Fundamentals of Well-Log Interpretation 1

Total Page:16

File Type:pdf, Size:1020Kb

Fundamentals of Well-Log Interpretation 1 Developments in Petroleum Science, 15A fundamentals of well-log interpretation 1. the acquisition of logging data FURTHER TITLES IN THIS SERIES 1 A.G. COLLINS GEOCHEMISTRY OF OILFIELD WATERS 2 W.H.FERTL ABNORMAL FORMATION PRESSURES 3 A.P. SZILAS PRODUCTION AND TRANSPORT OF OIL AND GAS 4 C.E.B. CONYBEARE GEOMORPHOLOGY OF OIL AND GAS FIELDS IN SANDSTONE BODIES 5 T.F. YEN and G.V. CHILINGARIAN (Editors) OIL SHALE 6 D.W. PEACEMAN FUNDAMENTALS OF NUMERICAL RESERVOIR SIMULATION 7 G.V. CHILINGARIAN and T.F. YEN (Editors) BITUMENS, ASPHALTS AND TAR SANDS 8 L.P. DAKE FUNDAMENTALS OF RESERVOIR ENGINEERING 9 K.MAGARA COMPACTION AND FLUID MIGRATION 10 M.T. SILVIA and E.A. ROBINSON DECONVOLUTION OF GEOPHYSICAL TIME SERIES IN THE EXPLORATION FOR OIL AND NATURAL GAS 11 G.V. CHILINGARIAN and P. VORABUTR DRILLING AND DRILLING FLUIDS 12 T.D. VAN GOLF-RACHT FUNDAMENTALS OF FRACTURED RESERVOIR ENGINEERING 13 J. FAYERS (Editor) ENHANCED OIL RECOVERY 14 G. M6ZES (Editor) PARAFFIN PRODUCTS Developments in Petroleum Science, 15A well-log interpretation 1. the acquisition of logging data 0. SERRA Former Chef du Service Dhgraphies Differkes a la Direction Exploration de la SNEA (P), Pau, France and Geological Interpretation Development Manager, Schlum berger Technical Services Inc., Singapore (Translated from the French by Peter Westaway and Haydn Abbott) ELSEVIER ELF AQUITAINE Amsterdam - Oxford - New York - Tokyo 1984 Pau ELSEVIER SCIENCE PUBLISHERS B.V. Sara Burgerhartstraat 25 P.O. Box 21 1, 1000 AE Amsterdam, The Netherlands Distributors for the United States and Canada: ELSEVIER SCIENCE PUBLISHING COMPANY INC 52, Vanderbilt Avenue New York, NY 10017, U.S.A. First edition 1984 Second impression 1985 Third impression 1988 Library of Congress Cataloging in Publication Data Serra, Oberto. Fundamentals of well-log interpretation (Developments in petroleum science; 15A- Translation of: Diagraphies differees. Bibliography: p. Includes index. Contents: v. 1. The aquisition of logging data. 1. Oil well logging. I. Title. II. Series. TN87 1.35.S47 13 1984 622'. 18282 83-2057 1 ISBN 0-444-42132-7 (U.S.: V. 1) ISBN 0-444-42132-7 (Vol. 15A) ISBN 0-444-41625-0 (Series) @>Elsevier Science Publishers B.V., 1984 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or. transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V./ Physical Sciences & Engineering Division, P.O. Box 330, 1000 AH Amsterdam, The Netherlands. Special regulations for readers in the USA -This publication has been registered with the Copyright Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the USA. All other copyright questions, including photocopying outside of the USA, should be referred to the Dublisher. No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any meth- ods, products, instructions or ideas contained in the material herein. Printed in The Netherlands V PREFACE The relentless search for elusive hydrocarbon re- training of a physicist and informatician-bringing serves demands that geologists and reservoir en- to the field of geological analysis all the facets of gineers bring into play more and more expertise, modern technology. inventiveness and ingenuity. To obtain new data from Since this award, 0. Serra has, by virtue of his the subsurface requires the continual refinement of talents as an instructor and author, acquired a very equipment and techniques. large audience both in professional circles and in the This book describes! the various well-logging universities studying geological sciences. equipment at the disposal of geologists and reservoir This book is the result of a fruitful collaboration engineers today. It follows two volumes on involving several companies. It testifies to the desire carbonates, also published by Elf Aquitaine. of Elf Aquitaine to further an active policy of re- One can never over-emphasize the importance to search and training, disseminating knowledge of the geological analysis of basins, and sedimentology modern technical developments amongst its field per- in general, of the information which drilling a bore- sonnel. hole makes available to us. But this data would be It is hoped, that, in publishing this work, and incomplete, even useless, if not complemented by continuing the series, we may contribute to a better certain new techniques-well-logging in particular- understanding of geological sciences and their meth- which represent a tremendous source of information ods, fundamental to our search for energy and mineral both about hydrocarbons and the fundamental geol- resources. ogy of the rocks. We also hope to strengthen the bonds between the It required considerable enthusiasm and a de- “ thinkers” and the “doers”, those involved in re- termination to succeed on the part of the author to search, and those on the operational side. Progress