In Chapter 1 It Was Shown How to Design Triode Gain Stages, Which Are the Main Building Blocks of Guitar Preamplifiers

Total Page:16

File Type:pdf, Size:1020Kb

In Chapter 1 It Was Shown How to Design Triode Gain Stages, Which Are the Main Building Blocks of Guitar Preamplifiers In chapter 1 it was shown how to design triode gain stages, which are the main building blocks of guitar preamplifiers. Most readers will know that small-signal pentodes as opposed to the power pentodes found in power-output stages, also appear in some amplifiers and this chapter will discuss how they are used. Interestingly, it seems pentodes were once more popular with manufacturers than they are now. New pentodes are usually more expensive than the popular double-triodes and usually contain only one tube per envelope which may account for their lack of use in commercial amplifiers. However, the independent builder is not bound by such constraints. The most popular current-production pentode is the EF86/6261 but there are also many others available as NOS, which can be put to good use by the inventive designer. Useful pentodes include the EF91, EF93/6BA6, EF94/6AU6, 6AM6, 6BR7, 6SJ7 and 5879. There are also many triode-pentode tubes such as the ECF80, ECF82/6U8A, 6GH8, 7199 and 6BL8. The design of such stages is slightly more involved than for triodes but not difficult, provided we understand how pentodes work. In addition to the cathode, control grid and plate found in the triode, the pentode contains two more electrodes: the screen grid and the suppressor grid. The screen grid is normally held at a high voltage and accelerates electrons toward the plate at greater velocity than could be achieved with the control-grid alone. The electrons hit the plate with such force that other electrons may dislodge from its surface and these are known as secondary electrons. At low plate voltages it is possible for more electrons to be knocked out of the plate than received by it and without the suppressor grid the secondary electrons would be collected by the nearest positive electrode, the screen grid, meaning total plate current would appear to be flowing backwards. This would result in the tube having negative resistance over a part of its operating characteristics, rendering it prone to oscillation and making it useless for audio amplification. To prevent this, the suppressor grid is interposed between the screen grid and the plate and is made considerably more negative than the plate. Secondary electrons are prevented from reaching the screen grid since they are repelled by the suppressor grid, back to the plate, as illustrated in fig. 3.1. The suppressor grid is made more negative than the plate by connecting it directly to the cathode or to ground. In many pentodes it is already internally connected to the cathode. If there is any impedance in the cathode such as an unbypassed cathode bias resistor then, connecting the suppressor to ground will dramatically increase the 2nd and 3rd harmonic distortion. This is detrimental for hi-fi designs but might be useful in a guitar amp. Apart from this, the suppressor grid is regarded as benign and plays no other part in the design of the stage. If in doubt, connect it directly to the cathode. Some pentodes, including the EF86, have an internal screen around the whole tube to shield against external electromagnetic (EM) interference. This should be connected to ground or to the cathode, whichever is most convenient. The screen grid (g2): The screen grid is the most important electrode in the pentode and has the greatest influence over its operation and we must understand it’s function before proceeding. Many designers do not fully understand the screen grid and this inevitably leads to unreliable, unpredictable or noisy circuits. This may be because there is no solid state equivalent to the pentode, so its operation may seem elusive to those with only solid-state experience. The screen grid gets it name from the fact that it shields or screens the control grid and cathode from the plate. In a triode the only thing which attracts electrons towards the plate is the plate's EM field. In a pentode the screen grid is able to attract or impede electrons, depending on the strength of its EM field. In a triode, capacitances between control grid and plate appear to be multiplied due to the large voltage swings at the plate, the Miller effect but in a pentode the screen grid is usually held at a constant voltage so, the control grid does not see the voltage swing at the plate, greatly reducing the Miller effect and allowing a pentode to have a very wide bandwidth. Furthermore, changes in plate voltage will not greatly affect plate current, since the screen-grid's fixed voltage continues to accelerate electrons towards the plate regardless of changes in plate voltage. This makes the tube more efficient, since