A Space Act Agreement with Spacex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
By Tamman Montanaro
4 Reusable First Stage Rockets y1 = 15.338 m m1 = 2.047 x 10 kg 5 y2 = 5.115 m m2 = 1.613 x 10 kg By Tamman Montanaro What is the moment of inertia? What is the force required from the cold gas thrusters if we assume constancy. Figure 1. Robbert Goddard’s design of the first ever rocket to fly in 1926. Source: George Edward Pendray. The moment of inertia of a solid disk: rper The Rocket Formula Now lets stack a bunch of these solid disk on each other: Length = l Divide by dt Figure 2: Flight path for the Falcon 9; After separation, the first stage orientates itself and prepares itself for landing. Source: SpaceX If we do the same for the hollow cylinder, we get a moment of inertia Launch of: Specific impulse for a rocket: How much mass is lost? What is the mass loss? What is the moment of inertia about the center of mass for these two objects? Divide by m Figure 3: Falcon 9 first stage after landing on drone barge. Source: SpaceX nd On December 22 2015, the Falcon 9 Orbcomm-2 What is the constant force required for its journey halfway (assuming first stage lands successfully. This is the first ever orbital- that the force required to flip it 90o is the equal and opposite to class rocket landing. From the video and flight logs, we Flip Maneuver stabilize the flip). can gather specifications about the first stage. ⃑ How much time does it take for the first stage to descend? We assume this is the time it takes � Flight Specifications for the first stage to reorientate itself. -
Project Selene: AIAA Lunar Base Camp
Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location . -
The SKYLON Spaceplane
The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration. -
Development of the Crew Dragon ECLSS
ICES-2020-333 Development of the Crew Dragon ECLSS Jason Silverman1, Andrew Irby2, and Theodore Agerton3 Space Exploration Technologies, Hawthorne, California, 90250 SpaceX designed the Crew Dragon spacecraft to be the safest ever flown and to restore the ability of the United States to launch astronauts. One of the key systems required for human flight is the Environmental Control and Life Support System (ECLSS), which was designed to work in concert with the spacesuit and spacecraft. The tight coupling of many subsystems combined with an emphasis on simplicity and fault tolerance created unique challenges and opportunities for the design team. During the development of the crew ECLSS, the Dragon 1 cargo spacecraft flew with a simple ECLSS for animals, providing an opportunity for technology development and the early characterization of system-level behavior. As the ECLSS design matured a series of tests were conducted, including with humans in a prototype capsule in November 2016, the Demo-1 test flight to the ISS in March 2019, and human-in-the-loop ground testing in the Demo-2 capsule in January 2020 before the same vehicle performs a crewed test flight. This paper describes the design and operations of the ECLSS, the development process, and the lessons learned. Nomenclature AC = air conditioning AQM = air quality monitor AVV = active vent valve CCiCap = Commercial Crew Integrated Capability CCtCap = Commercial Crew Transportation Capability CFD = computational fluid dynamics conops = concept of operations COPV = composite overwrapped -
CEO Yusaku Maezawa Announces the Launch of His Art Project, “#Dearmoon” the First Ever Flight of Private Passengers Around the Moon by Inviting Artists
Dear All media related readers September 18th, 2018 Start Today Co., Ltd. CEO Yusaku Maezawa Announces the Launch of His Art Project, “#dearMoon” The First Ever Flight of Private Passengers Around the Moon by Inviting Artists Yusaku Maezawa, CEO of Start Today Co., Ltd. (Headquarters in Chiba city) has announced his art project staged in space, “#dearMoon”, which will be the first ever flight of private passengers around the moon. This was announced at the Space Exploration Technologies Corp (State of California, USA - Hawthorne, from hereon SpaceX), accompanied by its CEO Elon Musk. Maezawa will invite up to eight selected world-renowned artists representing each field to join him on an orbiting flight on SpaceX's super heavy-lift launch vehicle “BFR”, which will fly them around the moon and earth for one week. This is an art project staged in space, which is purposed to have these artists create works of art from their inspiration of this experience of seeing the moon and round earth from space. The project was named “#dearMoon” to express admiration and respect to the moon, which has been such an inspiration to generations of humankind. Maezawa himself will certainly be joining these artists on this first ever flight of private passengers around the moon. The origin of this “project for humankind” came from Maezawa’s hope to “retain works of art 1 / 3 created from the inspiration of these artists who will fly around the moon” with him, for the future generation to admire. Maezawa has always believed that “art can bring people closer together, make them smile, inspire creativity and provide strength.” As an avid art lover and collector himself, he has founded the Contemporary Art Foundation, as well as lending the art work of Jean-Michel Basquiat to museums all over the world. -
