Coleoptera: Scarabaeidae: Melolonthinae) Recorded from Forestry and Agricultural Crops in Sub-Saharan Africa

Total Page:16

File Type:pdf, Size:1020Kb

Coleoptera: Scarabaeidae: Melolonthinae) Recorded from Forestry and Agricultural Crops in Sub-Saharan Africa Bulletin of Entomological Research (2016) 106, 141–153 doi:10.1017/S0007485315000565 © Cambridge University Press 2015 A taxonomic review of white grubs and leaf chafers (Coleoptera: Scarabaeidae: Melolonthinae) recorded from forestry and agricultural crops in Sub-Saharan Africa J.du G. Harrison1,2,3,4* and M.J. Wingfield2 1Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa: 2Forestry and Agriculture Biotechnology Research Institute (FABI), University of Pretoria, Pretoria 0002, South Africa: 3School of Animal, Plant and Environmental Sciences (AP&ES), University of the Witwatersrand, 2050 Johannesburg, South Africa: 4Department of Invertebrates, Ditsong: National Museum of Natural History (Formerly Transvaal Museum), Pretoria 0001, South Africa Abstract Integrated pest management (IPM) is difficult to implement when one knows little about the pest complex or species causing the damage in an agricultural system. To implement IPM on Sub-Saharan African melolonthine pests access to taxon specific knowledge (their identity) and what is known (their biology) of potential pest species is a crucial step. What is known about Sub-Saharan African melolonthine white grubs and chafers has not yet been amalgamated, and this review thus synthesizes all avail- able literature for the Region. The comprehensive nature of the review highlights pest taxon trends within African melolonthines. To facilitate the retrieval of this informa- tion for IPM purposes, all relevant taxonomic and biological information is provided for the taxa covered including an on-line supplementary annotated-checklist of taxon, crop, locality and reference(s). Based on the literature reviewed, recommenda- tions are made to promote effective and efficient management of African melo- lonthine scarab pests. An on-line supplementary appendix provides a list of specialists, useful internet resources, keys, catalogues and sampling methods for the larvae and adults of melolonthine scarab beetles for subsequent morphological or molecular work. Keywords: scarabs, larvae, agriculture, identification, taxonomy (Accepted 13 June 2015; First published online 16 September 2015) Introduction supplementary material), and draws attention to groups most in need of revision from a pest management perspective. This review aims to provide a checklist of the species of Additionally, it provides comprehensive review and bibliog- Sub-Saharan African Melolonthinae that have been recorded raphy of all traced literature (especially taxonomic) specific as pests in agricultural and forestry crops (Table 1 to the melolonthine white grubs and chafers of the Region. It is hoped that this will facilitate white grub research in Sub-Saharan Africa via enhanced access to information, and *Author for correspondence the reduction of duplicated research efforts. Based on this syn- Fax: +27 11 717 6494 thesis, recommendations relevant to white grub and chafer E-mail: [email protected] taxonomy in Sub-Saharan Africa are proposed. To constrain 142 J.du G. Harrison and M.J. Wingfield the size and scope of the review, it covers only the subfamily records of Melolonthinae being destructive to parts of these Melolonthinae, with the remaining scarab subfamilies that plants (Table 1 supplementary material). contain species of economic concern being dealt with in forth- coming studies. The larvae (white grubs) and adults (chafers) of five subfam- Introduced alien species ilies of Scarabaeidae (Aphodiinae, Dynastinae, Cetoniinae, Melolonthinae and Rutelinae) include species that feed on the Most, if not all, African melolonthine scarab pests are en- roots, stems, fruit or foliage of many crops, and therefore may demic to parts of Africa, and no introduced scarab pest species be sporadic forestry and agricultural pests (Table 1 supplemen- are recorded for South Africa (Picker & Griffiths, 2011). tary material). Colloquially, these larvae are known as white However, as this is a broad and general information source, it grubs, cane grubs or curl grubs when they damage agricultural by no means rules out the possibility of there being alien scarabs crops in different regions of the World. White grubs are readily in Sub-Saharan Africa. A possible exception is Phyllophaga identified by their ‘C-shaped’ bodies and sclerotized head smithi (Arrow, 1912), which was