it effectively magnifies the controlling element of the control grid, allowing the plate to swing much lower than is possible with a triode. The effect is obvious when looking at the static plate- characteristics graph. The grid curves are nearly horizontal and not dissimilar to a transistor's characteristics, indicating that for a given bias voltage, plate current will remain substantially constant even though the plate voltage may vary intensely. This indicates that the pentode has a very high plate resistance ra so, the pentode is sometimes referred to as a constant-current device. The grids in a multi-grid tube are arranged concentrically. The control-grid wire is nearest the cathode and is wound with close spacing so that its electromagnetic (EM) field is dense, providing excellent control over the electron flow. The screen grid is wound more coarsely but its voltage is usually high. Most electrons pass between its wires and are further accelerated by its strong EM field, towards the plate. Some electrons do strike the screen grid and form the screen current, Ig2, though it is much less than the plate current. The suppressor grid is wound even more coarsely and is so negative compared to the plate and screen grid that it collects no electrons. The total current flowing through the cathode is the sum of the plate and screen currents and this may need to be taken in account when choosing a cathode resistor. The characteristics of a transistor are fixed when the device is manufactured and the circuit designer has no control over this. Similarly, the characteristics of a triode are assumed to be fixed. In theory we could alter them somewhat by changing the heater voltage, though it is not recommended since it may adversely affect the tube's working life and is not a very useful or predictable method of control. The characteristics of pentodes, on the other hand, are controlled by the screen voltage. By manipulating the screen voltage we can morph the characteristics from those of high current, low input sensitivity and high gain, to those of low current, high input sensitivity and lower gain or we can turn the pentode into a triode. This is best understood by looking at the change in the plate characteristics as the screen voltage is varied from a high value to a low value. The oscillograms in fig. 3.2 show the measured characteristics of a Mullard EF86, probably the most popular small-signal, audio pentode ever produced. For ease of comparison, the plate current and plate voltage scales and the grid-curve divisions have been kept the same in each graph. The top-left graph shows the static plate characteristics when the screen voltage is fixed at l30V which is relatively high for an EF86. The higher the screen voltage, the stronger its EM field will be and the more powerfully it will attract electrons, so the greatest plate current is able to flow in this situation. The input sensitivity of the pentode is lowest in this situation since the control-grid voltage must be varied by a large amount in order to override the constant attraction of the screen voltage, so the pentode would be able to handle the largest input signals before clipping. Note that the grid curves are virtually horizontal, indicating an extremely high ra and µ, much too high to calculate from the graph. The grid curves are the most widely spaced when the screen voltage is high, indicating that the transconductance and the possible gain is greatest in this situation. It is also clear that because the grid curves are virtually parallel above Va = 50V, the gm is constant for a given bias voltage. The value of gm varies with bias voltage, being greater at lower bias voltages, which make the pentode more non-linear for larger input signals. The top-right graph shows how lowering the screen voltage to 100V squashes the grid curves down, since the strength of the screen's EM field is reduced, for a given bias voltage the plate current is reduced. The transconductance has reduced somewhat, so the possible gain is less, while the input sensitivity has increased. Lowering the screen voltage to 70V compresses the curves down even further, continuing the trend. When the screen voltage is very low then its EM field is minimal and it will have a weak influence on electrons. In the bottom-right graph the screen voltage is reduced to 30V and the transconductance is very low. However, the input sensitivity is very high, since small changes in control-grid voltage now have a greater effect on plate current. Reducing the screen voltage to zero would almost completely cut-off all plate current. Fig. 3.1: Simplified operation of a pentode. The screen-grid accelerates electrons towards the plate. The suppressor-grid repels secondary electrons back to the plate. Fig. 3.2: Lowering the screen voltage squashes the grid-curves down, reducing gm and increasing ra.
