Journal of Hymenoptera Research

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Hymenoptera Research 5to3 "S.fijj! Journal of Hymenoptera Research Volume Number 2 October 2007 16, N^ / /RPMafcS^ ISSN #1070-9428 CONTENTS GESS, F. W. The genus Quartinia Ed. Andre, 1884 (Hymenoptera: Vespidae: Masarinae) in 211 southern Africa. Part I. Descriptions of new species with complete venation GRISSELL, E. E. Torymidae (Hymenoptera: Chalcidoidea) associated with bees (Apoidea), 234 with a list of chalcidoid bee parasitoids of nest substrates in a west NEFF, J. L. and A. W. HOOK. Multivoltinism and usage multiple Texas sand dune population of Psendomasaris phaceliae Rohwer (Hymenoptera: Vespi- dae: Masarinae) 266 PACKER, L. Mydrosoma micheneri Packer, new species, a new diphaglossine bee from Brazil 277 (Hymenoptera: Colletidae) of Halictus PACKER, L., A.-I. D. GRAVEL, and G. LEBUHN. Phenology and social organization 281 (Seladonia) tripartitus (Hymenoptera: Halictidae) Liris and costaricae PULAWSKI, W. J. The status of magnificus Kohl, 1884, Trachogorytes R. Bohart, 2000 (Hymenoptera: Crabronidae: Crabroninae, Bembicinae) 293 and PUNZO, F. Interspecific variation in hunting behavior of Pepsis grossa (Fabricius) Pepsis 297 thisbe Lucas (Hymenoptera: Pompilidae): a field study SHIMIZU, A. and R. WAHIS. Systematic studies on the Pompilidae occurring in Japan: genus 311 Irenangelus Schulz (Hymenoptera: Pompilidae: Ceropalinae) larval behavior of the WENG, J. L. and BARRANTES, G. Natural history and parasitoid Zaty- 326 pota petronae (Hymenoptera: Ichneumonidae) INTERNATIONAL SOCIETY OF HYMENOPTERISTS Organized 1982; Incorporated 1991 OFFICERS FOR 2007 Michael E. Schauff, President James Woolley, President-Elect Michael W. Gates, Secretary Justin O. Schmidt, Treasurer Gavin R. Broad, Editor Subject Editors Symphyta and Parasitica Aculeata Biology: Mark Shaw Biology: Jack Neff Systematics: Andrew Deans Systematics: Wojciech Pulawski All correspondence concerning Society business should be mailed to the appropriate officer at the following addresses: President, Plant Sciences Institute, Bldg. 003, Rm. 231 BARC-West, Beltsville, MD 20705, USA; Secretary, Southwestern Biological Institute, 1961 W. Brichta Dr., Tucson, AZ 85745, USA; Treasurer, PO Box 37012, c/o Smithsonian Institution, MNMH, MRC168, Washington, DC 20013-7012, USA; Editor, Dept. of Entomology, The Natural History Museum, Cromwell Road, Lon- don SW7 5BD, UK. Membership. Members shall be persons who have demonstrated interest in the science of entomol- ogy Annual dues for members are US$45.00 per year (US$40.00 if paid before 1 February), payable to The International Society of Hymenopterists. Requests for membership should be sent to the Trea- surer (address above). Information on membership and other details of the Society may be found on the World Wide Web at http://hymenoptera.tamn.edu/ish/. The is Journal. Journal of Hymenoptera Research published twice a year by the International Society of Hymenopterists, % Department of Entomology, Smithsonian Institution, Washington, D.C. 20560- U.S.A. in 0168, Members good standing receive the Journal. Nonmember subscriptions are $60.00 (U.S. currency) per year. The Society does not exchange its publications for those of other societies. Please see inside back cover of this issue for information regarding preparation of manuscripts. Statement of Ownership Title of Publication: Journal of Hymenoptera Research. Frequency of Issue: Twice a year. Location of Office of Business Office of Publisher Publication, and Owner: International Society of Hymenopterists, Department of Entomology, Smithsonian Institution, 10th and Constitution NW, Washington, D.C. 20560-0168, U.S.A. Editor: Gavin R. of Broad, Department Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. Editor and Managing Known Bondholders or other Security Holders: none. This issue was mailed 24 September 2007 J. HYM. RES. Vol. 16(2), 2007, pp. 211-233 The Genus Quartinia Ed. Andre, 1884 (Hymenoptera: Vespidae: Masarinae) in Southern Africa. Part I. Descriptions of New Species with Complete Venation Friedrich W. Gess Albany Museum, Grahamstown, 6140 South Africa; email: [email protected] — Abstract. In this publication, the first of a projected series revising the Afrotropical (essentially southern African) species of the genus Quartinia Ed. Andre, 1884 (Hymenoptera: Vespidae, Masarinae), eleven new species are described. Of these, seven occurring variously in the southern Namib