originally described as capsules, while the more variable adults generally have an Phytalus smithi from the Caribbean (Barbados and Trinidad) ovoid body shape and lamellate antennae (Richter, 1958, and introduced into Mauritius (Evans, 2003). This species was 1966). Related scarab families, for example dung beetles recorded (Katagira, 2003: 74) from Tanzania and mentioned as a (Scarabaeinae), have similar larvae, but as these groups sorghum stem-borer in eastern Ethiopia (Tefera, 2004). are beneficial recyclers, they are generally not referred to as However, there is no published confirmation of this introduc- white grubs. tion in the primary literature for sugarcane pests known from Melolonthine scarab beetles have a complete life-cycle (ho- Tanzania, but the African endemic Cochliotis melolonthoides is lometabolous); a fertilized female lays eggs, these hatch into well established as a sugarcane pest in Tanzania (Jepson, the first of three larval stages or instars, the final (or third) in- 1956;Carnegie,1974a, b). Consequently, the Katagira (2003) star enters a pre-pupal stage before pupation, from which and Tefera (2004) records of P. smithi occurring on the African adults emerge when environmental conditions are conducive mainland may be based on the exotics being confused with an (Ritcher, 1958, 1966). The duration of the larval stage can vary African species of Schizonycha, which is quite similar to from 1 to 3 years depending on the environmental conditions Phyllophaga (=Phytalus)Arrow(1912). and species’ life cycle (Ratcliffe, 1991). However, species with 2–3 year life-cycles often have adults active each year due to an overlapping of generations. The phenology of the adults is un- Conservation of localized endemic species known for most species, but based on adult phenological data compiled from museum records for Asthenopholis (Harrison, Localized endemics are of particular conservation import- 2009) and Pegylis (Harrison, 2014b), adults from these genera ance. For example, Asthenopholis subfasciata can become an im- are present in varying numbers throughout summer each year. portant sporadic pest of pineapples in the Eastern Cape of Species distributions are dependent on a variety of factors. South Africa (Petty, 1976, 1977a, b, 1978, 1982, 1990, 1994, Some white grubs have a narrow distribution (stenotopic, e.g. 2001, Petty et al., 2002). However, it is endemic to South Asthenopholis subfasciata (Harrison, 2009) and Macrophylla Africa and is also one of only seven known species of spp.), while others have a wider distribution (eurytopic, e.g. Asthenopholis (Harrison, 2009). As a localized endemic and Pegylis sommeri (Harrison, 2014b)). Soil type, texture and mois- part of the country’s biodiversity, we need to control it respon- ture content can play an important role in the distribution of sibly when it reaches localized pest levels. Another example of certain white grub species (Cherry & Allsopp, 1991; Allsopp a localized endemic that can become a sporadic pest species is et al., 1992; Logan, 1997). Females of some white grub species Pseudachloa leonina on golf greens near Pretoria, South Africa are flightless, e.g. Macrophylla pubens (Omer-Cooper et al., (A. Schoeman, 2005, personal communication). 1941, 1941–1942, 1948; Fenwick, 1947), and this has implica- tions for control strategies and the geographic extent of an out- break. The adult activity period can be quite narrow (just a few Access to information days after rain) for some species of chafer (Harrison, personal observations) or extend over a longer time period, i.e. weeks Fragmentary, unsynthesized information relating to scar- and months for Pegylis sommeri (see phenology figs in abs as pests in African crops reduces the efficiency of research Harrison (2014b)). on economically important species. For example, the paucity of information on Eucamenta eugeniae, originally described as a pest of clove (Eugenia caryophyllata) from Zanzibar (Arrow, 1932; Andre Moutia, 1941). But a recent paper (Conlong & Pest status of scarabs Mugalula, 2003) omitted these early publications and reported In large numbers the feeding activity of white grubs and E. eugeniae only as a new pest of sugarcane in Uganda. chafers in crops reduces yields and facilitates secondary micro- Information relating to the same insect taxon, but disguised bial infections through the damaged plant cuticle (Smith et al., due to an incorrect identification is another problem. For ex- 1995; Miller et al., 1999). For example, in southern Africa, white ample, the incorrect identification of Pegylis sommeri (previ- grubs have been recorded as sporadic subterranean pests ously Hypopholis)asMacrophylla ciliata (Herbst) as a pest of on tree-seedlings, sorghum, sugarcane, pineapples, potatoes pineapple in South Africa (Petty, 1976, 1977b, 1978, 1990, and turf grass (see Table 1 supplementary material for a com- 2001; Petty et al., 2002) resulted in the redescription of the lar- plete list). Additionally, the adult chafers are often defoliators vae of P. sommeri (Smith et al., 1995), which had previously (e.g. Pegylis spp.) in forest plantations, fruit orchards, vine- been described (Prins,