bring the present work to its culmination, while at the depends as much on the deliberations of the one, as same time performing the daily duties of Manager of on the techniques and skill of the other, and a close the Log Analysis Section of the Exploration Dept. at collaboration between the two is essential. Explora- Elf Aquitaine. tion is no longer an exclusive domain of guarded Such qualities, indeed, earned Oberto Serra the secrets; information gathered in the course of major first Marcel Roubault award on March 21st, 1974, in projects must, wherever feasible, be made available to just recognition of “work concerned with methods all interested, particularly those most likely to put it and techniques, or with ideas and concepts, which to good use. have led to important progress in the exploration for, Finally, let us hope that, with this publication, we and development of, natural energy resources, the might make a modest contribution to Marcel discovery of new reservoirs, or the accomplishment of Roubault’s proud concept: “Geology at the service of major works”. The judges recognized in particular an Man”. invaluable liaison between the spirit of the naturalist, ALAIN PERRODON, Paris, March 1978 constantly tempered by reality, and the rigorous This Page Intentionally Left Blank vii FOREWORD TO THE FRENCH EDITION The development of hydrocarbon reservoirs fol- series on well-logging. It deals with the acquisition of lows complex natural laws dependent on a number of log data (tool principles, logging techniques), and factors. describes how the measurements are influenced by The geologist’s goal is to understand the processes the many aspects of the geology of the rocks. of hydrwarbon accumulation. For, simply, the better The second volume, currently under preparation, these are understood, the better are the chances of will cover in detail log interpretation and applica- discovering new hydrocarbon reserves. tions. The fields of geological study are several: sedi- mentology, structural geology, geochemistry, fluid geology, geophysics. Techniques are becoming con- ACKNOWLEDGEMENTS tinually more sophisticated to keep pace with the demands of modern hydrocarbon exploration. I wish to express my thanks to my colleagues C. Well-logging plays a particularly important role in Gras, L. Sulpice and C. Augier of Elf Aquitaine, for geophysics: their continual encouragement and constructive -well-logs provide an objective, continuous record criticism of the first volume during its initial prepara- of a number of properties of the rocks which have tion in French for publication; to G. Herve for his been drilled through; help in preparing the texts and figures for publica- -they are the link between geophysical measure- tion; to P. Pain for his humorous illustrations; and to ments on the surface, and subsurface geology; all anonymous draft-men and typists who contrib- -they provide numerical data, introducing the uted to this book. possibility of fairly rigorous quantification in the I also wish to express my gratitude to Schlum- description of sedimentological processes. berger for their permission to reproduce figures and It is no longer realistic to consider the geological texts from their various publications. description of a reservoir without incorporating log My thanks are also extended to Dresser-Atlas, data, Its omission would effectively exclude most of SPE of AIME, and SPWLA from whose publications the information potentially available from drill-holes, I have borrowed numerous figures. which itself represents a significant fraction of the Finally, I thank B. Vivet, Ph. Souhaite, J. Piger, J. total evidence on which the description can be based. Gartner and L. Dupal of Schlumberger Technical This book was conceived and written by a geolo- Services for their advice and criticism of the original gist. It is hoped it will provide geologists, (and, French text; A. Perrodon for his constant support indeed, all engineers involved in hydrocarbon ex- and encouragement; D. Bugnicourt for his advice on ploration and reservoir development) with a good numerous points; H. Oertli for his invaluable assis- understanding of well-logging techniques, and an ap- tance in editing and correcting the French text; and preciation of the wealth of information available Elf Aquitaine for their permission to publish this from log measurements, and their relevance in re- book. servoir description. The present work is the first of a two-volume OBERTO SERRA. Paris, March 1978 ... vlll FOREWORD TO THE ENGLISH EDITION Following the suggestion of several people, I de- the French text and in bringing the present volume cided to translate my French book on Well Logging up to date. into English. At the same time I took the opportunity 1 should also like to mention the typists responsi- to improve and update the content by revising the ble for preparing the final draft for editing.