Desert and in its southward extension down the western coast of South Africa, and one occurring on the southern coast of South Africa, have been found nesting in sand-filled snail shells. They are: australis, bonaespei, conchicola, namaqua, namaquettsis, obibensis, and refugicoln. To these species is added vexilhita which is presumed to have the same nesting habits. A key to distinguish these species is given. The other three newly described species, all from Namibia, are: femorata, geigeriae and lamellata. Following van der Vecht and Carpenter totally informal, non-natural units is found (1990) Quartinia Ed. Andre, 1884 is here to be useful. Thus the present paper deals - understood to include, as junior subjective with species with complete venation that synonyms, Quartiniella Schulthess, 1929 is species which in the past would have and Quartinioides Richards, 1962. been placed in Quartinia sensu stricto. As has been pointed out by Carpenter In his revision Richards (1962) dealt with (2001), Quartiniella and Quartinioides were a total of 61 southern African species, 18 primarily based on the partitioning of being placed in Quartinia, 38 in Quarti- a trend in the reduction of wing venation, nioides and five in Quartiniella. Of these, 11, Quartiniella being defined on the basis of 26 and two respectively were described as the loss of 3rs-m and 2m-cu and Quarti- new. One additional species, placed in nioides because it has 2m-eu present but Quartinioides was added (Richards 1982). attenuate and interrupted, whereas Quarti- Available to Richards in 1962 were just - nia has it complete. In Quartiniella in over one thousand specimens 140 Quar- particular and to some extent also in tinia, 727 Quartinioides and 148 Quartiniella. Quartinioides reduction of wing venation Ten species were known from only one is a correlate of overall size reduction As specimen, 30 species from only one sex. It formal taxonomic partitioning of essential- is clear that Richards suffered from a pau- ly continuous variation is an unacceptable city of material. Particularly the lack of practice, Carpenter synonymized Quarti- large samples from individual populations niella and Quartinioides with Quartinia, spread over the distributional area pre- a view with which the present author is vented him from appreciating factors such in full agreement. as intraspecific variation and geographical Nevertheless, in view of the large num- clines. In some instances the associations of ber of species in Quartinia, adoption of the sexes is of doubtful validity, especially above venational characters to divide the where males and females are from widely genus into smaller, more manageable but separated localities. of Hymenoptera Research 212 Journal over 6000 in brackets the co-ordinates ex- The present study is based on square in the manner in this specimens, most of which were purpose- pressed adopted of the fully collected. A large proportion paper. the material examined, the specimens have associated biological data In listing - but have been as far as mostly flower visiting records also, localities arranged, data. in north to south order within for some species, nesting practicable, in the case of South Desirable as it might be to undertake countries or, Africa, a complete revision of the genus, this is at within provinces. not Rather than to get Acronyms for institutions in which present practicable. = bogged down in a study which might material is housed are: AMG Albany never be completed and published, it is Museum, Grahamstown, South Africa; = intended to publish a series of papers CAS California Academy of Sciences, describing new species as well as review- San Francisco, United States of America; It is envisioned = ing some known species. FSCA Florida State Collection of Arthro- the that a new key to species will complete pods, Gainesville, United States of Amer- = series. ica; NCP National Collection of Insects, = Quartinia species range in length from Pretoria, South Africa; NNIC Namibian a little over 2 mm to 7 mm. In comparison National Insect Collection, Windhoek, with the great majority of species of other Namibia. genera of Masarinae even the largest Quartinia are relatively small. In view of DESCRIPTION OF SPECIES AND the considerable range in size shown by COLLECTION DATA of Quartinia and in order to express species A) Species nesting in sand-filled snail relative size, categories based on length shells or (vexillata) presumed to do so. have been established for species of the genus. These are: minute (1.5-2.5 mm); Quartinia australis Gess, new species small (2.5-3.5 mm); medium (3.5-4.5 — (5.0-5.4 mm). Fore mm); large (4.5-5.5 mm); very large (5.5- Diagnosis. Large with Cula and 2m-cu and 6.5 mm); and gigantic (6.5-7.5 mm). wing complete as thick as the other veins. with The notation used for expressing geo- Tegula inner corner graphic co-ordinates is as in the gazetteer posterior inwardly produced. Both sexes black with limit- of The Times Atlas of the World (1981). The predominantly ed white male with disc figures before the stop are degrees, those markings; clypeal and underside of and white. after the