Recommended publications
  • Classification, Natural History, and Evolution of Epiphloeinae (Coleoptera: Cleridae)
    A N N A L E S Z O O L O G I C I (Warszawa), 2008, 58(1): 1-34 CLASSIFICATION, NATURAL HISTORY, AND EVOLUTION OF EPIPHLOEINAE (COLEOPTERA: CLERIDAE). PART VI. THE GENERA EPIPHLAEUS SPINOLA AND OPITZIUS BARR WESTON OPITZ Kansas Wesleyan University, Department of Biology, 100 East Claflin Avenue, Salina KS 67401-6196, USA; e-mail: [email protected] Abstract.— New World genus Epiphlaeus is redefined and evolutionarily linked to its sister genus Opitzius Barr. Epiphlaeus includes six species as follows: E. adonis sp. nov., E. duo- decimmaculatus (Klug), E. fundurufus sp. nov., E. princeps (Gorham), E. pulcherrimus (Gorham), E. quattuordecimmaculatus Chevrolat, and E. tigrinus sp. nov. The monotypic Opitzius is based on O. thoracicus Barr. Specimens of these two genera are variously deposited in 37 institutional and private collections. These checkered beetles frequent the surface of felled tree boles to forage on adults and immatures of lignicolous insects. Their large size and mobility make them very noticeable on the bark of fallen trees. It is postulated that they are participants in a mimetic ring with log-inhabiting mutillids and flies part of the mimetic mix. Hennigian principles were applied to 22 adult morphological characters, which yielded a nearly totally resolved phylogenetic hypothesis between Epiphlaeus and Opitzius, and among Epiphlaeus species groups. The combined geographical range of the inclusive species extends from northwestern Nicaragua to southeastern Brazil. It is hypothesized that ancestral Epiphlaeus – Opitzius evolved in South America with some descendants entering Insular Central America after closure of the Panamanian portals during the Miocene. Pleistocene climatic factors are thought to have influenced species diversity, and perhaps speciation events in conjunction with aspects of dispersal, vicariance, and taxon pulse dynamics.
    [Show full text]
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Morphology, Taxonomy, and Biology of Larval Scarabaeoidea
    Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/morphologytaxono12haye ' / ILLINOIS BIOLOGICAL MONOGRAPHS Volume XII PUBLISHED BY THE UNIVERSITY OF ILLINOIS *, URBANA, ILLINOIS I EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny, Chairman S70.S~ XLL '• / IL cop TABLE OF CONTENTS Nos. Pages 1. Morphological Studies of the Genus Cercospora. By Wilhelm Gerhard Solheim 1 2. Morphology, Taxonomy, and Biology of Larval Scarabaeoidea. By William Patrick Hayes 85 3. Sawflies of the Sub-family Dolerinae of America North of Mexico. By Herbert H. Ross 205 4. A Study of Fresh-water Plankton Communities. By Samuel Eddy 321 LIBRARY OF THE UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XII April, 1929 No. 2 Editorial Committee Stephen Alfred Forbes Fred Wilbur Tanner Henry Baldwin Ward Published by the University of Illinois under the auspices of the graduate school Distributed June 18. 1930 MORPHOLOGY, TAXONOMY, AND BIOLOGY OF LARVAL SCARABAEOIDEA WITH FIFTEEN PLATES BY WILLIAM PATRICK HAYES Associate Professor of Entomology in the University of Illinois Contribution No. 137 from the Entomological Laboratories of the University of Illinois . T U .V- TABLE OF CONTENTS 7 Introduction Q Economic importance Historical review 11 Taxonomic literature 12 Biological and ecological literature Materials and methods 1%i Acknowledgments Morphology ]* 1 ' The head and its appendages Antennae. 18 Clypeus and labrum ™ 22 EpipharynxEpipharyru Mandibles. Maxillae 37 Hypopharynx <w Labium 40 Thorax and abdomen 40 Segmentation « 41 Setation Radula 41 42 Legs £ Spiracles 43 Anal orifice 44 Organs of stridulation 47 Postembryonic development and biology of the Scarabaeidae Eggs f*' Oviposition preferences 48 Description and length of egg stage 48 Egg burster and hatching Larval development Molting 50 Postembryonic changes ^4 54 Food habits 58 Relative abundance.