Recommended publications
  • Philips DEALING with TECHNICAL PROBLEMS
    VOL. 5 N~. 3 . Philips DEALING WITH TECHNICAL PROBLEMS. RELATING TO THE PRODUCTS, PROCESSES AND. INVESTIGATIONS OF N.V. PHILIPS' GLOEILAMPENFABRIEKEN EDITED BY THE RESEARCH LABORATORY OF N.V. PHILIPS' GLOEILAMPENFABRIEKEN, EINDHOVEN, HOLLAND TESTING A~PLIFIER OUTPUT VALVES BY MEANS OF THE 'CAT~ODE RAY TUBE hy A. J. HEINS van der VEN. 621.317.755: 621.396.645 I n testing amplifier output valves, the most important data are contained in the In' v.. diagram if one knows over which part of the diagram the values of voltage and current prevailing during operatien range, i;e. if the position of the load line is known. The la- Vn 'diagrams as well as the load lines can very easily b~ obtained with the help of a 'cathode ray tube. The necessary apparatus is described in this article. A number of auxiliary ar- rangernents are also studied, by which the axes and the necessary calibration lines in the diagram can be traced on the fluorescent screen, and which make it possible to. cause the diagrams of two .output valves which are to be compared to appear simultancously on the screen. In order to obtain the load line in the correct place in the diagram, use must he made of dir'ect current push-pull amplifiers for the deflection voltages of the cathode ray tube. The position of the load line upon inductive loading is discussed and explained by a number of examples. In conclusion one,npplication of the instaflation in the develop- ment of output pentodes is dealt with. If one wishes to characterize briefly the perfor- quantrties are to some degree dependent _on the mance of an output valve of !tn amplifier or radio loading impedance which is included in the anode set, it is enough to give the sensitivity, the distor- circuit, it is first necessary to find out how the loa'd- tion as a function of the power output, and in some ing of the ~alve is e~pl'esse~ in the Ia- V~ curve.' , cases the maximum power which can he delivered mA without grid current flowing.
    [Show full text]
  • Pentodes Connected As Triodes
    Pentodes connected as Triodes by Tom Schlangen Pentodes connected as Triodes About the author Tom Schlangen Born 1962 in Cologne / Germany Studied mechanical engineering at RWTH Aachen / Germany Employments as „safety engineering“ specialist and CIO / IT-head in middle-sized companies, now owning and running an IT- consultant business aimed at middle-sized companies Hobby: Electron valve technology in audio Private homepage: www.tubes.mynetcologne.de Private email address: [email protected] Tom Schlangen – ETF 06 2 Pentodes connected as Triodes Reasons for connecting and using pentodes as triodes Why using pentodes as triodes at all? many pentodes, especially small signal radio/TV ones, are still available from huge stock cheap as dirt, because nobody cares about them (especially “TV”-valves), some of them, connected as triodes, can rival even the best real triodes for linearity, some of them, connected as triodes, show interesting characteristics regarding µ, gm and anode resistance, that have no expression among readily available “real” triodes, because it is fun to try and find out. Tom Schlangen – ETF 06 3 Pentodes connected as Triodes How to make a triode out of a tetrode or pentode again? Or, what to do with the “superfluous” grids? All additional grids serve a certain purpose and function – they were added to a basic triode system to improve the system behaviour in certain ways, for example efficiency. We must “disable” the functions of those additional grids in a defined and controlled manner to regain triode characteristics. Just letting them “dangle in vacuum unconnected” will not work – they would charge up uncontrolled in the electron stream, leading to unpredictable behaviour.
