New Entries to RM December 2015.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

New Entries to RM December 2015.Pdf International Plant Nutrition Institute Regional Office • Southeast Asia Date: December 14, 2015 Page: 1 of 314 New Entries to IPNI Library as References Hardwick S. R., R. Toumi, M. Pfeifer, E. C. Turner, R. Nilus, and R. M. Ewers. 2015. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201:187-195. Reference ID: 21198 Notes: #21198e Abstract: Land use change is a major threat to biodiversity. One mechanism by which land use change influences biodiversity and ecological processes is through changes in the local climate. Here, the relationships between leaf area index and five climate variables air temperature, relative humidity, vapour pressure deficit, specific humidity and soil temperature are investigated across a range of land use types in Borneo, including primary tropical forest, logged forest and oil palm plantation. Strong correlations with the leaf area index are found for the mean daily maximum air and soil temperatures, the mean daily maximum vapour pressure deficit and the mean daily minimum relative humidity. Air beneath canopies with high leaf area index is cooler and has higher relative humidity during the day. Forest microclimate is also found to be less variable for sites with higher leaf area indices. Primary forest is found to be up to 2.5 degrees C cooler than logged forest and up to 6.5 degrees C cooler than oil palm plantations. Our results indicate that leaf area index is a useful parameter for predicting the effects of vegetation upon microclimate, which could be used to make small scale climate predictions based on remotely sensed data. Ajambang W., S. W. Ardie, H. Volkaert, M. Galdima, and S. Sudarsono. 2015. Huge carbohydrate assimilates delay response to complete defoliation stress in oil palm (Elaeis guineensis Jacq.). Emirates Journal of Food and Agriculture, 27:126-137. Reference ID: 21199 Notes: #21199e Abstract: Understanding how and when crops cope with and respond to stress during reproductive development may be able to forecast total crop production under abrupt climate change. We studied the effect of complete defoliation under time- specific climate-related conditions on inflorescence sex differentiation in oil palm. A total of 162 pisifera oil palm trees were completely defoliated at the rate of three trees per month between July 2007 and December 2011. Complete defoliation significantly increased male inflorescence induction by 104% when compared with control without defoliation. Acute soil water deficit (SWD) of 16.8 mm between the 30th and 60th day after complete defoliation (DAD) had an additional positive effect on male inflorescence production. A regression analysis on 18 time-specific, climate- related research and two inflorescence-related variables resulted in high regression coefficients for the time period 30th to 60th DAD. This is an indication that oil palm responds to complete defoliation stress after a 30-day delaying period. Total soluble sugars measured at 45 DAD showed a depletion of 55% in the leaves and 21% in inflorescence of defoliated trees compared to control trees without defoliation. Preferential sex differentiation in oil palm towards maleness is an acclimation response to the depletion of total soluble sugar inflected by mechanical and soil Mail PO Box 500 GPO, Penang 10670, Malaysia Office c/o The WorldFish Center, Jalan Batu Maung, Batu Maung, 11960 Bayan Lepas, Penang, Malaysia Ph +60 4 6202 284 • Fax +60 4 6264 380 • E-mail [email protected] • URL www.ipni.net/seasia water deficit stresses. These results shall permit the simulation of male inflorescence induction and yield forecasting in other geographical locations. Cracknell A. P., K. D. Kanniah, K. P. Tan, and L. Wang. 2015. Towards the development of a regional version of MOD17 for the determination of gross and net primary productivity of oil palm trees. International Journal of Remote Sensing, 36:262-289. Reference ID: 21200 Notes: #21200e Abstract: Conducting quantitative studies on the carbon balance or productivity of oil palm is important for understanding the role of this ecosystem in global climate change. The MOD17 algorithm is used for processing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to generate the values of gross primary productivity (GPP) and net primary productivity for input to global carbon cycle modelling. In view of the increasing importance of data on carbon sequestration at regional and national levels, we have studied one important factor affecting the accuracy of the implementation of MOD17 at the sub-global level, namely the database of MODIS land cover (MOD12Q1) used