    [Show full text]
  • An Annotated Checklist of Wisconsin Scarabaeoidea (Coleoptera)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2002 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine A. Kriska University of Wisconsin-Madison, Madison, WI Daniel K. Young University of Wisconsin-Madison, Madison, WI Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Kriska, Nadine A. and Young, Daniel K., "An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera)" (2002). Insecta Mundi. 537. https://digitalcommons.unl.edu/insectamundi/537 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 3 1 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine L. Kriska and Daniel K. Young Department of Entomology 445 Russell Labs University of Wisconsin-Madison Madison, WI 53706 Abstract. A survey of Wisconsin Scarabaeoidea (Coleoptera) conducted from literature searches, collection inventories, and three years of field work (1997-1999), yielded 177 species representing nine families, two of which, Ochodaeidae and Ceratocanthidae, represent new state family records. Fifty-six species (32% of the Wisconsin fauna) represent new state species records, having not previously been recorded from the state. Literature and collection distributional records suggest the potential for at least 33 additional species to occur in Wisconsin. Introduction however, most of Wisconsin's scarabaeoid species diversity, life histories, and distributions were vir- The superfamily Scarabaeoidea is a large, di- tually unknown.
    [Show full text]
  • Coleoptera: Scarabaeidae)
    Systematic Entomology (2005), 31, 113–144 DOI: 10.1111/j.1365-3113.2005.00307.x The phylogeny of Sericini and their position within the Scarabaeidae based on morphological characters (Coleoptera: Scarabaeidae) DIRK AHRENS Deutsches Entomologisches Institut im Zentrum fu¨r Agrarlandschafts- und Landnutzungsforschung Mu¨ncheberg, Germany Abstract. To reconstruct the phylogeny of the Sericini and their systematic position among the scarabaeid beetles, cladistic analyses were performed using 107 morphological characters from the adults and larvae of forty-nine extant scarabaeid genera. Taxa represent most ‘traditional’ subfamilies of coprophagous and phytophagous Scarabaeidae, with emphasis on the Sericini and other melo- lonthine lineages. Several poorly studied exoskeletal features have been examined, including the elytral base, posterior wing venation, mouth parts, endosternites, coxal articulation, and genitalia. The results of the analysis strongly support the monophyly of the ‘orphnine group’ þ ‘melolonthine group’ including phytopha- gous scarabs such as Dynastinae, Hopliinae, Melolonthinae, Rutelinae, and Cetoniinae. This clade was identified as the sister group to the ‘dung beetle line’ represented by Aphodius þ Copris. The ‘melolonthine group’ is comprised in the strict consensus tree by two major clades and two minor lineages, with the included taxa of Euchirinae, Rutelinae, and Dynastinae nested together in one of the major clades (‘melolonthine group I’). Melolonthini, Cetoniinae, and Rutelinae are strongly supported, whereas Melolonthinae and Pachydemini appear to be paraphyletic. Sericini þ Ablaberini were identified to be sister taxa nested within the second major melolonthine clade (‘melolonthine group II’). As this clade is distributed primarily in the southern continents, one could assume that Sericini þ Ablaberini are derived from a southern lineage.
    [Show full text]
  • The Contribution of Cacao Agroforests to the Conservation of Lower Canopy Ant and Beetle Diversity in Indonesia
    10.1007/s10531-007-9196-0 Biodiversity and Conservation © Springer Science+Business Media B.V. 2007 10.1007/s10531-007-9196-0 Original Paper The contribution of cacao agroforests to the conservation of lower canopy ant and beetle diversity in Indonesia Merijn M. Bos1, 2 , Ingolf Steffan-Dewenter1 and Teja Tscharntke1 (1) Department of Crop Science, Agroecology, University of Göttingen, Waldweg 26, Gottingen, 37073, Germany (2) Present address: State Museum of Natural History, Rosenstein 1, D-70191 Stuttgart, Germany Merijn M. Bos Email: [email protected] Received: 31 March 2006 Accepted: 13 August 2006 Published online: 13 June 2007 Abstract The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees.
    [Show full text]
  • A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) Andrew B
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Bulletin of the University of Nebraska State Museum, University of Nebraska State Museum 2003 A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) Andrew B. T. Smith University of Nebraska - Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/museumbulletin Part of the Entomology Commons, and the Other Ecology and Evolutionary Biology Commons Smith, Andrew B. T., "A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini)" (2003). Bulletin of the University of Nebraska State Museum. 3. http://digitalcommons.unl.edu/museumbulletin/3 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Bulletin of the University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) Andrew B. T. Smith Bulletin of the University of Nebraska State Museum Volume 15 A Monographic Revision of the Genus Platycoelia Dejean (Coleoptera: Scarabaeidae: Rutelinae: Anoplognathini) by Andrew B. T. Smith UNIVERSITY. OF, ( NEBRASKA "-" STATE MUSEUM Published by the University of Nebraska State Museum Lincoln, Nebraska 2003 Bulletin of the University of Nebraska State Museum Volume 15 Issue Date: 7 July 2003 Editor: Brett C. Ratcliffe Cover Design: Angie Fox Text design and layout: Linda J. Ratcliffe Text fonts: New Century Schoolbook and Arial Bulletins may be purchased from the Museum. Address orders to: Publications Secretary W436 Nebraska Hall University of Nebraska State Museum Lincoln, NE 68588-0514 U.S.A.