Recommended publications
  • Bees in Urban Landscapes: an Investigation of Habitat Utilization By
    Bees in urban landscapes: An investigation of habitat utilization By Victoria Agatha Wojcik A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, & Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Gregory S. Biging Professor Louise A. Mozingo Fall 2009 Bees in urban landscapes: An investigation of habitat utilization © 2009 by Victoria Agatha Wojcik ABSTRACT Bees in urban landscapes: An investigation of habitat utilization by Victoria Agatha Wojcik Doctor of Philosophy in Environmental Science, Policy, & Management University of California, Berkeley Professor Joe R. McBride, Chair Bees are one of the key groups of anthophilies that make use of the floral resources present within urban landscapes. The ecological patterns of bees in cities are under further investigation in this dissertation work in an effort to build knowledge capacity that can be applied to management and conservation. Seasonal occurrence patterns are common among bees and their floral resources in wildland habitats. To investigate the nature of these phenological interactions in cities, bee visitation to a constructed floral resource base in Berkeley, California was monitored in the first year of garden development. The constructed habitat was used by nearly one-third of the locally known bee species. Bees visiting this urban resource displayed distinct patterns of seasonality paralleling those of wildland bees, with some species exhibiting extended seasons. Differential bee visitation patterns are common between individual floral resources. The effective monitoring of bee populations requires an understanding of this variability. To investigate the patterns and trends in urban resource usage, the foraging of the community of bees visiting Tecoma stans resources in three tropical dry forest cities in Costa Rica was studied.
    [Show full text]
  • Clear Plastic Bags of Bark Mulch Trap and Kill Female Megachile (Hymenoptera: Megachilidae) Searching for Nesting Sites
    JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 92(4), 2019, pp. 649-654 SHORT COMMUNICATION Clear Plastic Bags of Bark Mulch Trap and Kill Female Megachile (Hymenoptera: Megachilidae) Searching for Nesting Sites Casey M. Delphia1*, Justin B. Runyon2, and Kevin M. O’Neill3 ABSTRACT: In 2017, we found 17 dead females of Megachile frigida Smith in clear plastic bags of com- posted bark mulch in a residential yard in Bozeman, Montana, USA. Females apparently entered bags via small ventilation holes, then became trapped and died. To investigate whether this is a common source of mortality, we deployed unmodified bags of mulch and those fitted with cardboard tubes (as potential nest sites) at three nearby sites in 2018. We found two dead M. frigida females and five completed leaf cells in one of these bags of mulch fitted with cardboard tubes; two male M. frigida emerged from these leaf cells. In 2018, we also discovered three dead female M. frigida and three dead females of a second leafcutter bee species, Megachile gemula Cresson, in clear bags of another type of bark mulch. Both mulches emitted nearly identical blends of volatile organic compounds, suggesting their odors could attract females searching for nesting sites. These findings suggest that more research is needed to determine how common and wide- spread this is for Megachile species that nest in rotting wood and if there are simple solutions to this problem. KEYWORDS: Leafcutter bees, solitary bees, cavity-nesting bees, Apoidea, wild bees, pollinators, Megachile frigida, Megachile gemula The leafcutter bees Megachile frigida Smith, 1853 and Megachile gemula Cresson, 1878 (Megachilidae) are widespread in North America (Mitchell 1960; Michener, 2007; Sheffield et al., 2011).