Application for Designation As an Eligible
STATE OF ILLINOIS ILLINOIS COMMERCE COMMISSION Starlink Services, LLC : : Application for Designation as an Eligible : Telecommunications Carrier for the : 21-0005 Purpose of Receiving Federal Universal : Service Support pursuant to Section : 214(e)(2) of the Telecommunications Act : of 1996. : PROPOSED ORDER I. PROCEDURAL HISTORY On January 4, 2021, Starlink Services, LLC (“Applicant” or “Starlink”) filed with the Illinois Commerce Commission (“Commission”) a verified Application pursuant to Section 214(e)(2) of the Telecommunications Act of 1996 (“1996 Act”), 47 U.S.C. §151 et seq., and Section 54.201 of the Federal Communications Commission (“FCC”) rules requesting designation as an eligible telecommunications carrier (“ETC”) in the census blocks in which it was awarded Rural Digital Opportunities Fund (“RDOF”) support (the “Service Area”) under the provisions of Section 54.201(d) of the FCC rules. Applicant seeks an ETC designation in the Service Area in order to receive Universal Service Fund (“USF”) support from the federal RDOF. Pursuant to notice as required by law and the rules and regulations of the Commission, hearings were held in this matter before a duly authorized Administrative Law Judge (“ALJ”) of the Commission on January 27, 2021, March 18, 2021, April 7, 2021, April 12, 2021, April 15, 2021, and April 26, 2021. Applicant and Commission Staff (“Staff”) were each represented by counsel. There were no petitions to intervene. The evidentiary hearing took place on April 26, 2021. Applicant presented the testimony of Matthew Johnson, a Senior Business Operations Analyst employed by Space Exploration Technologies Corp. (“SpaceX”), the parent company of Applicant. Staff presented the testimony of David Sackett, an Economic Analyst in the Policy Division of the Public Utilities Bureau. -
Commercial Orbital Transportation Services
National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter. -
Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace
Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Joseph, Christine and Danielle Wood. "Understanding Socio- Technical Issues Affecting the Current Microgravity Research Marketplace." 2019 IEEE Aerospace Conference, March 2019, Big Sky, Montana, USA, Institute of Electrical and Electronics Engineers, June 2019. © 2019 IEEE As Published http://dx.doi.org/10.1109/aero.2019.8742202 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/131219 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace Christine Joseph Danielle Wood Massachusetts Institute of Technology Massachusetts Institute of Technology 77 Massachusetts Ave 77 Massachusetts Ave Cambridge, MA 02139 Cambridge, MA 02139 [email protected] [email protected] Abstract— For decades, the International Space Station (ISS) 1. INTRODUCTION has operated as a bastion of international cooperation and a unique testbed for microgravity research. Beyond enabling For anyone who is a teenager in October 2019, the insights into human physiology in space, the ISS has served as a International Space Station has been in operation and hosted microgravity platform for numerous science experiments. In humans for the entirety of that person’s life. The platform has recent years, private industry has also been affiliating with hosted a diverse spectrum of microgravity, human space NASA and international partners to offer transportation, exploration, technology demonstration, and education related logistics management, and payload demands. -
Satellite & Newspace Snapshot
Global Recruitment & Executive Search Satellite & NewSpace Specialists MARCH 2021 Satellite & NewSpace Snapshot INDUSTRY INSIGHTS - LATEST NEWS No Let Up In February as NASA Lands on Mars In this issue: and Funding Free For All Omnispace Close $60m Funding Round Continues To Help Develop Satellite Network for 5G, IoT and Global Communications While it might be the shortest month of the year, February still managed to cram in a number of exciting developments and further innovation to keep up the strong start in 2021. In fact, so much has happened this February we SpaceX Announce Inspiration4 Mission and struggled to condense it into just a few articles! Offer The Chance to Win a Seat on a Falcon 9 This month we have seen NASA land its Perseverance rover on the surface of Mars, SpaceX launch more of it’s Starlink constellation and