by MOD17. By using a study area of approximately 7 km x 7 km (49 MODIS pixels) in semi-rural Johor in Peninsular Malaysia and using Google Earth 0.75 m resolution images as ground data, we found that the land-cover type for only 16 of these 49 MODIS pixels was correctly identified by MOD12Q1 using its 1 km resolution land-cover database. This leads to errors of 24% to 50% in the maximum light use efficiency, leading to corresponding errors of 24% to 50% in the GPP. We show that by using the Finer Resolution Observation and Monitoring - Global Land Cover (FROM-GLC) land- cover database developed by Gong et al., this particular error can be essentially eliminated, but at the cost of using extra computing resources. Anderman T. L., R. Remans, S. A. Wood, K. DeRosa, and R. S. DeFries. 2014. Synergies and tradeoffs between cash crop production and food security: a case study in rural Ghana. Food Security, 6:541-554. Reference ID: 21201 Notes: #21201e Abstract: Despite dramatic improvements in global crop yields over the past half- century, chronic food insecurity persists in many parts of the world. Farming crops for sale (cash cropping) has been recommended as a way to increase income that can, in turn, improve food security for smallholder farmers. Despite long-term efforts by development agencies and government to promote cash cropping, there is limited evidence documenting a relationship between these crops and the food security of households cultivating them. We used a mixed methods approach to build a case study to assess these relationships by collecting quantitative and qualitative data from cacao and oil palm farmers in the Ashanti region of Ghana. Three dimensions of food security were considered: food availability, measured by the months in a year households reported inadequate food; food access, indicated by the coping strategies they employed to secure sufficient food; and food utilization, gauged by the diversity of household diets and anthropometric measurements of child nutritional status. We found significant negative relationships between each of these pillars of food security and a household's intensity of cash crop production, measured by both quantity and area. A qualitative assessment indicated community perception of these tradeoffs and identified potential mechanisms, including increasing food prices and competing activities for land use, as underlying causes. The adverse relationship Page 2 of 314 between cash crop production and household food security observed in this paper calls for caution; results suggest that positive relationships cannot be assumed, and that further empirical evidence is needed to better understand these tradeoffs. Hunsberger C., S. Bolwig, E. Corbera, and F. Creutzig. 2014. Livelihood impacts of biofuel crop production: Implications for governance. Geoforum, 54:248-260. Reference ID: 21202 Notes: #21202e Abstract: While much attention has focused on the climate change mitigation potential of biofuels, research from the social sciences increasingly highlights the social and livelihood impacts of their expanded production. Policy and governance measures aimed at improving the social effects of biofuels have proliferated but questions remain about their effectiveness across the value chain. This paper performs three tasks building on emerging insights from social science research on the deployment of biofuel crops. First, we identify livelihood dimensions that are particularly likely to be affected by their cultivation in the global South - income, food security, access to land-based resources, and social assets - revealing that distributional effects are crucial to evaluating the outcomes of biofuel production across these dimensions. Second, we ask how well selected biofuel governance mechanisms address livelihood and equity concerns. Third, we draw insights from literature on non-energy agricultural value chains to provide one set of ideas for improving livelihood outcomes. Our analysis demonstrates that biofuel policies treat livelihoods as a second-degree problem, specifying livelihoods as an afterthought to other goals. We suggest integrating livelihoods into a multi-criteria policy framework from the start - one that prioritizes equity issues as well as overall outcomes. We also show that the instruments with strongest provisions for safeguarding livelihoods and equity appear least likely to be implemented. Together, shifting both the priorities and the relative hierarchy of biofuel governance instruments could help produce strategies that more effectively address livelihood and equity concerns. Persson U. M., S. Henders, and C. Cederberg. 2014. A method for calculating a land-use change carbon footprint (LUC-CFP) for agricultural commodities- applications to Brazilian beef and soy, Indonesian
