Isao Tanaka Editor Nanoinformatics Nanoinformatics Isao Tanaka Editor

Total Page:16

File Type:pdf, Size:1020Kb

Isao Tanaka Editor Nanoinformatics Nanoinformatics Isao Tanaka Editor Isao Tanaka Editor Nanoinformatics Nanoinformatics Isao Tanaka Editor Nanoinformatics 123 Editor Isao Tanaka Kyoto University Kyoto Japan ISBN 978-981-10-7616-9 ISBN 978-981-10-7617-6 (eBook) https://doi.org/10.1007/978-981-10-7617-6 Library of Congress Control Number: 2017960908 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi- cation does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface This book focuses on state-of-the-art ideas and tools in informatics that are cur- rently being used in materials science, or are expected to be used in the future. Collaborative research between materials science and information science is growing actively, creating new trends in materials science and engineering. Areas utilizing “big data,” generated by experiments and computations to accelerate the discovery of new materials, key factors, and design rules, have rapidly progressed. Data-intensive approaches are indispensable in advanced materials characterization. “Material informatics” is the central paradigm in this new trend. An essential subset is “nanoinformatics,” which focuses on the nanostructures of materials, such as surfaces, interfaces, dopants, and point defects. Experimental and computational techniques to characterize and gain quantitative information about nanostructures have significantly advanced, enabling nanoinformatics to play a critical role in determining material properties. Most of this book is derived from the collaborative research projects supported by the Grant-in-Aid for Scientific Research on Innovative Areas “Nano Informatics” from the Japan Society for the Promotion of Science (JSPS). This five-year project, which was launched in 2013, aims to accelerate the exploration of frontiers in materials science and promote the integration of information and uti- lization of accumulated knowledge regarding nanostructures for the design and innovation of actual materials. Project researchers represent diverse disciplines, such as materials science, applied physics, solid-state chemistry, catalytic chem- istry, and information science. In addition to those working in the collaborative program, three research groups actively working on data-centric materials science were invited to contribute to the book. With their participation, the subjects in the book are well balanced. This book is composed of three parts. The first part reviews the ideas and tools of materials informatics as well as actual applications of machine-learning techniques for materials problems. Chapter 1 shows how compounds in materials datasets can be represented as descriptors and applied to machine-learning models. Chapter 2 focuses on a method to discover the potential energy surface of solid-state ionic conductors via a combination of first principles calculations and machine-learning v vi Preface techniques. Chapter 3 describes the machine-learning predictions of factors affecting the activity of heterogeneous metal catalysts. Chapter 4 discusses the applications of optimal experimental design algorithms for materials science. Chapters 5 and 6 are dedicated to the topological analyses of the atomic structure data of materials. One method is called persistent homology. The other uses polyhedron and polychoron codes. They have been successfully used to analyze amorphous structures. In the second part, data-centric approaches used for nanoscale analyses of materials data are described. Chapter 7 shows topological data analyses for atom probe tomography (APT) images. Chapter 8 describes the combined efforts of scanning transmission electron microscopy (STEM) experiments, first principles calculations, and informatics approaches to analyzing the atomic structures of materials interfaces. Chapter 9 is based on nanoscale STEM spectroscopic datasets that are analyzed by machine-learning techniques. The third part is composed of four chapters. Each chapter focuses on a specific target of nanoinformatics approaches. Chapter 10 describes high-quality epitaxial films of materials called “nanolayers” for a variety of functional applications, including thermoelectrics, batteries, memories, and superconductors. Chapter 11 focuses on the grain boundary engineering of alumina ceramics for use as protective films in the hot-section components of airplane engines, gas turbines, and heat treatment furnaces in combustion environments. Chapter 12 shows the structural relaxation of high-pressure oxide compounds, which is important for quenching high-pressure phases