Genetics: Published Articles Ahead of Print, published on December 30, 2005 as 10.1534/genetics.105.053371 1 Effects of Chromosome Specific Introgression in Upland Cotton on Fiber and Agronomic Traits * 1 * † * Sukumar Saha, Johnie N. Jenkins, Jixiang Wu, Jack C. McCarty, * ‡ § †† Osman A. Gutiérrez, Richard G. Percy, Roy G. Cantrell, and David M. Stelly *United States Department of Agriculture-Agriculture Research Service, Crop Science Research † Laboratory, Mississippi State, Mississippi 39762, Department of Plant and Soil Sciences, ‡ Mississippi State University, Mississippi State, Mississippi 39762, United States Department of Agriculture-Agriculture Research Service, Maricopa Agricultural Center, Maricopa, Arizona § †† 85239, Cotton Incorporated, Raleigh, North Carolina 27513, and Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843 Disclaimer: Mention of trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable. 2 Running head: Evaluation of fiber and agronomic traits using chromosome substitution lines Key words: Chromosome substitution, Cotton, QTL, Germplasm, Mapping 1 Corresponding author: United States Department of Agriculture-Agriculture Research Service, Crop Science Research Laboratory, 810 Highway 12 East, Mississippi State, Mississippi 39762- 5367. E-mail:
[email protected] 3 ABSTRACT Interspecific chromosome substitution is among the most powerful means of introgression and steps toward quantitative trait locus (QTL) identification. By reducing the genetic “noise” from other chromosomes, it greatly empowers the detection of genetic effects by specific chromosomes on quantitative traits. Here, we report on such results for 14 cotton lines (CS-B) with specific chromosomes or chromosome arms from G.