Megalobrama Amblycephala) Migd and Its Immune Response to Aeromonas Hydrophila

Total Page:16

File Type:pdf, Size:1020Kb

Megalobrama Amblycephala) Migd and Its Immune Response to Aeromonas Hydrophila Experimental immunology DOI: 10.5114/ceji.2015.52825 Spatio-temporal expression of blunt snout bream (Megalobrama amblycephala) mIgD and its immune response to Aeromonas hydrophila HU XIA, KANG WU, WANJING LIU, WEIMIN WANG, XUEZHEN ZHANG Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Hunan University of Arts and Science, Hunan Changde, China Abstract The function of IgD in fish and mammals has not been fully understood since its discovery. In this study, we have isolated and characterized the cDNA that encodes membrane-bound form of the im- munoglobulin D heavy chain gene (mIgD) of blunt snout bream (Megalobrama amblycephala) using RT-PCR and rapid amplification of cDNA ends (RACE). The full-length cDNA of mIgD consisted of 3313 bp, encoding a putative protein of 943 amino acids. The structure of blunt snout bream mIgD is VDJ-μ1-δ1-δ2-δ3-δ4-δ5-δ6-δ7-TM. Multiple alignment and phylogenetic analyses indicated that blunt snout bream mIgD clusters with the homologues of cyprinid fish and that its highest identity is with that of C. idella (82%). The mIgD expression in early different developmental stages showed that the level of mIgD mRNA decreased dramatically from the unfertilized egg stage to the 32-cell stage, suggesting that mIgD mRNA was maternally transferred. As cell differentiation initially took place in the blastula stage, the mIgD expression increased significantly from the blastula stage to prelarva, which might be attributed to embryonic stem cell differentiation processes. Compared with juvenile fish, the expression and tissue distribution patterns of mIgD in adult individuals exhibited considerable variation. After the injection of Aeromonas hydrophila, mIgD expression was up-regulated in various tissues, reaching the peak expression at 5 d, 14 d or 21 d (depending on the tissue type). The present study provides a theo- retical basis for further research of the teleost immune system. Key words: blunt snout bream (Megalobrama amblycephala), mIgD, cDNA, Aeromonas hydrophila, maternal transfer, spatio-temporal expression. (Centr Eur J Immunol 2015; 40 (2): 132-141) Introduction identified in a large number of species, including Atlantic salmon, Salmo salar [8], Atlantic cod, Gadus morhua L. In all species that possess Igs, the only class of anti- [9], Japanese flounder, Paralichthys olivaceus [10] and body universally found is IgM, which has been well char- grass carp, Ctenopharyngodon idella [11]. The discover- acterized at both the protein and molecular levels and is ies of an IgD-like gene in teleost species have changed the considered to be the predominant teleost serum Ig [1, 2]. evolutionary view, and suggest that the gene existed early However, there are considerably fewer reports about the in vertebrate evolution. teleost homolog(s) of IgD, which was initially discovered The role of IgD in teleost in vertebrate immune sys- in humans from serum of a myeloma patient [3]. For about tems is not fully understood. In channel catfish, transcripts 30 years, IgD was considered to be a relatively recently encoding both membrane and secreted IgD have been evolved class of immunoglobulins as it had been described identified [7]. The IgD heavy chain cDNA clones exist- only in primates and rodents [3-6]. ed only as the membrane form in both Atlantic salmon However, in 1997, a new immunoglobulin H-chain and Atlantic cod [8, 9]. In most species, the IgD-encod- gene with some homology to mammalian IgD was cloned ing gene (Cδ) is located downstream of the IgM-encoding from the channel catfish, Ictalurus punctatus