in ambient conditions. Chapter 13 describes the syntheses and structures of novel lithium-ion and hydride-ion conductors for use as solid-state electrolytes in electrochemical devices. This book is an efficient overview of current progress in emerging and inter- disciplinary research areas. It will benefit experimentalists and theorists in both academic and industry sectors. All the authors and steering committee members of the collaborative program “Nano Informatics” are gratefully acknowledged. Without their devoted efforts, this book would not be possible. Financial support for the open access publication of this book by a Grant-in-Aid for Scientific Research on Innovative Areas “Nano Informatics” (Grant No. 25106001) from the JSPS is gratefully acknowledged. Kyoto, Japan Isao Tanaka Contents Part I Materials Informatics 1 Descriptors for Machine Learning of Materials Data ........... 3 Atsuto Seko, Atsushi Togo and Isao Tanaka 2 Potential Energy Surface Mapping of Charge Carriers in Ionic Conductors Based on a Gaussian Process Model ........ 25 Kazuaki Toyoura and Ichiro Takeuchi 3 Machine Learning Predictions of Factors Affecting the Activity of Heterogeneous Metal Catalysts ................ 45 Ichigaku Takigawa, Ken-ichi Shimizu, Koji Tsuda and Satoru Takakusagi 4 Machine Learning-Based Experimental Design in Materials Science .................................... 65 Thaer M. Dieb and Koji Tsuda 5 Persistent Homology and Materials Informatics ............... 75 Mickaël Buchet, Yasuaki Hiraoka and Ippei Obayashi 6 Polyhedron and Polychoron Codes for Describing Atomic Arrangements ......................................... 97 Kengo Nishio and Takehide Miyazaki Part II Nanoscale Analyses and Informatics 7 Topological Data Analysis for the Characterization of Atomic Scale Morphology from Atom Probe Tomography Images ....... 133 Tianmu Zhang, Scott R. Broderick and Krishna Rajan 8 Atomic-Scale Nanostructures by Advanced Electron Microscopy and Informatics .............................. 157 Teruyasu Mizoguchi, Shin Kiyohara, Yuichi Ikuhara and Naoya Shibata vii viii Contents 9 High Spatial Resolution Hyperspectral Imaging with Machine-Learning Techniques ........................ 179 Motoki Shiga and Shunsuke Muto Part III Materials Developments 10 Fabrication, Characterization, and Modulation of Functional Nanolayers ................................ 207 Hiromichi Ohta and Hidenori Hiramatsu 11 Grain Boundary Engineering of Alumina Ceramics ............ 237 Satoshi Kitaoka, Tsuneaki Matsudaira, Takafumi Ogawa, Naoya Shibata, Miyuki Takeuchi and Yuichi Ikuhara 12 Structural Relaxation of Oxide Compounds from the High-Pressure Phase ............................. 259 Hitoshi Yusa 13 Synthesis and Structures of Novel Solid-State Electrolytes ....... 279 Ryoji Kanno, Genki Kobayashi, Kota Suzuki, Masaaki Hirayama, Daisuke Mori and Kazuhisa Tamura Part I Materials Informatics Chapter 1 Descriptors for Machine Learning of Materials Data Atsuto Seko, Atsushi Togo and Isao Tanaka Abstract Descriptors, which are representations of compounds, play an essential role in machine learning of materials data. Although many representations of ele- ments and structures of compounds are known, these representations are difficult to use as descriptors in
Recommended publications
  • Density, Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient Of
    A542 Journal of The Electrochemical Society, 165 (3) A542-A546 (2018) Density, Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient of Organic Liquid Electrolytes: Part I. Propylene Carbonate + Li, Na, Mg and Ca Cation Salts Shiro Seki, 1,∗,z Kikuko Hayamizu, 2 Seiji Tsuzuki,3,z Keitaro Takahashi,1 Yuki Ishino,1 Masaki Kato,1 Erika Nozaki,4 Hikari Watanabe,4 and Yasuhiro Umebayashi4 1Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, Hachioji-shi, Tokyo 192-0015, Japan 2Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan 3National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan 4Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan To investigate physicochemical relationships between ionic radii, valence number and cationic metal species in electrolyte solutions, propylene carbonate with Li[N(SO2CF3)2], Na[N(SO2CF3)2], Mg[N(SO2CF3)2]2 and Ca[N(SO2CF3)2]2 were prepared. The tem- perature dependence of density, viscosity, ionic conductivity (AC impedance method) and self-diffusion coefficient (pulsed-gradient spin-echo nuclear magnetic resonance) was measured. The effects of cationic radii and cation valence number on the fluidity and transport properites (conductivity and self-diffusion coefficient) were analyzed. © The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.