Recommended publications
  • SPECIES COMPOSITION and POLLINATOR EFFICIENCY of Ocimum Kilimandscharicum FLOWER VISITORS ALONG KAKAMEGA FOREST ECOSYSTEM
    SPECIES COMPOSITION AND POLLINATOR EFFICIENCY OF Ocimum Kilimandscharicum FLOWER VISITORS ALONG KAKAMEGA FOREST ECOSYSTEM BY HELLEN MANDELA KUTWA A Research Thesis Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of Masters of Science in Environmental Biology, School of Biological and Physical Sciences MOI UNIVERSITY ELDORET 2017 2 ECLARATION 3 DEDICATION I dedicate this work to my parents who have supported me throughout, Dr Amos Kutwa and Mrs. Phillisters Kutwa. To my siblings Alice, Erastus and Fred I hope this serves as a source of inspiration and reassurance that hard work and persistence pays out. My grandparents Alice, Hellen and Silvanas for their prayers and encouragement. 4 ACKNOWLEDGEMENT I am grateful to Professor Mugatsia Tsingalia for having accepted to be my University supervisor and providing me with high quality assistance and guidance. You have been a source of motivation from the beginning and I truly appreciate your patience especially when I had no sense of direction and you guided me and molded me into a better researcher. I am thankful as you have always been that academic lighthouse for me. I also recognize the Moi University fraternity especially School of Biological and Physical science for seeing potential in me and accepting my postgraduate application. I am also greatly indebted to Professor Mary Gikungu. You have always been encouraging from the beginning setting a fine example for me as a strong independent woman. You helped instill in me the importance of being resilient and humble no matter what you have achieved. You encouraged me even when I was about to give up, taking your time to go through my drafts and giving critical and up building comments.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Wasps and Bees in Southern Africa
    SANBI Biodiversity Series 24 Wasps and bees in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2014 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include respon- sibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by, or executed in partnership with SANBI. Technical editing: Alicia Grobler Design & layout: Sandra Turck Cover design: Sandra Turck How to cite this publication: GESS, S.K. & GESS, F.W. 2014. Wasps and bees in southern Africa. SANBI Biodi- versity Series 24. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-73-0 Manuscript submitted 2011 Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. No part of this book may be reproduced in any form without written per- mission of the copyright owners. The views and opinions expressed do not necessarily reflect those of SANBI.
    [Show full text]
  • Pollen Bees (Hymenoptera: Apoidea) and Their Nesting Sites in Selected Vegetable Fields in the Kandy District, Sri Lanka
    International Research Symposium Rajarata University of Sri Lanka IRSyRUSl 2015 Pollen Bees (Hymenoptera: Apoidea) and Their Nesting Sites in Selected Vegetable Fields in the Kandy District, Sri Lanka Wickramage DRC 1*, Hemachandra K.S 2 and Sirisena UG.AI 3 Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Sri Lanka 1,2 Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka 3 ABSTRACT Pollen bees are considered as important pollinators. Their abundance is strongly influenced by availability of nesting sites. Knowledge on nesting sites of pollen bees is limited under local conditions; therefore, present study was conducted with objectives of investigating availability of nesting resources for pollen bees in vegetable ecosystems and assessing acceptability of introduced reed nests for their in-situ conservation. Nesting sources such as bare ground percentage, availability of dead wood, pithy stems, snail shells, pre-existing burrows and cavities were surveyed in four vegetable agro-ecosystems, in Dodangolla, Gampola, Gannoruwa and Meewathura areas in Kandy District. Three types of nests: bamboo, gliricidia and drinking straws were installed in each location. Diversity and abundance of pollinators in each location were measured. Nesting sources were not significantly different among locations except cavities of land. It was significantly high (P<0.05) in Gannoruwa. Out of 60 compound nests, 12 (20%) were accepted. Gliricidia nests were accepted by Anthidiellum sp. (dia. 4.06 ± 0.07 mm) and Braunsapis cupulifera (dia. 2.8 ± 0.1 mm) while bamboo nest were adopted by Heriades binghami (2.81 ± 0.28 mm). A total of 41 bees were collected and they belonged to three families and 10 genera.