Recommended publications
  • Density, Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient Of
    A542 Journal of The Electrochemical Society, 165 (3) A542-A546 (2018) Density, Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient of Organic Liquid Electrolytes: Part I. Propylene Carbonate + Li, Na, Mg and Ca Cation Salts Shiro Seki, 1,∗,z Kikuko Hayamizu, 2 Seiji Tsuzuki,3,z Keitaro Takahashi,1 Yuki Ishino,1 Masaki Kato,1 Erika Nozaki,4 Hikari Watanabe,4 and Yasuhiro Umebayashi4 1Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, Hachioji-shi, Tokyo 192-0015, Japan 2Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan 3National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan 4Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan To investigate physicochemical relationships between ionic radii, valence number and cationic metal species in electrolyte solutions, propylene carbonate with Li[N(SO2CF3)2], Na[N(SO2CF3)2], Mg[N(SO2CF3)2]2 and Ca[N(SO2CF3)2]2 were prepared. The tem- perature dependence of density, viscosity, ionic conductivity (AC impedance method) and self-diffusion coefficient (pulsed-gradient spin-echo nuclear magnetic resonance) was measured. The effects of cationic radii and cation valence number on the fluidity and transport properites (conductivity and self-diffusion coefficient) were analyzed. © The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.
    [Show full text]
  • Basic Aspects of Fluorine in Chemistry and Biology
    Introduction: Basic Aspects of Fluorine in Chemistry and Biology COPYRIGHTED MATERIAL 1 Unique Properties of Fluorine and Their Relevance to Medicinal Chemistry and Chemical Biology Takashi Yamazaki , Takeo Taguchi , and Iwao Ojima 1.1 Fluorine - Substituent Effects on the Chemical, Physical and Pharmacological Properties of Biologically Active Compounds The natural abundance of fl uorine as fl uorite, fl uoroapatite, and cryolite is considered to be at the same level as that of nitrogen on the basis of the Clarke number of 0.03. However, only 12 organic compounds possessing this special atom have been found in nature to date (see Figure 1.1) [1] . Moreover, this number goes down to just fi ve different types of com- pounds when taking into account that eight ω - fl uorinated fatty acids are from the same plant [1] . [Note: Although it was claimed that naturally occurring fl uoroacetone was trapped as its 2,4 - dinitrohydrazone, it is very likely that this compound was fl uoroacetal- dehyde derived from fl uoroacetic acid [1] . Thus, fl uoroacetone is not included here.] In spite of such scarcity, enormous numbers of synthetic fl uorine - containing com- pounds have been widely used in a variety of fi elds because the incorporation of fl uorine atom(s) or fl uorinated group(s) often furnishes molecules with quite unique properties that cannot be attained using any other element. Two of the most notable examples in the fi eld of medicinal chemistry are 9α - fl uorohydrocortisone (an anti - infl ammatory drug) [2] and 5 - fl uorouracil (an anticancer drug) [3], discovered and developed in 1950s, in which the introduction of just a single fl uorine atom to the corresponding natural products brought about remarkable pharmacological properties.