    [Show full text]
  • Basic Aspects of Fluorine in Chemistry and Biology
    Introduction: Basic Aspects of Fluorine in Chemistry and Biology COPYRIGHTED MATERIAL 1 Unique Properties of Fluorine and Their Relevance to Medicinal Chemistry and Chemical Biology Takashi Yamazaki , Takeo Taguchi , and Iwao Ojima 1.1 Fluorine - Substituent Effects on the Chemical, Physical and Pharmacological Properties of Biologically Active Compounds The natural abundance of fl uorine as fl uorite, fl uoroapatite, and cryolite is considered to be at the same level as that of nitrogen on the basis of the Clarke number of 0.03. However, only 12 organic compounds possessing this special atom have been found in nature to date (see Figure 1.1) [1] . Moreover, this number goes down to just fi ve different types of com- pounds when taking into account that eight ω - fl uorinated fatty acids are from the same plant [1] . [Note: Although it was claimed that naturally occurring fl uoroacetone was trapped as its 2,4 - dinitrohydrazone, it is very likely that this compound was fl uoroacetal- dehyde derived from fl uoroacetic acid [1] . Thus, fl uoroacetone is not included here.] In spite of such scarcity, enormous numbers of synthetic fl uorine - containing com- pounds have been widely used in a variety of fi elds because the incorporation of fl uorine atom(s) or fl uorinated group(s) often furnishes molecules with quite unique properties that cannot be attained using any other element. Two of the most notable examples in the fi eld of medicinal chemistry are 9α - fl uorohydrocortisone (an anti - infl ammatory drug) [2] and 5 - fl uorouracil (an anticancer drug) [3], discovered and developed in 1950s, in which the introduction of just a single fl uorine atom to the corresponding natural products brought about remarkable pharmacological properties.
    [Show full text]
  • Designing Fine Particles
    2014 No. 1 January- February Designing Fine Particles Development and Application of Particle Processing That Enables the Fabrication of New Materials New Year’s Greetings When I was a graduate student in the United States more than will assemble structural-materials researchers specialized in 30 years ago, my thesis advisor said to me, "Is it common that focused research. Similar to the Nano-GREEN/WPI-MANA Japanese people don’t like discussions? Discussion and interac- Building, which was completed two years ago, we have chosen tion are very important not only for research, but also for any- a design that would encourage people to communicate infor- thing that involves creativity. When Einstein was alone, he used mally with each other. Theoretical Research Building at the to have discussions by mumbling to himself." I realized how Namiki site, which was rebuilt to assemble the experts in theory true this is, looking back at my own career as a researcher; I and computational research, is also expected to provide a com- always had good discussion partners. fortable space for daily discussions. In this manner, NIMS is attempting to advance innovation by As the President of NIMS, my goal is to bringing together diverse minds of peo- create an ideal environment for people- ple from a wide range of disciplines and interaction, which I believe is important cultural backgrounds. We strongly en- for innovation. How can we make this courage interaction and discussion happen? There are two essential factors: among them. people and shared space. Furthermore, NIMS promotes research People are the first and most obvious collaboration and actively seeks outside requirement.