    [Show full text]
  • Do Wood Nesting Bees Have Better Island Dispersal Abilities? Nikolaj Rauff Poulsen, Claus Rasmussen
    Island bees: do wood nesting bees have better island dispersal abilities? Nikolaj Rauff Poulsen, Claus Rasmussen To cite this version: Nikolaj Rauff Poulsen, Claus Rasmussen. Island bees: do wood nesting bees have better island disper- sal abilities?. Apidologie, 2020, 51 (6), pp.1006-1017. 10.1007/s13592-020-00778-x. hal-03271949 HAL Id: hal-03271949 https://hal.archives-ouvertes.fr/hal-03271949 Submitted on 28 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2020) 51:1006–1017 Original article * INRAE, DIB and Springer-Verlag France SAS, part of Springer Nature, 2020 DOI: 10.1007/s13592-020-00778-x Island bees: do wood nesting bees have better island dispersal abilities? Nikolaj Rauff POULSEN, Claus RASMUSSEN Department of Bioscience, Aarhus University, Ole Worms Allé 1, 8000, Aarhus C, Denmark Received 20 November 2019 – Revised4May2020– Accepted 28 May 2020 Abstract – For bees to reach isolated islands, they need to be able to cross large water barriers. However, functional traits such as nesting behavior, flight range, and body size can limit their dispersal. In this study, the bee faunas of seven different islands or island groups (Anholt, Canary Islands, Fiji Islands, Hawaiian Islands, Madeira, Malta, and Sri Lanka) were analyzed by comparing them to the mainland bee fauna.
    [Show full text]
  • Hymenoptera: Apidae) in Different Host Plants of Tamilnadu, India
    Int.J.Curr.Microbiol.App.Sci (2020) 9(2): 708-713 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 2 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.902.086 Nest Infrastructure and Biology of Small Carpenter Bee Ceratina binghami Cockerell (Hymenoptera: Apidae) in different host plants of TamilNadu, India Gopaldas Sneha Latha1*, C. Chinniah1, M. Shanthi1, U. Amala2, K. Premalatha1, K.Eraivan Arutkani Aiyanathan3 and N.S.Venkatraman4 1Department of Agricultural Entomology, Tamil Nadu Agricultural University, Agricultural College and Research Institute, Madurai, India 2Division of Germplasm Conservation and Utilization, NBAIR, Hebbal, Bengaluru, India 3Tamil Nadu Agricultural University, Agricultural College and Research Institute, Killikulam, India 4Department of Agronomy, Tamil Nadu Agricultural University, Agricultural College and Research Institute, Madurai, India *Corresponding author ABSTRACT Ceratina binghami Cockerell is an efficient pollinator of cultivated and uncultivated crops. They construct the linear nest for their young ones in pruned sticks, hollow stems and dead wood. The present investigation was K e yw or ds carried out at Agricultural College and Research Institute, Madurai, during 2018-2019. Nests (29 nos.) were collected for this study from six different Pollinator, Ceratina binghami, Brood host plants viz., Crotons, Codiaeum sp., Yellow bell, Tecoma sp., Peacock cells and nest, flower, Caesalpinia pulcherrima, Copper pod tree, Peltophorum Small carpenter bee pterocarpum and Rose. The nests were linear and partitioned with chewed Article Info straw. Among these, the most preferred host was Peltophorum Accepted: pterocarpum. Diameter of the nest entrance, length and width of the nests 08 January 2020 were recorded as 0.36±0.06 cm, 11.59± 4.35 cm and 0.36±0.06 cm, Available Online: respectively.
