, particularly for what is known as the “last-mile” logistics of small, light items. Companies such as Amazon, Google, the United Parcel Service (UPS), DHL, and Alibaba have been running high-profile experiments testing drone delivery systems, and the development of such systems reached a milestone when the first commercial drone delivery approved by the Federal Aviation Administration took place on July 17, 2015. -
Strategic Network Design for Parcel Delivery with Drones Under Competition
Strategic Network Design for Parcel Delivery with Drones under Competition Gohram Baloch, Fatma Gzara Department of Management Sciences, University of Waterloo, ON Canada N2L 3G1 [email protected] [email protected] This paper studies the economic desirability of UAV parcel delivery and its effect on e-retailer distribution network while taking into account technological limitations, government regulations, and customer behavior. We consider an e-retailer offering multiple same day delivery services including a fast UAV service and develop a distribution network design formulation under service based competition where the services offered by the e-retailer not only compete with the stores (convenience, grocery, etc.), but also with each other. Competition is incorporated using the Multinomial Logit market share model. To solve the resulting nonlinear mathematical formulation, we develop a novel logic-based Benders decomposition approach. We build a case based on NYC, carry out extensive numerical testing, and perform sensitivity analyses over delivery charge, delivery time, government regulations, technological limitations, customer behavior, and market size. The results show that government regulations, technological limitations, and service charge decisions play a vital role in the future of UAV delivery. Key words : UAV; drone; market share models; facility location; logic-based benders decomposition 1. Introduction Unmanned aerial vehicles (UAVs) or drones have been used in military applications as early as 1916 (Cook 2007). As the technology improved, their applications extended to surveillance and moni- toring (Maza et al. 2010, Krishnamoorthy et al. 2012), weather research (Darack 2012), delivery of medical supplies (Wang 2016, Thiels et al. 2015), and emergency response (Adams and Friedland 2011). -
IVT Annual Report 2019 with Review 2012–2018
Research Collection Report IVT Annual Report 2019 With Review 2012–2018 Author(s): Institute for Transport Planning and Systems, ETH Zurich Publication Date: 2020-04 Permanent Link: https://doi.org/10.3929/ethz-b-000410787 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Institute for Transport Planning and Systems Annual Report 2019 review 2012–2018 01-rubrik-pagina-rechts | 01-rubrik-pagina-rechtsThe IVT in the +year medium 2019 Ioannis Agalliadis, MSc Felix Becker, MSc 2015 Aristotle University of Thessaloniki (BSc); 2014 Freie Universität Berlin (BSc); 2018 RWTH Aachen University (MSc) 2016 (MSc) Dr. sc. Henrik Becker Lukas Ambühl, MSc 2012 ETH Zürich (BSc); 2014 (MSc); 2013 ETH Zürich (BSc); 2015 (MSc) 2018 (Dr. sc.) Illahi Anugrah, MSc 2011 Gadjah Mada University (BSc); Harald Bollinger 2013 (MSc) Labor Prof. Dr.-Ing. Kay W. Axhausen 1984 University of Wisconsin, Madison (MSc); 1988 Universität Karlsruhe (Dr.-Ing.); Axel Bomhauer-Beins, MSc Since 1999 full Professor for Transport planning 2014 ETH Zürich (BSc); 2016 (MSc) Dr. sc. Milos Balac 2010 University of Belgrade (BSc); 2012 EPFL (MSc); Beda Büchel, MSc 2019 ETH Zürich (Dr. Sc.) 2014 ETH Zürich (BSc); 2016 (MSc) IVT Annual Report 2019 The IVT in the year 2019 Dr. Jérémy Decerle Jenny Burri 2013 University of Technology of Belfort- Secretary Montbéliard (MSc); 2018 (PhD) Prof. Dr. Francesco Corman 2006 Università Roma Tre (MSc); Dr. sc. 2010 Delft University of Technology (Dr) ; Ilka Dubernet since 2017 assistant professor 2008 Freie Universität Berlin (Diplom); for Transport Systems 2019 ETH Zürich (Dr. -
Future of Vertical Flight