    [Show full text]
  • GEOCHEMICAL MINERALOGY by VLADIMIR IVANOVICH VERNADSKY and the PRESENT TIMES Boris Ye
    98 New Data on Minerals. 2013. Vol. 48 GEOCHEMICAL MINERALOGY BY VLADIMIR IVANOVICH VERNADSKY AND THE PRESENT TIMES Boris Ye. Borutzky Fersman Mineralogical museum, RAS, Moscow, [email protected] The world generally believes that “the science of science” about natural matter – mineralogy – became obsolete and was replaced by the new science – geochemistry, by V.I. Vernadsky. This is not true. Geochemistry was and is never separated from mineralogy – its fundament. Geochemistry studies behaviour of chemical elements main- ly within the minerals, which are the basic form of inorganic (lifeless) substance existence on the Earth conditions. It also studies redistribution of chemical elements between co-existing minerals and within the minerals, by vari- able conditions of mineral-forming medium during the mineral-forming processes. On the other hand, owing to V.I. Vernadsky, mineralogy became geochemical mineralogy, as it took in the ideas and methods of chemistry, which enables to determine chemical composition, structure and transformation of minerals during the certain geological processes in the Earth history. 1 photo, 20 references. Keywords: Vladimir Ivanovich Vernadsky, mineralogy, geochemistry, geology, physics of solids, mineral-forming process, paragenesis, history of science. Vladimir Ivanovich Vernadsky’s remark- into several stages. Forming his personality of able personality and his input to the Earth sci- scientist-mineralogist and the main input into ences, first of all, to mineralogy – changing it reformation of Russian mineralogy and creation from the trendy mineral collecting hobby, of mineralogical science in Russia are related observation of mineral beauty, art and culture with the early, “Moscow” stage (1988–1909). areas into the mineralogical science, are not to At that time, on the recommendation of profes- be expressed.
    [Show full text]
  • Metallurgical Chemistry in My Lifethis Paper Was Presented at the Spring
    Materials Transactions, Vol. 45, No. 8 (2004) pp. 2489 to 2495 #2004 The Japan Institute of Metals OVERVIEW Metallurgical Chemistry in My Life* Noboru Masuko Metallurgical chemistry’s principle is that ‘‘the chemical process is governed by chemical potential.’’ Successful chemical process technology follows a route that does not go against the governance of chemical potential. In order to realize the technological objective, raw materials and a reactor are necessary, and after the principle is established, the method is supported by the reactor and advances in the materials that comprise such apparatus. Therefore, the technology is a fusion of material, apparatus, experience, and science, all of which are parts of the foundation of a technological method. The author’s involvement is described as an academician from the postwar recovery to the technological rearmament period. In the postwar recovery period, a systematic point-of-view was introduced to a technological principle using phase diagrams that clarified chemical potential, which was a new concept in the field of thermodynamics. In the technological rearmament period, technological evaluation was conducted from a philosophical standpoint. (Received April 26, 2004; Accepted June 2, 2004) Keywords: chemical potential, reactor, Eh-pH diagram, Eh-pH-pL diagram, potential diagram 1. Introduction 2. Chemical Potential Diagrams Ever since graduation from the university in 1957, I have 2.1 Eh-pH-pL diagram resided at the university and worked on joint research with Gibbs defined the intensive quantity of chemical potential metallurgical chemistry industries. Metallurgical chemistry in 1875. As appreciation increased that the concept of phase is a technology, and it has a principle and a method.