    [Show full text]
  • Identifying the State of Knowledge: Farmer’S Knowledge in Kenya Rachel Kagoiya
    CROPS, BROWSE AND POLLINATORS IN AFRICA: Identifying the State of Knowledge: Farmer’s Knowledge in Kenya Rachel Kagoiya Farmers around the world understand better than most of the public that good environmental health is fundamental to their sustainable existence, but often in a holistic way that may not include an in-depth understanding of the role of pollination. The importance of ecosystem services will not be ‘mainstreamed’ or become considered as a part of accepted farming practice unless the farming community understands explicitly what it is and how it works. A good example of this is pollination services. Globally, within the United Nations Convention on Biological Diversity, and regionally, within the African Pollinator Initiative, the contribution of pollinators for increasing genetic diversity, adaptation, seed set or crop production and crop quality, and natural regeneration of wild species has been recognised, and the need to conserve pollinators has been stressed. Yet the public’s, including farmers’, knowledge of the role of pollinators, remains poor. Surveys carried out amongst farmers in central Kenya highlighted the fact that many farmers lump pollinators together with insect pests, and do not explicitly manage to conserve them, although pollinators may substantially contribute to yields at no direct cost to the farmer. Ecosystem services such as pollination and soil biodiver- sity are aspects of the environment that relate closely to human livelihoods, and may convince the public that biodiversity is not only wild animals that may damage their crops, but also creatures that live on their farms and help to sustain crop production. Further public awareness programmes on ecosystem services are merited.
    [Show full text]
  • Rabeling, C. 2020. Social Parasitism. In
    S Social Parasitism life cycle, such as colony founding, but are other- wise able to live independently without the host’s Christian Rabeling help. Alternatively, social parasites can be obli- School of Life Sciences, Arizona State University, gately dependent on their hosts’ social behavior. Tempe, AZ, USA Among the Hymenoptera, social parasitism is commonly found in ants, social bees, and social wasps [25] (Figs. 1–4). However, it is not always In the broadest sense, social parasitism is a form of easy to recognize a true social parasite because brood parasitism, where the social parasite insect societies are readily exploited by scaven- depends on the social behavior of the host for gers, parasites, and predators, and consequently, survival and reproduction. Brood parasitism is nests of social insects are riddled with “guests” known from a variety of vertebrate species, such [10, 25]. Although highly intriguing and directly as mammals, birds, and fishes, where the host’s relevant to understanding the rich biology of brood care behavior is exploited by the parasite. social parasites, this overview primarily focuses Brood parasitism has been studied in great detail on interspecific social parasitism among eusocial in some bird species, including cuckoos, cow Hymenoptera. Other symbiotic interactions birds, and honeyguides, where parasites lay their between social insects and other organisms, such eggs into the nests of the host, deceiving the host as intraspecific parasitism (which is probably a into providing parental care for their offspring. widespread but often overlooked form of social In social insects, social parasites also exploit parasitism occurring in polygynous colonies of a the brood care behavior of their hosts and can single species), myrmecophily, interactions therefore be regarded as brood parasites.