    [Show full text]
  • The Reproductive Biology of Proboscidea Louisianica Is Investigated with Special Emphasis on the Insect-Plant Interrelationship
    THE REPRODUCTIVE BIOLOGY OF PROBOSCIDEA LOUISIANICA (MARTYNIACEAE) by MARY ANN PHILLIPPI,, Bachelor of Science in Biological Science Auburn University Auburn, Alabama 1974 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May' 1977 The.;s 1s /'177 P557r ~.;;.. THE REPRODUCTIVE BIOLOGY OF PROBOSCIDEA LOUISIANICA (MARTYNIACEAE) Thesis Approved: Dean of Graduate College ii PREFACE The reproductive biology of Proboscidea louisianica is investigated with special emphasis on the insect-plant interrelationship. This study included only one flowering season in only a small part of the plant's range. In order to more accurately elucidate the insect-plant interrelationship much more work is needed throughout Proboscidea louisianica's range. I wish to thank Dr. Ronald J. Tyrl, my thesis adviser, for his time and effort throughout my project. Appreciation is also extended to Dr. William A. Drew and Dr. James K. McPherson for advice and criticism throughout the course of this study and during the prepara­ tion of this manuscript. To Dr. Charles D. Michener, at the University of Kansas; Dr. H. E. Milliron, in New Martinsville, West Virginia; and Dr. T. B. Mitchell, at North Carolina State University I extend my appreciation for their time and expertise in identifying the insects collected during this study. Special thanks are given to Jim Petranka and to my family, Dr. and Mrs. G. M. Phillippi, Carolyn, Dan, and Jane for their encouragement in this and all endeavors. iii TABLE OF CONTENTS Page INTRODUCTION . 1 PHENOLOGY 6 INSECT VISITORS AND POLLINATION 10 THE SENSITIVE STIGMA .
    [Show full text]
  • Megachile (Callomegachile) Sculpturalis Smith, 1853 (Apoidea: Megachilidae): a New Exotic Species in the Iberian Peninsula, and Some Notes About Its Biology
    Butlletí de la Institució Catalana d’Història Natural, 82: 157-162. 2018 ISSN 2013-3987 (online edition): ISSN: 1133-6889 (print edition)157 GEA, FLORA ET fauna GEA, FLORA ET FAUNA Megachile (Callomegachile) sculpturalis Smith, 1853 (Apoidea: Megachilidae): a new exotic species in the Iberian Peninsula, and some notes about its biology Oscar Aguado1, Carlos Hernández-Castellano2, Emili Bassols3, Marta Miralles4, David Navarro5, Constantí Stefanescu2,6 & Narcís Vicens7 1 Andrena Iniciativas y Estudios Medioambientales. 47007 Valladolid. Spain. 2 CREAF. 08193 Cerdanyola del Vallès. Spain. 3 Parc Natural de la Zona Volcànica de la Garrotxa. 17800 Olot. Spain. 4 Ajuntament de Sant Celoni. Bruc, 26. 08470 Sant Celoni. Spain. 5 Unitat de Botànica. Universitat Autònoma de Barcelona. 08193 Cerdanyola del Vallès. Spain. 6 Museu de Ciències Naturals de Granollers. 08402 Granollers. Spain. 7 Servei de Medi Ambient. Diputació de Girona. 17004 Girona. Spain. Corresponding author: Oscar Aguado. A/e: [email protected] Rebut: 20.09.2018; Acceptat: 26.09.2018; Publicat: 30.09.2018 Abstract The exotic bee Megachile sculpturalis has colonized the European continent in the last decade, including some Mediterranean countries such as France and Italy. In summer 2018 it was recorded for the first time in Spain, from several sites in Catalonia (NE Iberian Peninsula). Here we give details on these first records and provide data on its biology, particularly of nesting and floral resources, mating behaviour and interactions with other species. Key words: Hymenoptera, Megachilidae, Megachile sculpturalis, exotic species, biology, Iberian Peninsula. Resum Megachile (Callomegachile) sculpturalis Smith, 1853 (Apoidea: Megachilidae): una nova espècie exòtica a la península Ibèrica, amb notes sobre la seva biologia L’abella exòtica Megachile sculpturalis ha colonitzat el continent europeu en l’última dècada, incloent alguns països mediterranis com França i Itàlia.
    [Show full text]
  • Review of the Diet and Micro-Habitat Values for Wildlife and the Agronomic Potential of Selected Grassland Plant Species
    Report Number 697 Review of the diet and micro-habitat values for wildlifeand the agronomic potential of selected grassland plant species English Nature Research Reports working today for nature tomorrow English Nature Research Reports Number 697 Review of the diet and micro-habitat values for wildlife and the agronomic potential of selected grassland plant species S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A. Hopkins, A. Gundrey, R. Dunn & J. Tallowin Institute for Grassland and Environmental Research North Wyke Research Station, Okehampton, Devon EX20 2SB J. Vickery & S. Gough British Trust for Ornithology The Nunnery, Thetford, Norfolk IP24 2PU You may reproduce as many additional copies of this report as you like for non-commercial purposes, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA. However, if you wish to use all or part of this report for commercial purposes, including publishing, you will need to apply for a licence by contacting the Enquiry Service at the above address. Please note this report may also contain third party copyright material. ISSN 0967-876X © Copyright English Nature 2006 Project officer Heather Robertson, Terrestrial Wildlife Team [email protected] Contractor(s) (where appropriate) S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research, University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A.