    [Show full text]
  • Determination of Paleocurrent Directions Based on Well Logging Technology Aiming at the Lower Third Member of the Shahejie Forma
    water Article Determination of Paleocurrent Directions Based on Well Logging Technology Aiming at the Lower Third Member of the Shahejie Formation in the Chezhen Depression and Its Implications Yangjun Gao 1,2, Furong Li 2,3, Shilong Shi 2 and Ye Chen 1,4,* 1 School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Shengli Oilfield Branch Company, SINOPEC, Dongying 257001, China; [email protected] (F.L.); [email protected] (S.S.) 3 Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China 4 School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China * Correspondence: [email protected] Abstract: The Bohai Bay basin, mainly formed in the Cenozoic, is an important storehouse of groundwater in the North China Plain. The sedimentary deposits transported by paleocurrents often provided favorable conditions for the enrichment of modern liquid reservoirs. However, due to limited seismic and well logging data, studies focused on the macroscopic directions of paleocurrents L are scarce. In this study, we obtained a series of well logging data for the sedimentary layers of Es3 Formation in the Chezhen depression. The results indicate the sources of paleocurrents from the northeast, northwest, and west to a center of subsidence in the northern Chezhen depression at that Citation: Gao, Y.; Li, F.; Shi, S.; time. Based on the well testing data, the physical properties of the layers from Es L Formation in Chen, Y. Determination of 3 Paleocurrent Directions Based on this region were generally poor, but two abnormal overpressure zones were found at 3700–3800 m Well Logging Technology Aiming at and 4100–4300 m deep intervals, suggesting potential high-quality underground liquid reservoirs.
    [Show full text]
  • Well Logging
    University of Kirkuk / Faculty of Science / Applied geology department rd 3 year 2020 WELL LOGGING Dr. Radhwan Khaleel Hayder INTRODUCTION: -What is a “Log” and ‘’Well Logging’’. LOG OR WELL LOGGING (THE BOREHOLE IMAGE): - Data are organized and interpreted by depth and represented on a graph called a log (a record of information about the formations through which a well has been drilled). - Visual inspection of samples brought to the surface (geological logs). Example cuttings and corres. - Study of the physical properties of rocks and the fluids through which the bore hole is drilled. - Traditionally logs are display on girded papers. Now a days the log may be taken as films, images and in digital format. - Some types of well logs can be done during any phase of a well's history: drilling, completing, producing or abandoning. -Well logging is performed in boreholes drilled for the oil and gas, groundwater, mineral, environmental and geotechnical studies. -The first electrical resistivity well log was taken in France, in 1927. THE IMPORTANCE OF WELL LOGGING: 1-Determination of lithology. 2-Determination of reservoir characteristics (e.g. porosity, saturation, permeability). 3-Determination formation dip and hole size. 4-Identification of productive zones, to determine depth and thickness of zones. 5-Distinguish between oil, gas, or water in a reservoir, and to estimate hydrocarbon reserves. 6-Geologic maps developed from log interpretation help with determining facies relationships and drilling locations. 1 ADVANTAGES AND LIMITATIONS OF WELL LOGGING: Advantages: 1- Continuous measurements. 2- Easy and quick to work with. 3- Short time acquisition. 4- Economical. Limitations: 1- Indirect measurements.