have a rare first stage landing failure, investment keeps rolling into the NewSpace Omnispace Lyteloop economy with a number of start-ups closing funding rounds and more established players like Telesat receive further funding as well exciting news SpaceX Axiom Space from Intelsat as they move closer to coming out of chapter 11. NASA Telesat As more and more positive development take place in the space industry we wait with baited breath to see what more 2021 has up its sleeves for us. Intelsat Osprey Technology BlackSky Acquisition www.neuco-group.co.uk [email protected] Market Insights Omnispace Close $60m Funding Intelsat Announce Agreement with Round To Help Develop Satellite Creditors to Reduce Debt By More Network for 5G, IoT and Global Than 50% Communications The world’s largest satellite operator, Intelsat, announced Omnispace announced this month they had closed a this month that they have come to an agreement with round of equity financing of $60m to keep the launch of their creditors to reduce its debt liabilities by over 50%. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket......................................... -
Since Our Last SIA Member News Summary, Press Releases and Posts
SIA PRESIDENT’S REPORT – MEMBER NEWS FOR FEB 2021 Since our last SIA Member News Summary, press releases and posts from many SIA Members including ABS, Boeing, Hawkeye 360, Inmarsat, Omnispace, OneWeb, Planet, SES, SpaceX, Spire Global, ULA and Viasat have released news. Please see the summary of stories and postings below and click on the COMPANY LINK for more details. Above: The ULA Vulcan Centaur launch platform (VLP) and Pathfinder Tanking Test (PTT) booster nears the ULA Spaceflight Operations Control Center located at the Cape Canaveral Space Force Station. For more details, see the information below. Photo credit: Image courtesy of ULA. ULA On Feb 22nd, ULA posted the following blog announcement. “At ULA's Vertical Integration Facility (VIF) on Monday, Feb. 15, the Vulcan Centaur program achieved a significant milestone when the Pathfinder Tanking Test (PTT) booster was hoisted into place aboard the Vulcan Launch Platform (VLP). PTT is a flight configuration core stage that will complete validations of the launch site and later be used on a Vulcan Centaur launch into space.” Earlier in the month, a pathfinder first stage that will pave the way for Vulcan Centaur's inaugural launch arrived at Cape Canaveral from ULA's factory in Decatur, Alabama, to begin launch site testing of the next-generation rocket. The Pathfinding Tanking Test (PTT) booster, a flight configuration Vulcan Centaur core fitted with a pair of BE-4 development engines, was produced using the advanced automation and tooling in Decatur that is designed for maximum efficiency and reliability. INMARSAT On Feb 24th, Inmarsat announced the appointment of Rajeev Suri as CEO replacing Rupert Pearce. -
Watch the Historic Spacex Inspiration4 Launch at Kennedy
Watch the Historic SpaceX Inspiration4 Launch at Kennedy Space Center Visitor Complex Special package available to see the world’s first all-civilian mission to orbit, launch from Kennedy Space Center’s Launch Complex 39A CAPE CANAVERAL (September 3, 2021) – KENNEDY SPACE CENTER – Kennedy Space Center Visitor Complex will offer a “Feel the Heat” special package for the upcoming Inspiration4 launch. A SpaceX Falcon 9 rocket will launch a Crew Dragon spacecraft for this first-ever all-private, all-civilian orbital mission targeting no earlier than September 15 from Kennedy Space Center’s iconic Launch Complex 39A. The Inspiration4 mission is organized to raise money and awareness for St. Jude Children’s Research Hospital and will travel across a low-Earth orbit on a multi-day journey that will continually eclipse more than 90 percent of Earth’s population. The mission is commanded by billionaire Jared Isaacman, who will be joined by scientist and educator Sian Proctor, medical officer Hayley Arceneaux and mission specialist Christopher Sembroski. Kennedy Space Center Visitor Complex offers some of the closest public viewing of launches with distinctive experiences like live launch commentary from space experts and access to select exhibits and attractions prior to the launch. Package: “Feel the Heat” Location: Banana Creek at Apollo/Saturn V Center, four miles from Launch Complex 39A Cost: $250 per person Package includes: Two-day admission (second use is valid after launch, within 30 days) Special badge with lanyard Exclusive gift and mission lithograph Complimentary meal from Moon Rock Cafe Jumbotron live feed and commentary provided by a Kennedy Space Center Visitor Complex space expert Bus transportation to and from Banana Creek Digital photo at Apollo/Saturn V Center As always, the health and safety of employees and guests is the highest priority for Kennedy Space Center Visitor Complex.