    [Show full text]
  • Eimac Care and Feeding of Tubes Part 3
    SECTION 3 ELECTRICAL DESIGN CONSIDERATIONS 3.1 CLASS OF OPERATION Most power grid tubes used in AF or RF amplifiers can be operated over a wide range of grid bias voltage (or in the case of grounded grid configuration, cathode bias voltage) as determined by specific performance requirements such as gain, linearity and efficiency. Changes in the bias voltage will vary the conduction angle (that being the portion of the 360° cycle of varying anode voltage during which anode current flows.) A useful system has been developed that identifies several common conditions of bias voltage (and resulting anode current conduction angle). The classifications thus assigned allow one to easily differentiate between the various operating conditions. Class A is generally considered to define a conduction angle of 360°, class B is a conduction angle of 180°, with class C less than 180° conduction angle. Class AB defines operation in the range between 180° and 360° of conduction. This class is further defined by using subscripts 1 and 2. Class AB1 has no grid current flow and class AB2 has some grid current flow during the anode conduction angle. Example Class AB2 operation - denotes an anode current conduction angle of 180° to 360° degrees and that grid current is flowing. The class of operation has nothing to do with whether a tube is grid- driven or cathode-driven. The magnitude of the grid bias voltage establishes the class of operation; the amount of drive voltage applied to the tube determines the actual conduction angle. The anode current conduction angle will determine to a great extent the overall anode efficiency.
    [Show full text]
  • The Venerable Triode
    The Venerable Triode The very first gain device, the vacuum tube Triode, is still made after more than a hundred years, and while it has been largely replaced by other tubes and the many transistor types, it still remains popular in special industry and audio applications. I have some thoughts on why the Triode remains special for audio amplifiers (apart from sentimental value) that I would like to share. But first, a quick tutorial about Triodes: The earliest Triode was Lee De Forest's 1906 “Audion”. Over a hundred years development has resulted in many Triodes, large and small. The basic design has remained much the same. An evacuated container, usually glass, holds three signal connections, seen in the drawing as the Cathode, Grid and Plate (the Plate is also referred to as the Anode). In addition you see an internal heater, similar to a light bulb filament, which is used to heat the Cathode. Triode operation is simple. Electrons have what's known as “negative electrostatic charge”, and it is understood that “like” charges physically repel each other while opposite charges attract. The Plate is positively charged relative to the Cathode by a battery or other voltage source, and the electrons in the Cathode are attracted to the Plate, but are prevented by a natural tendency to hang out inside the Cathode and avoid the vacuum. This is where the heater comes in. When you make the Cathode very hot, these electrons start jumping around, and many of them have enough energy to leave the surface of the Cathode.
    [Show full text]
  • Sept. 27, 1938. H. J. Mcarthy 2,131,538 INVENTOR
    Sept. 27, 1938. H. J. McArthy 2,131,538 WAWE SIGNALING SYSTEM Filed Dec. 31, 1936 INVENTOR CAPACITY OF CONDENSER 8 N m fid. AORNEY Patented Sept. 27, 1938 2,131,538 UNITED STATES PATENT OFFICE. 2,131,538 WAVE SIGNALENG SYSTEM Henry J. McCarthy, Danvers, Mass., assignor to Hygrade Sylvania Corporation, Salem, Mass., a corporation of Massachusetts Application December 31, 1936, Seria No. 8,532 4 Claims. (C. 179-11) : . This invention relates to Wave. Signaling Sys velope either of the metal or glass type. Suitably tems and more especially to such systems as supported within the envelope is a pentode employ electron discharge tubes of the suppreSSor mount comprising an electron emitting cathode grid type. 2. With its insulated heater filament 3; a control 5 The invention is in the nature of an improve grid 4; a shield grid 5; a suppressor grid 6; and ment. On the type of System disclosed in appli an anode or plate. It will be understood that cation Serial No. 13,047, filed March 26th, 1935. any Well-known structure and arrangement of There is disclosed in said application a System the electrodes may be employed, for example the employing a pentode tube of the Suppressor grid mount may be similar to that embodied in the O type Wherein the suppressing action is achieved tubes designated commercially by the type num 10: Without employing a conductive or metallic con bers 39/44, 41, 57, 78 and the like and while the nection between the Suppressor grid and the invention is primarily applicable to radio fre cathode.