    [Show full text]
  • Designing Fine Particles
    2014 No. 1 January- February Designing Fine Particles Development and Application of Particle Processing That Enables the Fabrication of New Materials New Year’s Greetings When I was a graduate student in the United States more than will assemble structural-materials researchers specialized in 30 years ago, my thesis advisor said to me, "Is it common that focused research. Similar to the Nano-GREEN/WPI-MANA Japanese people don’t like discussions? Discussion and interac- Building, which was completed two years ago, we have chosen tion are very important not only for research, but also for any- a design that would encourage people to communicate infor- thing that involves creativity. When Einstein was alone, he used mally with each other. Theoretical Research Building at the to have discussions by mumbling to himself." I realized how Namiki site, which was rebuilt to assemble the experts in theory true this is, looking back at my own career as a researcher; I and computational research, is also expected to provide a com- always had good discussion partners. fortable space for daily discussions. In this manner, NIMS is attempting to advance innovation by As the President of NIMS, my goal is to bringing together diverse minds of peo- create an ideal environment for people- ple from a wide range of disciplines and interaction, which I believe is important cultural backgrounds. We strongly en- for innovation. How can we make this courage interaction and discussion happen? There are two essential factors: among them. people and shared space. Furthermore, NIMS promotes research People are the first and most obvious collaboration and actively seeks outside requirement.
    [Show full text]
  • PETE 3036 - Well Logging Craft and Hawkins Department of Petroleum Engineering Louisiana State University Fall 2016
    PETE 3036 - Well Logging Craft and Hawkins Department of Petroleum Engineering Louisiana State University Fall 2016 Prerequisites: PETE 2031 (Rock Properties), and either EE 2950 or PHYS 2102. Catalog Description: Qualitative and quantitative formation evaluation by means of electric, acoustic, and radioactive well logs (three credit hours). Lecture: EW 137 Time: Lectures: T-Th 1:30 - 2:50 PM Help Sessions (Not mandatory): will be announced 2427 Patrick Taylor Hall Instructor: Dr. Dahi Office: 139 Old Forestry Building Email: [email protected] Office Hours: Wednesday 2:30 – 3:30, or at other times by appointment Teaching Assistant: Mr. Klimenko Office Hours: TBA (in PETE computer lab) Students are not supposed to meet TA in graduate student office Textbook SPE textbook – Theory, Measurement and Interpretation of Well Logs by Zaki Bassiouni. The cost is approximately $ 90.00. SPE textbook - Openhole Log Analysis and Formation Evaluation, Second Edition by Richard M. Bateman, for SPE members $110 Other References Basic Well Logging Analysis, published by American Association of Petroleum Geologists. PDF copies of the PowerPoint presentations will be posted on the Moodle of the course. Objectives: Impart students with knowledge of conventional well log interpretation including: • The identification of porous and permeable sands from the SP and Gamma Ray Logs • The determination of porosity, lithology, and hydrocarbon type from sonic, density, and neutron logs • An understanding of electrical resisitivity in reservoir rocks and its relationship to porosity and water saturation • The ability to estimate water resistivity from water saturated sands and the SP log • The estimation of water saturation Topics: 1. Introduction to well logging 2.
    [Show full text]
  • DRILLING and TESTING GEOTHERMAL WELLS a Presentation for the World Bank July 2012 Geothermal Training Event  Geothermal Resource Group, Inc
    DRILLING AND TESTING GEOTHERMAL WELLS A Presentation for The World Bank July 2012 Geothermal Training Event Geothermal Resource Group, Inc. was founded in 1992 to provide drilling engineering and supervision services to geothermal energy operators worldwide. Since it’s inception, GRG has grown to include a variety of upstream geothermal services, from exploration management to resource assessment, and from drilling project management to reservoir engineering. GRG’s permanent and contract supervisory staff is among the most active consulting firms, providing services to nearly every major geothermal operation worldwide. Services and Expertise: Drilling Engineering Drilling Supervision Exploration Geosciences Reservoir Engineering Resource Assessment Project Management Upstream Production Engineering Training Worldwide Experience: United States, Canada, and Mexico Latin America – Nicaragua, El Salvador, and Chile Southeast Asia – Philippines and Indonesia New Zealand Kenya Tu r key Caribbean EXPLORATION PROCESS The exploration process is the initial phase of the project, where the resource is identified, qualified, and delineated. It is the longest phase of the project, taking years or even decades, and it is invariably the most poorly funded. EXPLORATION PROCESS Begins with identification of a potential resource Visible System – identified by surface manifestations, either active or inactive Blind System – identified by the structural setting, geophysical explorations, or by other indicators such as water and mining exploration drilling. EXPLORATION PROCESS Primary personnel Geoscientists Geologists – structural mapping, field reconnaissance, conceptual geological models Geochemists – geothermometry, water & gas chemistry Geophysicists – geophysical exploration, structural modeling Engineers Drilling Engineers – well design, rock mechanics, economic oversight Reservoir Engineers – reservoir modeling, well testing, economic evaluation, power phase determination EXPLORATION METHODS Pre-exploration research.