    [Show full text]
  • United States Patent (19) 11) Patent Number: 5,756,056 Kimura Et Al
    USO05756056A United States Patent (19) 11) Patent Number: 5,756,056 Kimura et al. 45) Date of Patent: May 26, 1998 54 PROCESS FOR RECOVERING RARE EARTH 4,968.504 11/1990 Rourke ........................................ 423/7 METAL FROM OXDE ORE BY 4,988.487 1/1991 Lai et al. ............................... 423/215 CONCENTRATION AND SEPARATION FOREIGN PATENT DOCUMENTS (75 Inventors: Akira Kimura; Kosuke Murai; 0547 744 6/1993 European Pat. Off.. Hiromasa Yakushiji, all of Hachinohe. 295611 11/1991 Germany .............................. 423/21.1 Japan 2 034 074 471995 Russian Federation . 1715874. 2/1992 U.S.S.R. (73) Assignee: Pacific Metals Co., Ltd., Tokyo, Japan Primary Examiner-Wayne Langel Attorney, Agent, or Firm-Wenderoth, Lind & Ponack (21) Appl. No.: 748,630 57 ABSTRACT 22 Filed: Nov. 13, 1996 A process for recovering scandium economically with high (30) Foreign Application Priority Data efficiency by concentration and separation from an oxide ore containing nickel and a small amount of scandium as well as Nov. 22, 1995 (JP) Japan .............................. 7-326281 a large amount of iron and/or aluminum comprises the steps (51) int. Cl. ..................... C01F 17/00 of acid leaching the oxide ore under a high-temperature. (52) U.S. Cl. ....................... 423/21.1; 423/140; 423/150.1 high-pressure oxidative atmosphere while restraining leach 58) Field of Search ................................. 423/140, 150.1 ing of the iron and/or aluminum, thereby selectively leach 423/21.1 ing substantially all nickel and scandium from the ore. recovering the nickel from the resulting leaching solution as 56 References Cited a precipitated sulfide while not precipitating the scandium as a sulfide but leaving the total amount thereof in the solution.
    [Show full text]
  • Microwave Irradiation Process for Al–Sc Alloy Production
    www.nature.com/scientificreports OPEN Microwave Irradiation Process for Al–Sc Alloy Production Satoshi Fujii 1,2*, Eiichi Suzuki1, Naomi Inazu1, Shuntaro Tsubaki 1, Jun Fukushima3, Hirotsugu Takizawa3 & Yuji Wada1 Scandium is being explored as an alloying element for aluminium alloys, which are gaining importance as high-performance lightweight structural alloys in the transportation industry. Sc-rich ScAlN thin flms show strong piezoelectricity and can be fabricated on a hard substrate for use as wideband surface acoustic wave flters in next-generation wireless mobile communication systems. However, the use of ScAlN thin flms in microelectromechanical system devices is limited by the high cost of metallic Sc, which is due to the difculty in smelting of this material. Here, we propose a novel microwave irradiation process for producing Al-Sc alloys, with Mg ions as a reducing agent. Although scandium oxide is thermodynamically stable, intermetallic Al3Sc is obtained in high yield (69.8%) via a low- temperature (660 °C) reduction reaction under microwave irradiation. Optical spectroscopy results and thermodynamic considerations suggest a non-thermal equilibrium reaction with the univalent magnesium ions excited by microwave irradiation. Scandium is the 31st most abundant element in the earth’s crust, with a Clarke number of 22 ppm1. Sc metal was successfully extracted by Fisher et al. in 1937, using an electric feld melting system, and high-purity Sc (99%) was produced in 19652. However, pure Sc has become available only recently, and it is very expensive. Industrial research into Sc commenced with a patent from Alcoa, involving the addition of Sc to an Al alloy3.
    [Show full text]
  • Titanium-Dioxide-Based Visible-Light-Sensitive Photocatalysis: Mechanistic Insight and Applications
    catalysts Review Titanium-Dioxide-Based Visible-Light-Sensitive Photocatalysis: Mechanistic Insight and Applications Shinya Higashimoto Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan; [email protected]; Tel.: +81-(0)6-6954-4283 Received: 15 January 2019; Accepted: 14 February 2019; Published: 22 February 2019 Abstract: Titanium dioxide (TiO2) is one of the most practical and prevalent photo-functional materials. Many researchers have endeavored to design several types of visible-light-responsive photocatalysts. In particular, TiO2-based photocatalysts operating under visible light should be urgently designed and developed, in order to take advantage of the unlimited solar light available. Herein, we review recent advances of TiO2-based visible-light-sensitive photocatalysts, classified by the origins of charge separation photo-induced in (1) bulk impurity (N-doping), (2) hetero-junction of metal (Au NPs), and (3) interfacial surface complexes (ISC) and their related photocatalysts. These photocatalysts have demonstrated useful applications, such as photocatalytic mineralization of toxic agents in the polluted atmosphere and water, photocatalytic organic synthesis, and artificial photosynthesis. We wish to provide comprehension and enlightenment of modification strategies and mechanistic insight, and to inspire future work. Keywords: Titanium dioxide (TiO2); visible-light-sensitive photocatalyst; N-doped TiO2; plasmonic Au NPs; interfacial surface complex (ISC); selective oxidation; decomposition of VOC; carbon nitride (C3N4); alkoxide; ligand to metal charge transfer (LMCT) 1. Introduction Titanium dioxide (TiO2) is one of the most practical and prevalent photo-functional materials, since it is chemically stable, abundant (Ti: 10th highest Clarke number), nontoxic, and cost-effective.