    [Show full text]
  • Precise Db Monitoring with Eye Tubes This Circuit for Use with Eye Tubes Eliminates Variations for Precise and Accurate Signal Measurements
    tubes Precise dB Monitoring with Eye Tubes This circuit for use with eye tubes eliminates variations for precise and accurate signal measurements. By Joe Sousa uning eye, or indicator, tubes came into use before World War II to help tune radio re- ceivers by indicating signal strength. This was helpful to reduce Tdistortion and adjacent channel inter- ference that would result if the radio were tuned too far from the center of the channel. The eye tubes were de- veloped as a cheaper alternative to the needle movement meters. It was not until the 1960s that needle meters were made economically enough in Japan to displace indicator tubes. During the decades from the 1930s to PHOTO 1: EM84/6FG6 with triode grid input at 0V, –3V, and –23V. the 1960s, when tuning indicator tubes were in production, they found wide use of the tube. The green rectangles grow to deflect the output beam on the fluo- in instrumentation as a low-cost alterna- longitudinally, as the input signal grows rescent target painted on the side of the tive to the needle meter. Capacitor mea- more negative (Photo 1). At full signal glass envelope. The 470k plate resistor surement bridges and tube testers were strength, the two among the more common instruments rectangles meet in making use of these inexpensive indica- the center, form- tor tubes. ing a solid rect- By the 1950s, indicator tube design angle 1.5˝ long. had matured enough that good preci- Figure 1 shows sion could be obtained for use as re- the internal ar- cording level meters in open-reel tape rangement of the recorders.
    [Show full text]
  • Photosensitive Camera Tubes and Devices Handbook
    11.2 PHOTOSENSITIVE CAMERA TUBES AND DEVICES 11.1 PHOTOSENSITIVITY / 11.2 11.1.1 Photoemitters / 11.2 11.1.2 Photoconductors / 11.5 11.2 PHOTOELECTRIC-INDUCED TELEVISION SIGNAL GENERATION / 11.5 11.2.1 Photoemission-Induced Charge Images / 11.5 11.2.2 Secondary-Emission-Induced Charge Images / 11.6 11.2.3 Electron-Bombardment-Induced Conductivity / 11.8 11.2.4 Photoconductive-Generated Charge Images / 11.9 11.2.5 Generation of Video Signals by Scanning / 11.11 11.2.6 Low-Velocity Scanning / 11.11 11.2.7 Return-Beam Signal Generation / 11.13 11.2.8 High-Velecity Scanning / 11.14 11.3 EVOLUTION AND DEVELOPMENT OF TELEVISION CAMERA TUBES / 11.14 11.3.1 Nonstorage Tubes / 11.14 11.3.2 Storage Tubes / 11.15 11.4 VIDICON-TYPE CAMERA TUBES / 11.26 11.4.1 Antimony Trisulfide Photoconductor / 11.26 11.4.2 Lead Oxide Photoconductor / 11.28 11.4.3 Selenium Photoconductor / 11.30 11.4.4 Silicon-Diode Photoconductive Target / 11.31 11.4.5 Cadmium Selenide Photoconductor / 11.32 11.4.6 Zinc Selenide Photoconductor / 11.32 11.5 INTERFACE WITH THE CAMERA / 11.33 11.5.1 Optical Input / 11.34 11.5.2 Operating Voltages / 11.34 11.5.3 Dynamic Focusing / 11.36 11.5.4 Beam Blanking / 11.36 11.5.5 Beam Trajectory Control / 11.38 11.5.6 Video Output / 11.40 11.5.7 Deflecting Coils and Circuits / 11.42 11.5.8 Magnetic Shielding / 11.42 11.5.9 Anti-Comet-Tail Tube / 11.42 11.6 CAMERA TUBE PERFORMANCE CHARACTERISTICS / 11.43 11.6.1 Sensitivity and Output / 11.44 11.6.2 Resolution / 11.45 11.6.3 Lag / 11.49 11.6.4 Lag-Reduction Techniques / 11.50 11.7 SINGLE-TUBE COLOR CAMERA SYSTEMS / 11.54 11.7.1 Single-Output-Signal Tubes / 11.55 11.7.2 Multiple-Output-Signal Tubes / 11.58 11.8 SOLID-STATE IMAGER DEVELOPMENT / 11.60 11.8.1 Early Imager Devices / 11.60 11.8.2 Improvements in Signal-to-Noise Ratio / 11.60 11.8.3 CCD Structures / 11.61 11.8.4 New Developments / 11.63 REFERENCES / 11.64 PHOTOSENSITIVITY 11.3 11.1 PHOTOSENSITIVITY A photosensitive camera tube is the light-sensitive device utilized in a television camera to develop the video signal.