www.vtol.org Kenneth Swartz, Regional Director – Americas The Vertical Flight Society www.vtol.org | [email protected] Kitty Hawk Cora © Vertical Flight Society: CC-BY-SA 4.0 © Vertical Flight Society: CC-BY-SA 4.0 Released March 2018 1 www.vtol.org . Founded as “The American Helicopter Society, Inc.” 75 years ago in Connecticut on Feb. 25, 1943 – “For the purpose of collecting, compiling and disseminating information concerning the helicopter” – Sikorsky Aircraft received its order for the first American helicopters on January 5, 1943 (28 XR-4 helicopters) . The first and longest-serving helicopter non-profit Sikorsky XR-4 helicopter – Founding members Igor Sikorsky, Arthur Young, Frank Piasecki, Courtesy of Sikorsky Aircraft Corp. Stanley Hiller, Reggie Brie, A.A. Griffiths, etc. – Included engineers, pilots, operators and presidents from industry, academia and government in Allied countries . Now 6,000 individual and 95 corporate members . Advancing vertical flight worldwide First Annual AHS Awards Banquet Born with the American Helicopter Industry Oct. 7, 1944 © Vertical Flight Society: CC-BY-SA 4.0 2 www.vtol.org © Vertical Flight Society: CC-BY-SA 4.0 3 www.vtol.org . The international professional society for those working to advance vertical flight – Founded in 1943 as the American Helicopter Society – Everything from VTOL MAVs/UAS to helicopters and eVTOL to STOVL (everything vertical except rockets) CFD of Joby S4, Aug 2015 . Expands knowledge about vertical flight technology and promotes its application around the world . Advances safety and acceptability . Advocates for vertical flight R&D funding . Helps educate and support today’s and tomorrow’s vertical flight engineers and leaders VFF Scholarship Winners at AHS Forum 71, May 2015 © Vertical Flight Society: CC-BY-SA 4.0 4 www.vtol.org . -
SESAR European Drones Outlook Study / 1
European Drones Outlook Study Unlocking the value for Europe November 2016 SESAR European Drones Outlook Study / 1 / Contents Note to the Reader ............................................................................................. 2 Executive Summary ............................................................................................ 3 1 | Snapshot of the Evolving 'Drone' Landscape .................................................. 8 1.1 'Drone' Industry Races Forward – Types of Use Expanding Rapidly ............................. 8 1.2 Today's Evolution depends on Technology, ATM, Regulation and Societal Acceptance .......................................................................................................................... 9 1.3 Scaling Operations & Further Investment Critical to Fortify Europe's Position in a Global Marketplace ........................................................................................................... 11 2 | How the Market Will Unfold – A View to 2050 ............................................ 14 2.1 Setting the Stage – Framework to Assess Benefits in Numerous Sectors .................. 14 2.2 Meeting the Hype – Growth Expected Across Leisure, Military, Government and Commercial ....................................................................................................................... 15 2.3 Closer View of Civil Missions Highlights Use in All Classes of Airspace ...................... 20 2.4 Significant Societal Benefits for Europe Justify Further Action ................................. -
Logistics Challenges in a New Distribution Paradigm: Drone Delivery