    [Show full text]
  • GEOCHEMICAL MINERALOGY by VLADIMIR IVANOVICH VERNADSKY and the PRESENT TIMES Boris Ye
    98 New Data on Minerals. 2013. Vol. 48 GEOCHEMICAL MINERALOGY BY VLADIMIR IVANOVICH VERNADSKY AND THE PRESENT TIMES Boris Ye. Borutzky Fersman Mineralogical museum, RAS, Moscow, [email protected] The world generally believes that “the science of science” about natural matter – mineralogy – became obsolete and was replaced by the new science – geochemistry, by V.I. Vernadsky. This is not true. Geochemistry was and is never separated from mineralogy – its fundament. Geochemistry studies behaviour of chemical elements main- ly within the minerals, which are the basic form of inorganic (lifeless) substance existence on the Earth conditions. It also studies redistribution of chemical elements between co-existing minerals and within the minerals, by vari- able conditions of mineral-forming medium during the mineral-forming processes. On the other hand, owing to V.I. Vernadsky, mineralogy became geochemical mineralogy, as it took in the ideas and methods of chemistry, which enables to determine chemical composition, structure and transformation of minerals during the certain geological processes in the Earth history. 1 photo, 20 references. Keywords: Vladimir Ivanovich Vernadsky, mineralogy, geochemistry, geology, physics of solids, mineral-forming process, paragenesis, history of science. Vladimir Ivanovich Vernadsky’s remark- into several stages. Forming his personality of able personality and his input to the Earth sci- scientist-mineralogist and the main input into ences, first of all, to mineralogy – changing it reformation of Russian mineralogy and creation from the trendy mineral collecting hobby, of mineralogical science in Russia are related observation of mineral beauty, art and culture with the early, “Moscow” stage (1988–1909). areas into the mineralogical science, are not to At that time, on the recommendation of profes- be expressed.
    [Show full text]
  • Well Logging Requirements
    Well Logging Requirements Directive PNG010 February 2018 Revision 1.1 Governing Legislation: Act: The Oil and Gas Conservation Act Regulation: The Oil and Gas Conservation Regulations, 2012 Order: 51/18 Well Logging Requirements Record of Change Revision Date Description 0.0 September, 2015 Draft 1.0 November, 2015 Added Directive Number, updated document 1.1 February, 2018 Update for clarity and inclusion of shallow water source well requirements February 2018 Page 2 of 8 Well Logging Requirements Contents 1. Introduction .......................................................................................................................................... 4 1.1 Governing Legislation.................................................................................................................... 4 1.2 Definitions ..................................................................................................................................... 4 2. Logging Requirements for Vertical and Directional Wells .................................................................... 5 2.1 Single-Well Pads ............................................................................................................................ 5 2.2 Muti-Well Pads .............................................................................................................................. 5 2.3 Re-entry Wells ............................................................................................................................... 6 3. Other Requirements
    [Show full text]
  • A New Logging-While-Drilling Method for Resistivity Measurement
    sensors Article A New Logging-While-Drilling Method for y Resistivity Measurement in Oil-Based Mud Yongkang Wu 1, Baoping Lu 2, Wei Zhang 2,3, Yandan Jiang 1, Baoliang Wang 1,* and Zhiyao Huang 1 1 State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; [email protected] (Y.W.); [email protected] (Y.J.); [email protected] (Z.H.) 2 Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China; [email protected] (B.L.); [email protected] (W.Z.) 3 State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China * Correspondence: [email protected] This paper is an extended version of an earlier conference paper: “Wu, Y.K.; Ni, W.N.; Li, X.; Zhang, W.; y Wang, B.L.; Jiang, Y.D. and Huang, Z.Y. Research on characteristics of a new oil-based logging-while-drilling instrument. In Proceedings of the 11th International Symposium on Measurement Techniques for Multiphase Flow, Zhenjiang, China, 3–7 November 2019.” Received: 21 December 2019; Accepted: 11 February 2020; Published: 16 February 2020 Abstract: Resistivity logging is an important technique for identifying and estimating reservoirs. Oil-based mud (OBM) can improve drilling efficiency and decrease operation risks, and has been widely used in the well logging field. However, the non-conductive OBM makes the traditional logging-while-drilling (LWD) method with low frequency ineffective. In this work, a new oil-based LWD method is proposed by combining the capacitively coupled contactless conductivity detection (C4D) technique and the inductive coupling principle.