    [Show full text]
  • E=M Measurement with a \Magic Eye" and Imagej
    Imaging electron trajectories: e=m measurement with a \magic eye" and ImageJ Junaid Alam and Muhammad Sabieh Anwar LUMS School of Science and Engineering October 28, 2015 Version 2015-3 When electrons are allowed to move freely in a magnetic eld, they behave as charged par- ticles following curved trajectories due to the Lorentz force. By making these trajectories \visible" and then measuring their curvature, the charge-to-mass ratio of the electrons can be determined. In this experiment, we use a \magic eye" and digital photography to track the path of electrons. Digital images are then processed in a freeware named ImageJ to measure the curvature. KEYWORDS Anode lament phosphorescence Lorentz force magic eye calibration ImageJ image processing digital data collision cross section radius of curvature. 1 Objectives In this experiment, we will: 1. learn to appreciate how subatomic particles can be tracked from their e ects, 2. see how the energy of a free electron can be controlled by maintaining an electric eld, 3. record and analyze observations in the form of digital images, 4. calculate the charge-to-mass ratio of the electron using a simple arrangement, and 5. understand the importance and method of calculating uncertainties associated with ex- perimental measurements. 1 References and Essential Reading [1] D. Prutchi, and S. Prutchi, Exploring Quantum Physics through Hands-on Projects, John Wiley, Inc., pp. 77-79 (2003). [2] W.S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012. 2 Introduction Foresee: Does a stationary electron experience a force in a magnetic eld? Provide a physical justi cation for your answer.
    [Show full text]
  • Birth of the Valve.Indd 68 25/01/2019 08:21 Attention to the Problem of Developing an Eff Cient Receiving Detector
    Feature by Dr Bruce Taylor HB9ANY ● E-mail: [email protected] Birth of the Thermionic Valve n the archives of Marconi’s Dr Bruce Taylor HB9ANY relates how chance, ingenuity Wireless Telegraph Company and confl ict created the technology that dominated radio for November 1904, there is a handwritten letter that communication for half a century. concludes: “I have not mentioned Ithis to anyone yet, as it may become useful”. The letter is signed by the English scientist John Ambrose Fleming and it describes how he had found a method of detecting oscillatory electrical currents in an antenna using a thermionic valve. “It may become useful” was perhaps the understatement of the century! While the saga of the thermionic valve had a large cast, the two principal roles were initially played by Fleming and the American experimenter Lee de Forest. The characters of these two men could hardly have been more different. De Forest was an enterprising inventor but a f amboyant showman unashamedly motivated by a desire for fame, fortune and a luxurious life style. He was lucky in his discoveries, but not in his private life or his somewhat unethical business practices, and he died in 1961 without achieving the f nancial success of which he dreamed. Fleming, on the other hand, was the careful archetypal physicist, methodical in his investigations and A 1915 advertisement by Elmer Cunningham explains that, unlike the de Forest Audion, his AudioTron motivated to earn the esteem and can be bought alone. recognition of his peers for advancing scientif c knowledge. He achieved his aim, he patented the device as a means for The Fleming Diode and was knighted in 1929, but he wasn’t controlling mains voltage but made no In 1899, Fleming had been appointed interested in vigorously exploiting his mention of its rectifying properties, for he scientif c advisor to Marconi and became discoveries and left Marconi and others was promoting DC rather than AC power responsible for the design of part of the to prof t from their commercialisation.