L. [7]. Since gene (Cµ) and is co-expressed with IgM on the surface of then, IgD genes, albeit with some diversity, have been the majority of mature B cells before antigenic stimulation Correspondence: Hu Xia, Hunan University of Arts and Science, Hunan Changde 415000, P.R. China, e-mail: [email protected] 132 Central European Journal of Immunology 2015; 40(2) Spatio-temporal expression of blunt snout bream (Megalobrama amblycephala) mIgD and its immune response to Aeromonas hydrophila [12]. IgD seems to play an important role as an antigen head kidney, trunk kidney, liver, spleen, gill, intestine, receptor optimized for efficient recruitment of B cells into muscle and brain) were immediately collected and frozen antigen-driven responses [8]. in liquid nitrogen, and then stored at –80°C until the RNA The structures of teleost IgD genes are different from was extracted. To determine the expression of the mIgD those of mammals. Human IgD has three constant do- gene in different developmental stages, samples were col- mains, while there are only two constant domains in the lected from unfertilized eggs, zygotes, 2-cell embryos, mouse; further, both human and mouse delta constant re- 4-cell embryos, 32-cell embryos, blastula, gastrula and gions have a flexible hinge region [13]. In contrast, there prelarva. Due to the vast differences in the size amongst is no hinge region and there are seven constant domains the developmental stages, samples totaling ~100 mg from for both catfish and salmon IgD [7, 8]. The initial discov- six parents were pooled for each stage for RNA isolation. ery of IgD in teleosts also found that IgD was a chimeric All samples were flash-frozen in liquid nitrogen immedi- protein containing a Cμ1 domain followed by a number of ately and then stored at –80°C until RNA isolation. All Cδ domains [7]. This chimeric structure was later found in the experimental procedures involving fish were approved grass carp [11], Atlantic salmon [8] and Atlantic cod [9]. by the Institutional Animal Care and Use Committee of Until now, no complete fish IgD heavy chain without Cμ1 Huazhong Agricultural University, Wuhan, China. has been reported. In addition, the structure of the fish IgD gene is different in various species. For instance, a dupli- Challenge experiment cation of domains δ2-δ3-δ4 has been reported in grass carp [11], salmon [8], halibut [14] and catfish [15], but not in For the A. hydrophila challenge experiment in M. am- flounder [10]. Further, in cod, domains δ3-δ6 are absent, blycephala, all the tested fishes (15 ±2 g) were inoculated and there is a tandem duplication of domains δ1 and δ2 [9]. by intraperitoneal injection. The bacteria A. hydrophila So far, the information obtained indicates that teleosts was isolated from diseased M. amblycephala in Dongxi do not share a common IgD structure. To further our under- Lake (Wuhan, China) by our laboratory. A single colony standing of the immune development of teleosts, it is import- was cultured in LB medium at 28°C to mid-logarithmic ant to obtain more information on this gene in additional fish growth. In a pre-challenge experiment prior to the chal- species from different families. Megalobrama amblycephala, lenge trial, the concentration 1 × 107 colony forming units/ commonly known as blunt snout bream or Wuchang fish, ml (CFU/ml) was determined as LD50. The treatment group belongs to Megalobrama, Cyprinidae, Cypriniformes, Acti- was injected with 0.1 ml (1 × 107 CFU/ml) bacterial sus- nopterygii. As a species in Cyprinidae, the largest family of pension per individual, while the control group was in- freshwater fish, M. amblycephala is closely related to the jected with the same volume of phosphate-buffered saline commonly known fish such as zebrafish (Danio