    [Show full text]
  • Predicting Heavy Oil and Bitumen Viscosity from Well Logs and Calculated Seismic Properties
    Important Notice This copy may be used only for the purposes of research and private study, and any use of the copy for a purpose other than research or private study may require the authorization of the copyright owner of the work in question. Responsibility regarding questions of copyright that may arise in the use of this copy is assumed by the recipient. UNIVERSITY OF CALGARY Predicting heavy oil and bitumen viscosity from well logs and calculated seismic properties by Eric Anthony Rops A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA APRIL, 2017 © Eric Anthony Rops 2017 Abstract Viscosity is the most important parameter influencing heavy oil production and development. While heavy oil viscosities can be measured in the lab from core and wellhead samples, it would be very useful to have a method to reliably estimate heavy oil viscosity directly from well logs. Multi-attribute analysis enables a target attribute (viscosity) to be predicted from other known attributes (the well logs). The viscosity measurements were generously provided by Donor Company, which allowed viscosity prediction equations to be trained. Once the best method of training the prediction was determined, viscosity was successfully predicted from resistivity, gamma-ray, NMR porosity, spontaneous potential, and the sonic logs. The predictions modelled vertical viscosity variations throughout the reservoir interval, while matching the true measurements with a 0.76 correlation. Another set of viscosity predictions were generated using log-derived seismic properties. The top viscosity-predicting seismic properties were found to be P-wave velocity and acoustic impedance.
    [Show full text]
  • Metallurgical Chemistry in My Lifethis Paper Was Presented at the Spring
    Materials Transactions, Vol. 45, No. 8 (2004) pp. 2489 to 2495 #2004 The Japan Institute of Metals OVERVIEW Metallurgical Chemistry in My Life* Noboru Masuko Metallurgical chemistry’s principle is that ‘‘the chemical process is governed by chemical potential.’’ Successful chemical process technology follows a route that does not go against the governance of chemical potential. In order to realize the technological objective, raw materials and a reactor are necessary, and after the principle is established, the method is supported by the reactor and advances in the materials that comprise such apparatus. Therefore, the technology is a fusion of material, apparatus, experience, and science, all of which are parts of the foundation of a technological method. The author’s involvement is described as an academician from the postwar recovery to the technological rearmament period. In the postwar recovery period, a systematic point-of-view was introduced to a technological principle using phase diagrams that clarified chemical potential, which was a new concept in the field of thermodynamics. In the technological rearmament period, technological evaluation was conducted from a philosophical standpoint. (Received April 26, 2004; Accepted June 2, 2004) Keywords: chemical potential, reactor, Eh-pH diagram, Eh-pH-pL diagram, potential diagram 1. Introduction 2. Chemical Potential Diagrams Ever since graduation from the university in 1957, I have 2.1 Eh-pH-pL diagram resided at the university and worked on joint research with Gibbs defined the intensive quantity of chemical potential metallurgical chemistry industries. Metallurgical chemistry in 1875. As appreciation increased that the concept of phase is a technology, and it has a principle and a method.
    [Show full text]