Logistics Challenges in a New Distribution Paradigm: Drone Delivery Connect Robotics Case Study André Alves Ferreira Sousa Conceição Thesis to obtain the Master of Science Degree in Industrial Engineering and Management Supervisor: Prof. Tânia Rodrigues Pereira Ramos Examination Committee Chairperson: Prof. Ana Paula Ferreira Dias Barbosa Póvoa Supervisor: Prof. Tânia Rodrigues Pereira Ramos Member of the committee: Prof. Inês Marques Proença November 2018 Acknowledgments “It always seems impossible until it's done.” - Nelson Mandela I would like to thank my professor, Tânia Ramos, for all the support and guidance throughout the development of this dissertation. To Raphael Stanzani and Eduardo Mendes, for allowing me the opportunity to study this phenomenon and for always making themselves available to help. To Hugo Ângelo, for providing me the data I needed to test my models, for his availability and for inviting me to visit Farmácia da Lajeosa and watch the delivery drone fly. To my father, mother, six siblings and four nephews, for giving me the stability needed to accomplish my goals and achieve academic success. To my girlfriend and her family, for making me part of the family even though I already have one. To my grandparents, that always believed in me and kept asking if I was an engineer already. Last but not least, to my friends and colleagues that fought this battle alongside me. i Abstract This dissertation analyses a new paradigm imposed by the integration of unmanned aerial vehicles (UAV), commonly referred to as drones, in logistics and distribution processes. This work is motivated by a real case-study, where the company Connect Robotics, the first drone delivery provider in Portugal, wants to implement drone deliveries in their client, “Farmácia da Lajeosa”, which requires tackling the logistics challenges brought by the drones’ characteristics. -
Unmanned Vehicle Systems & Operations on Air, Sea, Land
Kansas State University Libraries New Prairie Press NPP eBooks Monographs 10-2-2020 Unmanned Vehicle Systems & Operations on Air, Sea, Land Randall K. Nichols Kansas State University Hans. C. Mumm Wayne D. Lonstein Julie J.C.H Ryan Candice M. Carter See next page for additional authors Follow this and additional works at: https://newprairiepress.org/ebooks Part of the Aerospace Engineering Commons, Aviation and Space Education Commons, Higher Education Commons, and the Other Engineering Commons This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. Recommended Citation Nichols, Randall K.; Mumm, Hans. C.; Lonstein, Wayne D.; Ryan, Julie J.C.H; Carter, Candice M.; Hood, John-Paul; Shay, Jeremy S.; Mai, Randall W.; and Jackson, Mark J., "Unmanned Vehicle Systems & Operations on Air, Sea, Land" (2020). NPP eBooks. 35. https://newprairiepress.org/ebooks/35 This Book is brought to you for free and open access by the Monographs at New Prairie Press. It has been accepted for inclusion in NPP eBooks by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Authors Randall K. Nichols, Hans. C. Mumm, Wayne D. Lonstein, Julie J.C.H Ryan, Candice M. Carter, John-Paul Hood, Jeremy S. Shay, Randall W. Mai, and Mark J. Jackson This book is available at New Prairie Press: https://newprairiepress.org/ebooks/35 UNMANNED VEHICLE SYSTEMS & OPERATIONS ON AIR, SEA, LAND UNMANNED VEHICLE SYSTEMS & OPERATIONS ON AIR, SEA, LAND PROFESSOR RANDALL K. NICHOLS, JULIE RYAN, HANS MUMM, WAYNE LONSTEIN, CANDICE CARTER, JEREMY SHAY, RANDALL MAI, JOHN P HOOD, AND MARK JACKSON NEW PRAIRIE PRESS MANHATTAN, KS Copyright © 2020 Randall K. -
The the Roadable Aircraft Story
www.PDHcenter.com www.PDHonline.org Table of Contents What Next, Slide/s Part Description Flying Cars? 1N/ATitle 2 N/A Table of Contents 3~53 1 The Holy Grail 54~101 2 Learning to Fly The 102~155 3 The Challenge 156~194 4 Two Types Roadable 195~317 5 One Way or Another 318~427 6 Between the Wars Aircraft 428~456 7 The War Years 457~572 8 Post-War Story 573~636 9 Back to the Future 1 637~750 10 Next Generation 2 Part 1 Exceeding the Grasp The Holy Grail 3 4 “Ah, but a man’s reach should exceed his grasp, or what’s a heaven f?for? Robert Browning, Poet Above: caption: “The Cars of Tomorrow - 1958 Pontiac” Left: a “Flying Auto,” as featured on the 5 cover of Mechanics and Handi- 6 craft magazine, January 1937 © J.M. Syken 1 www.PDHcenter.com www.PDHonline.org Above: for decades, people have dreamed of flying cars. This con- ceptual design appeared in a ca. 1950s issue of Popular Mechanics The Future That Never Was magazine Left: cover of the Dec. 1947 issue of the French magazine Sciences et Techniques Pour Tous featur- ing GM’s “RocAtomic” Hovercar: “Powered by atomic energy, this vehicle has no wheels and floats a few centimeters above the road.” Designers of flying cars borrowed freely from this image; from 7 the giant nacelles and tail 8 fins to the bubble canopy. Tekhnika Molodezhi (“Tech- nology for the Youth”) is a Russian monthly science ma- gazine that’s been published since 1933. -