    [Show full text]
  • Torix Rickettsia Are Widespread in Arthropods and Reflect a Neglected Symbiosis
    GigaScience, 10, 2021, 1–19 doi: 10.1093/gigascience/giab021 RESEARCH RESEARCH Torix Rickettsia are widespread in arthropods and Downloaded from https://academic.oup.com/gigascience/article/10/3/giab021/6187866 by guest on 05 August 2021 reflect a neglected symbiosis Jack Pilgrim 1,*, Panupong Thongprem 1, Helen R. Davison 1, Stefanos Siozios 1, Matthew Baylis1,2, Evgeny V. Zakharov3, Sujeevan Ratnasingham 3, Jeremy R. deWaard3, Craig R. Macadam4,M. Alex Smith5 and Gregory D. D. Hurst 1 1Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK; 2Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; 3Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada; 4Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK and 5Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada ∗Correspondence address. Jack Pilgrim, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK. E-mail: [email protected] http://orcid.org/0000-0002-2941-1482 Abstract Background: Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia.
    [Show full text]
  • Harmful Non-Indigenous Species in the United States
    Harmful Non-Indigenous Species in the United States September 1993 OTA-F-565 NTIS order #PB94-107679 GPO stock #052-003-01347-9 Recommended Citation: U.S. Congress, Office of Technology Assessment, Harmful Non-Indigenous Species in the United States, OTA-F-565 (Washington, DC: U.S. Government Printing Office, September 1993). For Sale by the U.S. Government Printing Office ii Superintendent of Documents, Mail Stop, SSOP. Washington, DC 20402-9328 ISBN O-1 6-042075-X Foreword on-indigenous species (NIS)-----those species found beyond their natural ranges—are part and parcel of the U.S. landscape. Many are highly beneficial. Almost all U.S. crops and domesticated animals, many sport fish and aquiculture species, numerous horticultural plants, and most biologicalN control organisms have origins outside the country. A large number of NIS, however, cause significant economic, environmental, and health damage. These harmful species are the focus of this study. The total number of harmful NIS and their cumulative impacts are creating a growing burden for the country. We cannot completely stop the tide of new harmful introductions. Perfect screening, detection, and control are technically impossible and will remain so for the foreseeable future. Nevertheless, the Federal and State policies designed to protect us from the worst species are not safeguarding our national interests in important areas. These conclusions have a number of policy implications. First, the Nation has no real national policy on harmful introductions; the current system is piecemeal, lacking adequate rigor and comprehensiveness. Second, many Federal and State statutes, regulations, and programs are not keeping pace with new and spreading non-indigenous pests.
    [Show full text]
  • Iconic Bees: 12 Reports on UK Bee Species
    Iconic Bees: 12 reports on UK bee species Bees are vital to the ecology of the UK and provide significant social and economic benefits through crop pollination and maintaining the character of the landscape. Recent years have seen substantial declines in many species of bees within the UK. This report takes a closer look at how 12 ‘iconic’ bee species are faring in each English region, as well as Wales, Northern Ireland and Scotland. Authors Rebecca L. Evans and Simon G. Potts, University of Reading. Photo: © Amelia Collins Contents 1 Summary 2 East England Sea-aster Mining Bee 6 East Midlands Large Garden Bumblebee 10 London Buff-tailed Bumblebee 14 North East Bilberry Bumblebee 18 North West Wall Mason Bee 22 Northern Ireland Northern Colletes 26 Scotland Great Yellow Bumblebee 30 South East England Potter Flower Bee 34 South West England Scabious Bee 38 Wales Large Mason Bee 42 West Midlands Long-horned Bee 46 Yorkshire Tormentil Mining Bee Through collating information on the 12 iconic bee species, common themes have Summary emerged on the causes of decline, and the actions that can be taken to help reverse it. The most pervasive causes of bee species decline are to be found in the way our countryside has changed in the past 60 years. Intensification of grazing regimes, an increase in pesticide use, loss of biodiverse field margins and hedgerows, the trend towards sterile monoculture, insensitive development and the sprawl of towns and cities are the main factors in this. I agree with the need for a comprehensive Bee Action Plan led by the UK Government in order to counteract these causes of decline, as called for by Friends of the Earth.