rerio) and (PBS, pH 7.2). After the treatment, the fish were returned carp. Although the gene encoding IgD has been identified in to tanks with water temperature of 27 ±0.5°C. Thirty inject- bony fish by database mining, the biological functions of IgD ed individuals (3 pools) from treated and control groups is yet unknown in Megalobrama amblycephala. Therefore, were randomly dissected at 4 h, 1, 3, 5, 14, and 21 d post the aim of the present study was to isolate and to character- ize the IgD gene in blunt snout bream, Megalobrama am- injection. Thirty without injected fishes were sampled as blycephala, which is an economically important freshwater a blank control (0 h). Fish were euthanized by exposure to fish species in the aquaculture industry in China. In addi- 300 mg/l of MS-222 (Sigma, USA) before dissection, and tion, to understand the fish immune system, we examined tissues (including trunk kidney, spleen, gill and liver) were the spatio-temporal expression of mIgD and investigated the sampled, frozen immediately in liquid nitrogen and then immune response of the mIgD gene after Aeromonas hy- stored at –80°C until RNA extraction. drophila infection in M. amblycephala. RNA isolation and cDNA synthesis Material and methods Samples, including different tissues and embryos of different developmental stages, were homogenized using Fish and sampling a mortar and pestle under liquid nitrogen; total RNA was Healthy M. amblycephala of juvenile (body weight: extracted using Trizol reagent (TaKaRa, Japan), according 45-55 g) and adult fish (body weight: 400-500 g) were to the manufacturer’s instructions. Total RNA was treated collected from the fish base of Huazhong Agricultural Uni- with gDNA Eraser (TaKaRa, Japan) to avoid the contam- versity (Wuhan, China). Before experiments, fish were ac- ination of genomic DNA. The quantity and quality of the climatized in quarantine plastic tanks in aerated freshwater RNA was determined using agarose gels and a NanoDrop at 24 ±2°C for two weeks. After acclimation, each fish was 2000 spectrophotometer (Thermo Fisher Scientific, USA). anesthetized with MS-222 (Sigma, USA). To avoid indi- First strand cDNA was synthesized using PrimeScript® vidual differences, tissues were extracted from 30 juvenile RT reagent Kit with gDNA Eraser (TaKaRa, Japan), ac- and 30 adult M. amblycephala. Tissue samples (including cording to the manufacturer’s instructions.
Recommended publications
  • The Israeli Journal of Aquaculture – Bamidgeh Xx(X), 20Xx, X-Xx
    The Open Access Israeli Journal of Aquaculture – Bamidgeh As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions. This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible. Editor-in-Chief Published under auspices of Dan Mires The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB), Editorial Board University of HawaiɄɄɄi at Mānoa Library & Rina Chakrabarti Aqua Research Lab, Dept. of Zoology, University of HawaiɄɄɄi at Mānoa University of Delhi, India Aquaculture Program Angelo Colorni National Center for Mariculture, IOLR in association with Eilat, Israel AquacultureHub http://www.aquaculturehub.org Daniel Golani The Hebrew University of Jerusalem Jerusalem, Israel Hillel Gordin Kibbutz Yotveta, Arava, Israel Sheenan Harpaz Agricultural Research Organization Beit Dagan, Gideon Hulata Agricultural Research Organization Beit Dagan, George Wm. Kissil National Center for Mariculture, IOLR, Eilat, Israel Ingrid Lupatsch Swansea University, Singleton Park, Swansea, UK Spencer Malecha Dept. of Human Nutrition, Food & Animal Sciences, CTAHR, University of Hawaii Constantinos Hellenic Center for Marine Research, ISSN 0792 - 156X Mylonas Crete, Greece Amos Tandler National Center for Mariculture, IOLR Israeli Journal of Aquaculture - BAMIGDEH.