    [Show full text]
  • An Experimental Investigation of a Low Distortion Mixer
    AN EXPERIMENTAL INVESTIGATION OF A LOW DISTORTION MIXER USING A BEAM-DEFLECTION TUBE A THESIS Presented to the Faculty of the Graduate Division By Guy Herbert Smith, Jr. In Partial. Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering Georgia Institute of Technology June, I96I "In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Insti­ tution shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose di­ rection it was written, or,, in his .absence, by the dean, of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is understood that any copying from, or publication of, this dissertation which involves potential financial gain will not be allowed without written permission. " /y~ J* AN EXPERIMENTAL INVESTIGATION OF A LOW DISTORTION MIXER USING A BEAM-DEFLECTION TUBE Approved: - \ A . \ h T T - / /) l Date Approved by Chairman: 11 PREFACE This study is an experimental investigation of a low distortion mixer using a beam-deflection tube as the active circuit element. The material herein is limited in its scope in that the investigation covers only one of several basic circuit configurations that are suitable for use with beam-deflection tubes. It is also limited because only one type of beam-deflection tube has been considered.
    [Show full text]
  • A Ten-Watt All-Triode Amplifier
    A Ten-Watt All-Triode Amplifier ROBERT M. VOSS’ and ROBERT ELLIS Build this simple low-powered amplifier using a pair of rela­ tively new dual-triodes in the output stage and see how good a small amplifier can sound— with efficient speaker systems. n the early days of electronics the only one or the other class of tube, and cir­ one of them. 6BX7’s arc relatively un­ type of tube used for amplification cuits were developed which proved the known to audiofans; as far as we know I was the triode. The reason for this virtues of either triodes or tetrodes. The no commercially built amplifier and only was simple; the tetrode and pentode had Williamson amplifier, which probably one published circuit uses them. In Ra­ not yet been developed. With the discov­ gave high-fidelity its biggest boost, dio-Electronics, February 1957, Norman ery that higher gain could be achieved by showed that a well-designed low-power V. Becker described an amplifier which the use of a screen grid, designers triode amplifier could reproduce cleaner delivered eight watts at less than x/2 per jumped on the bandwagon, and the tet­ sound than any of the high-power cir­ cent total harmonic distortion from two rode and later the pentode were thought cuits used at that time. fiBXT's and a .$2.95 output transformer. to render the single-grid tube obsolete. Triode advocates, however, had a short Although Mr. Becker pointed out the When the emphasis on faithful sound lived victory, for, in 1953, David Hafler great potentialities of the 6BX7 as an reproduction came into vogue, audio de­ and Herbert I.
    [Show full text]
  • Single Ended Vs. Push Pull: the Fight of the Century by Eddie Vaughn
    Single Ended vs. Push Pull: The Fight of the Century by Eddie Vaughn If you're familiar with tube amplifiers, you know that the Transmitter Triode Vikings are those aggressive individu- two major methods of power stage operation are single als who want to crank it to SPLs that give you a nose- ended (SE) and push pull (PP). As with so many things in bleed, but want to do so with class and finesse. Their life, most people are highly opinionated when it comes way is an iron fist in a velvet glove. They differ from the to these two choices. While any confrontations between Power Mongers in that they posess a seething dislike for the two camps are less likely to end with blood spilled push pull. As a matter of fact, some Transmitter Triode on the floor than say, vinyl versus digital or tube versus Vikings began life as Power Mongers, but were lured by solid state (proponents of SE and PP are, after all, still the seductive sounds of SET, and became Triode Junkies. "brothers in tubes"), their clashes can nevertheless be- They do however still retain some of their old Power come a bit heated at times. The real danger here exists to Monger ways, and 2 watts just won't cut it for them. that poor, well-meaning soul who enters into the discus- Their quest for single ended finesse along with enough sion and tries to play the peacemaker by extolling the power to arc weld often drives them to the brink of virtues of each method and proclaiming them equals, madness.
    [Show full text]