    [Show full text]
  • Factors Influencing the Foraging Activity of the Allodapine Bee Braunsapis Puangensis on Creeping Daisy (Sphagneticola Trilobata) in Fiji
    JHR 35: 59–69Factors (2013) influencing the foraging activity of the allodapine beeBraunsapis puangensis... 59 doi: 10.3897/JHR.35.6006 SHORT COMMUNICATION www.pensoft.net/journals/jhr Factors influencing the foraging activity of the allodapine bee Braunsapis puangensis on creeping daisy (Sphagneticola trilobata) in Fiji Abhineshwar V. Prasad1, Simon Hodge1,2 1 Faculty of Science, Technology and Environment, The University of the South Pacific, Laucala Bay, Suva, Fiji Islands 2 Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand Corresponding author: Simon Hodge ([email protected]) Academic editor: Jack Neff | Received 25 July 2013 | Accepted 30 July 2013 | Published 25 October 2013 Citation: Prasad AV, Hodge S (2013) Factors influencing the foraging activity of the allodapine bee Braunsapis puangensis on creeping daisy (Sphagneticola trilobata) in Fiji. Journal of Hymenoptera Research 35: 56–69. doi: 10.3897/ JHR.35.6006 Keywords Bees, invasive plants, pollinators, South Pacific Introduction There is growing concern regarding the global decline of honey bee populations and the implications of this demise for the pollination of entomophilous crops (Potts et al. 2010, Groom and Schwarz 2011; Cornman et al. 2012). In the future we may rely on other insect species to perform crop pollination services, including naturally-occurring native or introduced species of bees (e.g. Rader et al. 2009). Pollination success of generalist plants tends to be positively related to pollinator diversity, so any habitat modifications that increase the number of pollinating species present at a site would Copyright A.V. Prasad, S. Hodge. This is an open access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Pollination Ecosystem Services to Onion Hybrid Seed Crops in South Africa
    Pollination Ecosystem Services to Onion Hybrid Seed Crops in South Africa by Mariëtte Rieks Brand Dissertation presented for the degree of Doctor of Philosophy Science in the Faculty of AgriSciences at Stellenbosch University Promoter: Prof.Michael J. Samways Co‐promoters: Dr. Ruan Veldtman Dr. Jonathan F. Colville April 2014 Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof save to the extent explicitly otherwise stated, that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. April 2014 Copyright © 2014 Stellenbosch University All rights reserved Stellenbosch University http://scholar.sun.ac.za Abstract Insect pollination contributes in various degrees toward the production of a variety of agricultural crops that ensure diversity and nutritional value in the human diet. Although managed honeybees Apis mellifera L. are still the most economically valuable pollinators of monoculture crops cultivated globally, wild pollinator communities can contribute substantially toward crop pollination through pollination ecosystem services sourced from neighbouring natural habitats. Pollination ecosystem services are thus valuable and can motivate for the protection of natural ecosystems hosting diverse insect pollinator communities. F1 onion hybrid seed production is entirely dependent on high insect pollinator activity to ensure cross pollination, seed set and profitable seed yields. Data was collected on 18 onion hybrid seed crops grown in the semi‐arid Klein Karoo and southern Karoo regions of the Western Cape, South Africa.
    [Show full text]
  • Social Complexity in Bees Is Not Sufficient to Explain Lack of Reversions to Solitary Living Over Long Time Scales, BMC Evolutionary Biology, 2007; 7:246
    PUBLISHED VERSION Chenoweth, Luke B.; Tierney, Simon Martin; Smith, Jaclyn Ann; Cooper, Steven John Baynard; Schwarz, Michael Peter. Social complexity in bees is not sufficient to explain lack of reversions to solitary living over long time scales, BMC Evolutionary Biology, 2007; 7:246. © 2007 Chenoweth et al; licensee BioMed Central Ltd. PERMISSIONS http://www.biomedcentral.com/info/about/license This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. BioMed Central Open Access license agreement Brief summary of the agreement: Anyone is free: to copy, distribute, and display the work; to make derivative works; to make commercial use of the work; Under the following conditions: Attribution the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are; any of these conditions can be waived if the authors gives permission. nd 2 May 2011 http://hdl.handle.net/2440/60321 BMC Evolutionary Biology BioMed Central Research article Open Access Social complexity in bees is not sufficient to explain lack of reversions to solitary living over long time scales Luke B Chenoweth*†1, Simon M Tierney†2, Jaclyn A Smith1, Steven JB Cooper3 and Michael P Schwarz†1 Address: 1Biological Sciences, Flinders University GPO BOX 2100, Adelaide, SA 5001, Australia, 2Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republica de Panama and 3Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, S.A.
    [Show full text]