    [Show full text]
  • Mitochondrial Genome Variation After Hybridization and Differences in the First and Second Generation Hybrids of Bream Fishes
    RESEARCH ARTICLE Mitochondrial Genome Variation after Hybridization and Differences in the First and Second Generation Hybrids of Bream Fishes Wei-Zhuo Zhang1,2, Xue-Mei Xiong1,2, Xiu-Jie Zhang1,2, Shi-Ming Wan1,2, Ning- Nan Guan1,2, Chun-Hong Nie1,2, Bo-Wen Zhao1,2, Chung-Der Hsiao3, Wei-Min Wang1, Ze-Xia Gao1,2* 1 College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China, 2 Freshwater Aquaculture Collaborative a11111 Innovation Center of Hubei Province, Wuhan, People’s Republic of China, 3 Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan * [email protected] Abstract OPEN ACCESS Citation: Zhang W-Z, Xiong X-M, Zhang X-J, Wan S- Hybridization plays an important role in fish breeding. Bream fishes contribute a lot to aqua- M, Guan N-N, Nie C-H, et al. (2016) Mitochondrial culture in China due to their economically valuable characteristics and the present study Genome Variation after Hybridization and Differences included five bream species, Megalobrama amblycephala, Megalobrama skolkovii, Megalo- in the First and Second Generation Hybrids of Bream brama pellegrini, Megalobrama terminalis and Parabramis pekinensis. As maternal inheri- Fishes. PLoS ONE 11(7): e0158915. doi:10.1371/ journal.pone.0158915 tance of mitochondrial genome (mitogenome) involves species specific regulation, we aimed to investigate in which way the inheritance of mitogenome is affected by hybridization Editor: Zuogang Peng, SOUTHWEST UNIVERSITY, CHINA in these fish species. With complete mitogenomes of 7 hybrid groups of bream species being firstly reported in the present study, a comparative analysis of 17 mitogenomes was Received: January 18, 2016 conducted, including representatives of these 5 bream species, 6 first generation hybrids Accepted: June 23, 2016 and 6 second generation hybrids.
    [Show full text]
  • Forecasting Population Dynamics of the Black Amur Bream (Megalobrama Terminalis) in a Large Subtropical River Using a Univariate Approach
    Ann. Limnol. - Int. J. Lim. 53 (2017) 35–45 Available online at: Ó EDP Sciences, 2017 www.limnology-journal.org DOI: 10.1051/limn/2016034 Forecasting population dynamics of the black Amur bream (Megalobrama terminalis) in a large subtropical river using a univariate approach Fangmin Shuai1,2,3, Sovan Lek3, Xinhui Li1,2*, Qianfu Liu1,2, Yuefei Li1,2 and Jie Li1,2 1 Pearl River Fisheries Research Institute, CAFS, Guangzhou, 510380, China 2 Experimental Station for Scientific Observation on Fishery Resources and Environment in the Middle and Lower Reaches of the Pearl River, Zhaoqing, 26100, Ministry of Agriculture, People’s Republic of China 3 Toulouse III – University Paul Sabatier, Toulouse, Cedex 31062, France Received 25 January 2016; Accepted 07 November 2016 Abstract – Understanding the stocks and trends of fish species using modern information technology is cru- cial for the sustainable use and protection of fishery resources. Megalobrama terminalis (Cyprinidae) is en- demic to the large subtropical Pearl River (China) and is a commercially important species. Its population has however been suffering from long-term degradation. In this paper, a seasonal autoregressive integrated mov- ing average (ARIMA) model and redundancy analysis (RDA) were proposed to predict larval abundance and its influence, using larva data collected every 2 days from 2006 to 2013. The ARIMA model provided good forecasting performance and estimated that the population trends will follow a relatively stable cycling trend in the near future. The cross-correlation function model further identified that discharge acted as a trigger for population growth; the effect of discharge on the number of larvae will last at least 5 days.