    [Show full text]
  • Phylogenetic Relationships and Distribution of the Rhizotrogini (Coleoptera, Scarabaeidae, Melolonthinae) in the West Mediterranean
    Graellsia, 59(2-3): 443-455 (2003) PHYLOGENETIC RELATIONSHIPS AND DISTRIBUTION OF THE RHIZOTROGINI (COLEOPTERA, SCARABAEIDAE, MELOLONTHINAE) IN THE WEST MEDITERRANEAN Mª. M. Coca-Abia* ABSTRACT In this paper, the West Mediterranean genera of Rhizotrogini are reviewed. Two kinds of character sets are discussed: those relative to the external morphology of the adult and those of the male and female genitalia. Genera Amadotrogus Reitter, 1902; Amphimallina Reitter, 1905; Amphimallon Berthold, 1827; Geotrogus Guérin-Méneville, 1842; Monotropus Erichson, 1847; Pseudoapeterogyna Escalera, 1914 and Rhizotrogus Berthold, 1827 are analysed: to demonstrate the monophyly of this group of genera; to asses the realtionships of these taxa; to test species transferred from Rhizotrogus to Geotrogus and Monotropus, and to describe external morphological and male and female genitalic cha- racters which distinguish each genus. Phylogenetic analysis leads to the conclusion that this group of genera is monophyletic. However, nothing can be said about internal relationships of the genera, which remain in a basal polytomy. Some of the species tranferred from Rhizotrogus are considered to be a new genus Firminus. The genera Amphimallina and Pseudoapterogyna are synonymized with Amphimallon and Geotrogus respectively. Key words: Taxonomy, nomenclature, review, Coleoptera, Scarabaeidae, Melolonthinae, Rhizotrogini, Amadotrogus, Amphimallon, Rhizotrogus, Geotrogus, Pseudoapterogyna, Firminus, Mediterranean basin. RESUMEN Relaciones filogenéticas y distribución de
    [Show full text]
  • First Description of White Grub Betle, Maladera Insanabilis Brenske, 1894 (Coleoptera: Melolonthidae: Melolonthinae) from Erbil Governorate, Kurdistan Region – Iraq
    Plant Archives Vol. 19 No. 2, 2019 pp. 3991-3994 e-ISSN:2581-6063 (online), ISSN:0972-5210 FIRST DESCRIPTION OF WHITE GRUB BETLE, MALADERA INSANABILIS BRENSKE, 1894 (COLEOPTERA: MELOLONTHIDAE: MELOLONTHINAE) FROM ERBIL GOVERNORATE, KURDISTAN REGION – IRAQ Zayoor Zainel Omar Plant Protection Department, Khabat Technical institute, Erbil Polytechnic University-Erbil, Iraq. Abstract White grub beetle, Maladera insanabilis Brenske, 1894 is collected from the flowers of some ornamental plants in different localities of Erbil governorate, Kurdistan Region-Iraq, from the period, March till July / 2018. Diagnostic characters of the species are figured, Mandibles high sclerotized, irregular shaped, apical part with seven short teeth. apical part of galea with seven well developed teeth. Antenna brown consist of 10 ending in a unilateral three lamellate club sub-equal in length. Fore tibia flattened, bidentate. Parameres is a symmetrical, the left part is hook like, the end with a curved pointed apical tooth. Key words: Maladera insanabilis Brenske, 1894, Kurdistan Region-Iraq. Introduction Woodruff and Beck, 1989, Coca-Abia et al., 1993, Coca- Melolonthidae Samouelle, 1819 is one of large family Abia and Martin-Piera, 1998, Coca-Abia, 2000, Evans, of Scarabaeoidea, there are currently about 750 genera 2003). and 11.000 species recorded worldwide (Houston and The genus Maladera Mulsant and Rey, 1871 is one Weir, 1992 ). The identified of the family is well established of the largest groups consisting of more than 500 and is based on the following characteristics. Adult described species widely distributed in Palearctic, Oriental antennae are lamellate apex, the fore legs are adapted and Afrotropical regions (Ahrens, 2003).