    [Show full text]
  • 1 Hot-Dipped Al-Mg-Si.Hwp
    CORROSION SCIENCE AND TECHNOLOGY, Vol.9, No.6(2010), pp.233~238 Hot-dipped Al-Mg-Si Coating Steel - Its Structure, Electrochemical and Mechanical Properties - Tooru TSURU† Department of Metallurgy and Ceramics Science Graduate School of Science and Engineering Tokyo Institute of Technology 2-12-S8-7, O-okayama, Meguro-ku, Tokyo 152-8552 Japan (Received October 13, 2009; Revised November 5, 2010; Accepted November 8, 2010) Hot-dipped Al-Mg-Si coatings to alternate Zn and Zn alloy coatings for steel were examined on metallographic structure, corrosion resistance, sacrificial ability, formation and growth of inter-metallic compounds, and mechanical properties. Near the eutectic composition of quasi-binary system of Al-Mg2Si, very fine eutectic structure of α-Al and Mg2Si was obtained and it showed excellent corrosion resistivity and sacrificial ability for a steel in sodium chloride solutions. Formation and growth of Al-Fe inter-metallic compounds at the interface of substrate steel and coated layer was suppressed by addition of Si. The inter-metallic compounds layer was usually brittle, however, the coating layer did not peel off as long as the thickness of the inter-metallic compounds layer was small enough. During sacrificial protection of a steel, amount of hydrogen into the steel was more than ten times smaller than that of Zn coated steel, suggesting to prevent hydrogen embrittlement. Al-Mg-Si coating is expected to apply for several kinds of high strength steels. Keywords : Hot-dipped coating, Al-Mg-Si alloy, corrosion resistance, sacrificial protection, inter-metallic compounds, high strength steel, hydrogen embrittlement 1. Introduction 2.
    [Show full text]
  • Geochemistry of Carbonate Sediments and Sedimentary Carbonate Rocks
    B CoitA SoSudH STATE OF ILLINOIS WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director Geochemistry of Carbonate Sediments and Sedimentary Carbonate Rocks Part IV- Bibliography Donald L. Graf %**APq DIVISION OF THE ILLINOIS STATE GEOLOGICAL SURVEY JOHN C. FRYE, Chief URBANA CIRCULAR 309 1960 ILLINOIS STATE GEOLOGICAL SURVEY 3 3051 00004 0984 GEOCHEMISTRY OF CARBONATE SEDIMENTS AND SEDIMENTARY CARBONATE ROCKS Part IV- B: Bibliography Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/geochemistryofca309graf GEOCHEMISTRY OF CARBONATE SEDIMENTS AND SEDIMENTARY CARBONATE ROCKS Part IV- B: Bibliography Donald L. Graf INTRODUCTION The bibliography presented in this report was compiled as part of a basic review of selected topics in carbonate geochemistry presented in four recent publications of the Illinois State Geologi- cal Survey. The review has been prepared at the invitation of the United States Geological Survey, and the material will serve as the basis for a condensed treatment in the forthcoming revision of F. W. Clarke's "Data of Geochemistry. " Work done throughout the world in several areas of carbon- ate geochemistry was surveyed in this series. The areas covered included carbonate mineralogy and carbonate sediments (Part I, Circular 297), sedimentary carbonate rocks (Part II, Circular 298), distribution of minor elements in carbonate rocks and sediments (Part III, Circular 301), and the isotopic and chemical composi- tion of these materials (Part IV-A, Circular 308) . The bibliography that follows lists all references given in the four publications. A fifth part of this series will deal with aqueous carbonate systems.