    [Show full text]
  • Guide to Monogenoidea of Freshwater Fish of Palaeartic and Amur Regions
    GUIDE TO MONOGENOIDEA OF FRESHWATER FISH OF PALAEARTIC AND AMUR REGIONS O.N. PUGACHEV, P.I. GERASEV, A.V. GUSSEV, R. ERGENS, I. KHOTENOWSKY Scientific Editors P. GALLI O.N. PUGACHEV D. C. KRITSKY LEDIZIONI-LEDIPUBLISHING © Copyright 2009 Edizioni Ledizioni LediPublishing Via Alamanni 11 Milano http://www.ledipublishing.com e-mail: [email protected] First printed: January 2010 Cover by Ledizioni-Ledipublishing ISBN 978-88-95994-06-2 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted or utilized in any form or by any means, electonical, mechanical, photocopying or oth- erwise, without permission in writing from the publisher. Front cover: /Dactylogyrus extensus,/ three dimensional image by G. Strona and P. Galli. 3 Introduction; 6 Class Monogenoidea A.V. Gussev; 8 Subclass Polyonchoinea; 15 Order Dactylogyridea A.V. Gussev, P.I. Gerasev, O.N. Pugachev; 15 Suborder Dactylogyrinea: 13 Family Dactylogyridae; 17 Subfamily Dactylogyrinae; 13 Genus Dactylogyrus; 20 Genus Pellucidhaptor; 265 Genus Dogielius; 269 Genus Bivaginogyrus; 274 Genus Markewitschiana; 275 Genus Acolpenteron; 277 Genus Pseudacolpenteron; 280 Family Ancyrocephalidae; 280 Subfamily Ancyrocephalinae; 282 Genus Ancyrocephalus; 282 Subfamily Ancylodiscoidinae; 306 Genus Ancylodiscoides; 307 Genus Thaparocleidus; 308 Genus Pseudancylodiscoides; 331 Genus Bychowskyella; 332 Order Capsalidea A.V. Gussev; 338 Family Capsalidae; 338 Genus Nitzschia; 338 Order Tetraonchidea O.N. Pugachev; 340 Family Tetraonchidae; 341 Genus Tetraonchus; 341 Genus Salmonchus; 345 Family Bothitrematidae; 359 Genus Bothitrema; 359 Order Gyrodactylidea R. Ergens, O.N. Pugachev, P.I. Gerasev; 359 Family Gyrodactylidae; 361 Subfamily Gyrodactylinae; 361 Genus Gyrodactylus; 362 Genus Paragyrodactylus; 456 Genus Gyrodactyloides; 456 Genus Laminiscus; 457 Subclass Oligonchoinea A.V.
    [Show full text]
  • Amur Fish: Wealth and Crisis
    Amur Fish: Wealth and Crisis ББК 28.693.32 Н 74 Amur Fish: Wealth and Crisis ISBN 5-98137-006-8 Authors: German Novomodny, Petr Sharov, Sergei Zolotukhin Translators: Sibyl Diver, Petr Sharov Editors: Xanthippe Augerot, Dave Martin, Petr Sharov Maps: Petr Sharov Photographs: German Novomodny, Sergei Zolotukhin Cover photographs: Petr Sharov, Igor Uchuev Design: Aleksey Ognev, Vladislav Sereda Reviewed by: Nikolai Romanov, Anatoly Semenchenko Published in 2004 by WWF RFE, Vladivostok, Russia Printed by: Publishing house Apelsin Co. Ltd. Any full or partial reproduction of this publication must include the title and give credit to the above-mentioned publisher as the copyright holder. No photographs from this publication may be reproduced without prior authorization from WWF Russia or authors of the photographs. © WWF, 2004 All rights reserved Distributed for free, no selling allowed Contents Introduction....................................................................................................................................... 5 Amur Fish Diversity and Research History ............................................................................. 6 Species Listed In Red Data Book of Russia ......................................................................... 13 Yellowcheek ................................................................................................................................... 13 Black Carp (Amur) ......................................................................................................................