    [Show full text]
  • Quick Guide for the Identification Of
    Quick Guide for the Identification of Maryland Scarabaeoidea Mallory Hagadorn Dr. Dana L. Price Department of Biological Sciences Salisbury University This document is a pictorial reference of Maryland Scarabaeoidea genera (and sometimes species) that was created to expedite the identification of Maryland Scarabs. Our current understanding of Maryland Scarabs comes from “An Annotated Checklist of the Scarabaeoidea (Coleoptera) of Maryland” (Staines 1984). Staines reported 266 species and subspecies using literature and review of several Maryland Museums. Dr. Price and her research students are currently conducting a bioinventory of Maryland Scarabs that will be used to create a “Taxonomic Guide to the Scarabaeoidea of Maryland”. This will include dichotomous keys to family and species based on historical reports and collections from all 23 counties in Maryland. This document should be cited as: Hagadorn, M.A. and D.L. Price. 2012. Quick Guide for the Identification of Maryland Scarabaeoidea. Salisbury University. Pp. 54. Questions regarding this document should be sent to: Dr. Dana L. Price - [email protected] **All pictures within are linked to their copyright holder. Table of Contents Families of Scarabaeoidea of Maryland……………………………………... 6 Geotrupidae……………………………………………………………………. 7 Subfamily Bolboceratinae……………………………………………… 7 Genus Bolbocerosoma………………………………………… 7 Genus Eucanthus………………………………………………. 7 Subfamily Geotrupinae………………………………………………… 8 Genus Geotrupes………………………………………………. 8 Genus Odonteus...……………………………………………… 9 Glaphyridae..............................................................................................
    [Show full text]
  • Integrating Cultural Tactics Into the Management of Bark Beetle and Reforestation Pests1
    DA United States US Department of Proceedings --z:;;-;;; Agriculture Forest Service Integrating Cultural Tactics into Northeastern Forest Experiment Station the Management of Bark Beetle General Technical Report NE-236 and Reforestation Pests Edited by: Forest Health Technology Enterprise Team J.C. Gregoire A.M. Liebhold F.M. Stephen K.R. Day S.M.Salom Vallombrosa, Italy September 1-3, 1996 Most of the papers in this publication were submitted electronically and were edited to achieve a uniform format and type face. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. Some participants did not submit papers so they have not been included. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. Remarks about pesticides appear in some technical papers contained in these proceedings. Publication of these statements does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by State and Federal Law. Applicable regulations must be obtained from the appropriate regulatory agencies. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife - if they are not handled and applied properly.
    [Show full text]
  • The Asiatic Garden Beetle, Maladera Castanea (Arrow 1913) (Coleoptera; Scarabaeidae), a White Grub Pest New to Florida
    Entomology Circular Number 425 Florida Department of Agriculture and Consumer Services November 2012 Division of Plant Industry FDACS-P-01823 The Asiatic Garden Beetle, Maladera Castanea (Arrow 1913) (Coleoptera; Scarabaeidae), a White Grub Pest New to Florida Paul E. Skelley1 INTRODUCTION: The Asiatic garden beetle, Maladera castanea (Arrow), has been a pest in the northeastern United States since the 1920s. Generally not as abundant or damaging as the Japanese beetle (Popillia japonica Newman), the Asiatic garden beetle is occasionally numerous enough to cause damage to turf, gardens and field crops, as well as simply being a nuisance. The discovery of the Asiatic garden beetle in Florida was not unexpected. This is the first report of this pest beetle in the lower southeastern U.S. coastal plain. IDENTIFICATION: Asiatic garden beetles (Fig. 1a-b) can be confused with native species of scarab beetles in the genus Serica. In general, Asiatic garden beetles are recognized by their robust body, 8-9 mm in length, reddish- brown color with iridescent sheen, hidden labrum, antenna with 10 segments (not 8-9), and strongly flattened hind tibia with apical spurs separated by the tarsal articulation. If in doubt, the long male genitalia with the large movable apical hook is distinctive (Fig. 1c-d, dissection required). Identification keys including adult Asiatic garden beetle can be found in Harpootlian (2001) for South Carolina and Evans (2002) for the entire U.S. Larvae are white grubs that are distinguished from other known U.S. scarabs by their maxilla being laterally swollen and bulbous. Identification of larval Asiatic garden beetles can be made with the key of Ritcher (1966).
    [Show full text]