    [Show full text]
  • 2017 City of York Biodiversity Action Plan
    CITY OF YORK Local Biodiversity Action Plan 2017 City of York Local Biodiversity Action Plan - Executive Summary What is biodiversity and why is it important? Biodiversity is the variety of all species of plant and animal life on earth, and the places in which they live. Biodiversity has its own intrinsic value but is also provides us with a wide range of essential goods and services such as such as food, fresh water and clean air, natural flood and climate regulation and pollination of crops, but also less obvious services such as benefits to our health and wellbeing and providing a sense of place. We are experiencing global declines in biodiversity, and the goods and services which it provides are consistently undervalued. Efforts to protect and enhance biodiversity need to be significantly increased. The Biodiversity of the City of York The City of York area is a special place not only for its history, buildings and archaeology but also for its wildlife. York Minister is an 800 year old jewel in the historical crown of the city, but we also have our natural gems as well. York supports species and habitats which are of national, regional and local conservation importance including the endangered Tansy Beetle which until 2014 was known only to occur along stretches of the River Ouse around York and Selby; ancient flood meadows of which c.9-10% of the national resource occurs in York; populations of Otters and Water Voles on the River Ouse, River Foss and their tributaries; the country’s most northerly example of extensive lowland heath at Strensall Common; and internationally important populations of wetland birds in the Lower Derwent Valley.
    [Show full text]
  • List of Insect Species Which May Be Tallgrass Prairie Specialists
    Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites
    [Show full text]
  • Effects of Invasive Plant Species on Native Bee Communities in the Southern Great Plains
    EFFECTS OF INVASIVE PLANT SPECIES ON NATIVE BEE COMMUNITIES IN THE SOUTHERN GREAT PLAINS By KAITLIN M. O’BRIEN Bachelor of Science in Rangeland Ecology & Management Texas A&M University College Station, Texas 2015 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2017 EFFECTS OF INVASIVE PLANT SPECIES ON NATIVE BEE COMMUNITIES IN THE SOUTHERN GREAT PLAINS Thesis Approved: Dr. Kristen A. Baum Thesis Adviser Dr. Karen R. Hickman Dr. Dwayne Elmore ii ACKNOWLEDGEMENTS I would like to begin by thanking my advisor, Dr. Kristen Baum, for all of her guidance and expertise throughout this research project. She is an exemplary person to work with, and I am so grateful to have shared my graduate school experience with her. I would also like to recognize my committee members, Dr. Karen Hickman and Dr. Dwayne Elmore, both of whom provided valuable insight to this project. A huge thank you goes out to the Southern Plains Network of the National Park Service, specifically Robert Bennetts and Tomye Folts-Zettner. Without them, this project would not exist, and I am forever grateful to have been involved with their network and parks, both as a research student and summer crew member. A special thank you for Jonathin Horsely, who helped with plot selection, summer sampling, and getting my gear around. I would also like to thank the Baum Lab members, always offering their support and guidance as we navigated through graduate school. And lastly, I would like to thank my family, especially my fiancé Garrett, for believing in me and supporting me as I pursued my goals.
    [Show full text]
  • The Very Handy Bee Manual
    The Very Handy Manual: How to Catch and Identify Bees and Manage a Collection A Collective and Ongoing Effort by Those Who Love to Study Bees in North America Last Revised: October, 2010 This manual is a compilation of the wisdom and experience of many individuals, some of whom are directly acknowledged here and others not. We thank all of you. The bulk of the text was compiled by Sam Droege at the USGS Native Bee Inventory and Monitoring Lab over several years from 2004-2008. We regularly update the manual with new information, so, if you have a new technique, some additional ideas for sections, corrections or additions, we would like to hear from you. Please email those to Sam Droege ([email protected]). You can also email Sam if you are interested in joining the group’s discussion group on bee monitoring and identification. Many thanks to Dave and Janice Green, Tracy Zarrillo, and Liz Sellers for their many hours of editing this manual. "They've got this steamroller going, and they won't stop until there's nobody fishing. What are they going to do then, save some bees?" - Mike Russo (Massachusetts fisherman who has fished cod for 18 years, on environmentalists)-Provided by Matthew Shepherd Contents Where to Find Bees ...................................................................................................................................... 2 Nets ............................................................................................................................................................. 2 Netting Technique ......................................................................................................................................
    [Show full text]