    [Show full text]
  • Cross-Species Amplification of Microsatellites in Genera
    c Indian Academy of Sciences ONLINE RESOURCES Cross-species amplification of microsatellites in genera Megalobrama and Parabramis RUI DU1, DALONG ZHANG1, YIZHOU WANG1, WEIMIN WANG1 and ZEXIA GAO1,2∗ 1College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/ Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China 2Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, People’s Republic of China [Du R., Zhang D., Wang Y., Wang W. and Gao Z. 2013 Cross-species amplification of microsatellites in genera Megalobrama and Parabramis. J. Genet. 92, e106–e109. Online only: http://www.ias.ac.in/jgenet/OnlineResources/92/e106.pdf] Introduction for M. pellegrini which has one report about microsatellite development (Wang et al. 2012), there are no microsatellites Genus Megalobrama (subfamily: Cultrinae; family: reported in the other three species from Megalobrama and Cyprinidea), is one of the most economically important Parabramis genera as far as we know. species in Chinese freshwater polyculture system. Accord- In this study, the microsatellite markers from M. ambly- ing to several recent studies, based on morphological data, cephala transcriptome database were chosen to test their the Megalobrama genus includes four valid species: M. utility for cross-species amplification. The obtained polymor- amblycephala, M. pellegrini, M. terminalis and M. skolkovii phic microsatellites in this study could be directly applied (Chen et al. 1998; Xu and Xiong 2008). Another economi- in the genus Megalobrama and Parabramis for facilitating cally important species, P. pekinensis, belongs to the sister large-scale genetic studies on population structures, system- genus Parabramis (Dai et al.
    [Show full text]
  • Identification and Characterization of Micrornas in the Liver of Blunt
    International Journal of Molecular Sciences Article Identification and Characterization of MicroRNAs in the Liver of Blunt Snout Bream (Megalobrama amblycephala) Infected by Aeromonas hydrophila Lei Cui 1, Hongtao Hu 2, Wei Wei 1,3, Weimin Wang 1 and Hong Liu 1,3,* 1 College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (L.C.); [email protected] (W.We.); [email protected] (W.Wa.) 2 Center for Bio-Pesticide Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; [email protected] 3 Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China * Correspondence: [email protected]; Tel.: +86-27-8728-2113 Academic Editor: Céline Audet Received: 6 August 2016; Accepted: 21 November 2016; Published: 25 November 2016 Abstract: MicroRNAs (miRNAs) are small RNA molecules that play key roles in regulation of various biological processes. In order to better understand the biological significance of miRNAs in the context of Aeromonas hydrophila infection in Megalobrama amblycephala, small RNA libraries obtained from fish liver at 0 (non-infection), 4, and 24 h post infection (poi) were sequenced using Illumina deep sequencing technology. A total of 11,244,207, 9,212,958, and 7,939,157 clean reads were obtained from these three RNA libraries, respectively. Bioinformatics analysis identified 171 conserved miRNAs and 62 putative novel miRNAs. The existence of ten randomly selected novel miRNAs was validated by RT-PCR. Pairwise comparison suggested that 61 and 44 miRNAs were differentially expressed at 4 and 24 h poi, respectively.
    [Show full text]
  • The Evolution and Maintenance of Hox Gen in Vertebrates and the Teleost-Specific Genome Duplication
    The evolution and maintenance of Hox gen in vertebrates and the teleost-specific genome duplication SHIGEHIRO KURAKU and AXEL MEYER* Lehrstuhl fur Zoologie und Evolutionsbiotogie, Department of Biology, University of Konstanz, Konstanz, Germany ABSTRACT Hox genes are known to specify spatial identities along the anterior-posterior axis during embryogenesis. In vertebrates and most other deuterostomes, they are arranged in sets of uninterrupted clusters on chromosomes, and are in most cases expressed in a "colinear" fashion, in which genes closer to the 3'-end of the Hox clusters are expressed earlier and more anteriorly and genes close to the 5'-end of the clusters later and more posteriorly. In this review, we summarize the current understanding of how Hoxgene clusters have been modified from basal lineages of deuterostomes to diverse taxa of vertebrates. Our parsimony reconstruction of Hox cluster architecture at various stages of vertebrate evolution highlights that the variation in Hox cluster structures among jawed vertebrates is mostly due to secondary lineage-specific gene losses and an additional genome duplication that occurred in the actinopterygian stem lineage, the teleost-specific genome duplication (TSGO). KEY WORDS: co/ineanty, two-round geno7lU! duplication, secondary gene loss Introduction there is a link between this special genomic architecture and the origin of morphological novelties, such as modifications of axial Hox genes are transcription factors that serve crucial roles segmental elements seen in the carapace of turtles (Ohya et aI., during development in particular in embryonic anterior-posterior 2005), loss of limbs in snakes (Cohn and Tickle, 1999), and the (A-P) patterning. In vertebrates and most other deuterostomes, acquisition of jaws in gnathostomes (Cohn, 2002; Takio et aI., Hox genes are arranged in sets of uninterrupted clusters on 2004).