When Will Cars Fly? Microtek Newsletter – April 2021
When will cars fly? Microtek Newsletter – April 2021 I know the title sounds funny but it is a reality that we are inventing flying cars right now. The demand is there (in so- many-ways) and the technology is advancing to allow it to become a reality. As of March 20, 2021 – there were 14 prototypes of flying cars in development. We will discuss what is being developed now and where our flying-car future may evolve to. There are many billionaires with large funds to help develop the prototypes of this technology. When you combine the potential future profits and the “bragging” rights, you will understand that billions of dollars are being spent now with billions more to be spent in the near future. I would like to illustrate the different types of “flying” cars we have now. WHAT IS A FLYING CAR The definition of a flying car is a vehicle that can drive on the road and fly in the air. There are two main types of flying cars. You have models that follow the principals of an airplane and models that follow the principals of a helicopter/drone. The difference is defined in the following way. Airplanes need a runway to reach a certain speed before it can leave the ground. Helicopters/drones can go straight up into the air without needing to reach a certain speed first. Helicopters have one or two sets of exposed blades. Drones have two or more sets of enclosed blades. Enclosed blades are much safer on public vehicles and they are much more likely to be approved for use by non-professionals. -
Update to FAA Historical Chronology, 1997-2011
1997-2014 Update to FAA Historical Chronology: Civil Aviation and the Federal Government, 1926-1996 (Washington, DC: Federal Aviation Administration, 1998) 1997 January 2, 1997: The Federal Aviation Administration (FAA) issued an airworthiness directive requiring operators to adopt procedures enabling the flight crew to reestablish control of a Boeing 737 experiencing an uncommanded yaw or roll – the phenomenon believed to have brought down USAir Flight 427 at Pittsburgh, Pennsylvania, in 1994. Pilots were told to lower the nose of their aircraft, maximize power, and not attempt to maintain assigned altitudes. (See August 22, 1996; January 15, 1997.) January 6, 1997: Illinois Governor Jim Edgar and Chicago Mayor Richard Daley announced a compromise under which the city would reopen Meigs Field and operate the airport for five years. After that, Chicago would be free to close the airport. (See September 30, 1996.) January 6, 1997: FAA announced the appointment of William Albee as aircraft noise ombudsman, a new position mandated by the Federal Aviation Reauthorization Act of 1996 (Public Law 104-264). (See September 30, 1996; October 28, 1998.) January 7, 1997: Dredging resumed in the search for clues in the TWA Flight 800 crash. The operation had been suspended in mid-December 1996. (See July 17, 1996; May 4, 1997.) January 9, 1997: A Comair Embraer 120 stalled in snowy weather and crashed 18 miles short of Detroit [Michigan] Metropolitan Airport, killing all 29 aboard. (See May 12, 1997; August 27, 1998.) January 14, 1997: In a conference sponsored by the White House Commission on Aviation Safety and Security and held in Washington, DC, at George Washington University, airline executives called upon the Clinton Administration to privatize key functions of FAA and to install a nonprofit, airline-organized cooperative that would manage security issues.