    [Show full text]
  • General Index
    PLU – POS GENERAL INDEX PÄÄKKÖNENITE PALERMOITE “PARABOLEITE” Czech Republic (formerly Czechoslovakia) United States Intermediate between boleite and pseudoboleite; Príbram (minute fibers) 25:386p,h Maine not valid species PABSTITE Mt. Mica 16:(372) Mineralogy of the boleite group; numerous world New Hampshire localities 5:286h United States North Groton, Grafton County (micro pris- PARABUTLERITE California matic) 3:280n Chile Kalkar quarry, Santa Cruz County (fl. bluish Palermo #1 mine: 4:232, 5:278, 9:(113); 17: 9: white) 325p prismatic to 5 mm 4:126 Chuquicamata 329d,c Santa Cruz County 9:(113) PARACELSIAN PALLADIUM PACHNOLITE Wales Brazil Greenland Gwynedd Minas Gerais Ivigtut: 2:27–28p; crystals to 4.5 cm 24:G33p, Bennallt mine 8:(390), 20:395 Córrego Bom Sucesso, near Serro (palladian 24:G34–35d,h,c; world’s best specimen platinum; dendritic, botyroidal, plumose) PARADAMITE 18:357 23:471–474p,q Norway Mexico Zaire Gjerdingen, Nordmarka region 11:85–86p Durango Shinkolobwe mine 20:(276) Ojuela mine 15:113p PAINITE PALLADOARSENIDE Namibia Burma Russia (formerly USSR) Tsumeb 13:142–143p 20: Mogok 341q Talnakh deposit, Siberia (auriferous) 13:(398) PARADOCRASITE PAKISTAN PALLADSEITE Australia Alchuri, Shigar Valley, north of Skardu, Gilgit Brazil New South Wales 24: 24: 24: 25: 19: Division 52s, 219s, 230s, 57s Minas Gerais Broken Hill (424) 24: Apaligun, above Nyet, Baltistan 52s Itabira (announced; grains) 9:40h,q PARAGONITE Bulbin, Wazarat district, Northern Areas 25:218s United States Bulechi pegamites, Shingus area, Gilgit Division PALYGORSKITE Georgia 16:395m, 16:396–398 Australia Graves Mountain (some muscovite id as) Chumar, Bakhoor Nala, above Sumayar village, Queensland 16:451 Nagar 24:52s Mt.
    [Show full text]
  • Comprehensive Study of Sub-Grain Boundaries in Si Bulk Multicrystals
    3FTFBSDI Comprehensive Study of Sub-grain Boundaries in Si Bulk Multicrystals A new approach, combination of defects characterization (a) (b) technique using x-ray diffraction and model crystal growth n S o u i 5 t experiments, was applied to investigate the physics of Si b c - e 4 G r i B bulk multicrystals. This provides fundamental knowledge of m 30 d m d / 3 h e t sub-grain boundaries, which is of crucial importance to y n , s w n 20 2 i o t o y r improve crystal quality of Si bulk multicrystals applicable to i t , i G 1 d s / high efficiency solar cells. o m P 10 0 m y - -1 1 Over the past decade, Si bulk multicrystal has emerged 0 as the substrate material for commercial solar cells. To x 0 10 20 Position, x/mm No data accelerate the adoption of solar cells to the world, ongoing 10mm research targets further reductions in energy costs by Fig.2. (a) Cross-section of the sample, (b) distribution of sub- improving material performance, while reducing manufacturing GBs density analyzed by spatially-resolved x-ray diffraction. costs and raw material costs. We approached this issue from deep understanding of crystal physics of Si multicrystals, namely formation mechanism of multicrystalline structure study gave common recognition of sub-GBs as dominant and generation mechanism and properties of defects. The defects of the solar cells. former study lead us to proposal of the dendritic casting Although we were able to investigate structure, distribution method [1].
    [Show full text]