    [Show full text]
  • List of Potential Aquatic Alien Species of the Iberian Peninsula (2020)
    Cane Toad (Rhinella marina). © Pavel Kirillov. CC BY-SA 2.0 LIST OF POTENTIAL AQUATIC ALIEN SPECIES OF THE IBERIAN PENINSULA (2020) Updated list of potential aquatic alien species with high risk of invasion in Iberian inland waters Authors Oliva-Paterna F.J., Ribeiro F., Miranda R., Anastácio P.M., García-Murillo P., Cobo F., Gallardo B., García-Berthou E., Boix D., Medina L., Morcillo F., Oscoz J., Guillén A., Aguiar F., Almeida D., Arias A., Ayres C., Banha F., Barca S., Biurrun I., Cabezas M.P., Calero S., Campos J.A., Capdevila-Argüelles L., Capinha C., Carapeto A., Casals F., Chainho P., Cirujano S., Clavero M., Cuesta J.A., Del Toro V., Encarnação J.P., Fernández-Delgado C., Franco J., García-Meseguer A.J., Guareschi S., Guerrero A., Hermoso V., Machordom A., Martelo J., Mellado-Díaz A., Moreno J.C., Oficialdegui F.J., Olivo del Amo R., Otero J.C., Perdices A., Pou-Rovira Q., Rodríguez-Merino A., Ros M., Sánchez-Gullón E., Sánchez M.I., Sánchez-Fernández D., Sánchez-González J.R., Soriano O., Teodósio M.A., Torralva M., Vieira-Lanero R., Zamora-López, A. & Zamora-Marín J.M. LIFE INVASAQUA – TECHNICAL REPORT LIFE INVASAQUA – TECHNICAL REPORT Senegal Tea Plant (Gymnocoronis spilanthoides) © John Tann. CC BY 2.0 5 LIST OF POTENTIAL AQUATIC ALIEN SPECIES OF THE IBERIAN PENINSULA (2020) Updated list of potential aquatic alien species with high risk of invasion in Iberian inland waters LIFE INVASAQUA - Aquatic Invasive Alien Species of Freshwater and Estuarine Systems: Awareness and Prevention in the Iberian Peninsula LIFE17 GIE/ES/000515 This publication is a technical report by the European project LIFE INVASAQUA (LIFE17 GIE/ES/000515).
    [Show full text]
  • Wuchang Bream (Megalobrama Amblycephala) ERSS
    Wuchang Bream (Megalobrama amblycephala) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2011 Revised, March 2019 Web Version, 3/12/2020 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019): “Asia: middle reaches of Yangtze River, mainland China. Found in Newshan Lake (a bay of Liangzi Lake with an area of 256 sq km) and Yuli Lake [Li et al. 1993].” Status in the United States No wild populations of Megalobrama amblycephala have been recorded in the United States. No records of M. amblycephala in trade in the United States were found. Means of Introductions in the United States No wild populations of Megalobrama amblycephala have been recorded in the United States. Remarks Another common name used to refer to this species is bluntnose black bream. 1 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Fricke et al. (2019), Megalobrama amblycephala Yih 1955 is the current valid name and original name for this species. From ITIS (2019): Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Megalobrama Species Megalobrama amblycephala Yih, 1955 Size, Weight, and Age Range From Froese and Pauly (2019): “Max length : 200 cm TL male/unsexed; [Baensch and Riehl 1997]” Environment From Froese and Pauly (2019): “Freshwater; benthopelagic; depth range 5 - 20 m [Shao and Lim 1991]. […] 10°C - 20°C [Baensch and Riehl 1997; assumed to be recommended aquarium temperature]; […]” Climate/Range From Froese and Pauly (2019): “Temperate; […] 32°N - 23°N” 2 Distribution Outside the United States Native From Froese and Pauly (2019): “Asia: middle reaches of Yangtze River, mainland China.
    [Show full text]
  • Immunoglobulin T Genes in Neopterygii
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.21.108993; this version posted May 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Immunoglobulin T genes in Neopterygii Serafin Mirete-Bachiller1, David N. Olivieri2 and Francisco Gambon-Deza´ 1 1Unidad de Inmunolog´ıaHospital do Meixoeiro, Vigo, Spain, 2Computer Science Department, School of Informatics (ESEI), Universidade de Vigo. As Lagoas s/n, Ourense, 32004 Spain [email protected] Abstract In teleost fishes there are three immunoglobulin isotypes named immunoglobulin M (IgM), D (IgD) and T (IgT). IgT has been the last to be described and is considered a teleosts-fish spe- cific isotype. From the recent availability of genome sequences of fishes, an in-depth analysis of Actinopterygii immunoglobulin heavy chain genes was undertaken. With the aid of a bioinformat- ics pipeline, a machine learning software, CHfinder, was developed that identifies the coding exons of the CH domains of fish immunoglobulins. Using this pipeline, a high number of such sequences were obtained from teleosts and holostean fishes. IgT was found in teleost and holostean fishes that had not been previously described. A phylogenetic analysis reveals that IgT CH1 exons are similar to the IgM CH1. This analysis also demonstrates that the other three domains (CH2, CH3 and CH4) were not generated by recent duplication processes of IgM in Actinopterygii, indicating it is an immunoglobulin with an earlier origin. Keywords: IgT, Neopterygii, Holostei 1. Introduction Some 550 million years ago the adaptive immune system arose coinciding with the appearance of the non-jawed vertebrates (Agnathans) (Cooper & Alder, 2006).
    [Show full text]
  • Phylogenetic Classification of Extant Genera of Fishes of the Order Cypriniformes (Teleostei: Ostariophysi)
    Zootaxa 4476 (1): 006–039 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4476.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:C2F41B7E-0682-4139-B226-3BD32BE8949D Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi) MILTON TAN1,3 & JONATHAN W. ARMBRUSTER2 1Illinois Natural History Survey, University of Illinois Urbana-Champaign, 1816 South Oak Street, Champaign, IL 61820, USA. 2Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA. E-mail: [email protected] 3Corresponding author. E-mail: [email protected] Abstract The order Cypriniformes is the most diverse order of freshwater fishes. Recent phylogenetic studies have approached a consensus on the phylogenetic relationships of Cypriniformes and proposed a new phylogenetic classification of family- level groupings in Cypriniformes. The lack of a reference for the placement of genera amongst families has hampered the adoption of this phylogenetic classification more widely. We herein provide an updated compilation of the membership of genera to suprageneric taxa based on the latest phylogenetic classifications. We propose a new taxon: subfamily Esom- inae within Danionidae, for the genus Esomus. Key words: Cyprinidae, Cobitoidei, Cyprinoidei, carps, minnows Introduction The order Cypriniformes is the most diverse order of freshwater fishes, numbering over 4400 currently recognized species (Eschmeyer & Fong 2017), and the species are of great interest in biology, economy, and in culture. Occurring throughout North America, Africa, Europe, and Asia, cypriniforms are dominant members of a range of freshwater habitats (Nelson 2006), and some have even adapted to extreme habitats such as caves and acidic peat swamps (Romero & Paulson 2001; Kottelat et al.
    [Show full text]