Accelerating Martian and Lunar Science Through Spacex Starship Missions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
By Tamman Montanaro
4 Reusable First Stage Rockets y1 = 15.338 m m1 = 2.047 x 10 kg 5 y2 = 5.115 m m2 = 1.613 x 10 kg By Tamman Montanaro What is the moment of inertia? What is the force required from the cold gas thrusters if we assume constancy. Figure 1. Robbert Goddard’s design of the first ever rocket to fly in 1926. Source: George Edward Pendray. The moment of inertia of a solid disk: rper The Rocket Formula Now lets stack a bunch of these solid disk on each other: Length = l Divide by dt Figure 2: Flight path for the Falcon 9; After separation, the first stage orientates itself and prepares itself for landing. Source: SpaceX If we do the same for the hollow cylinder, we get a moment of inertia Launch of: Specific impulse for a rocket: How much mass is lost? What is the mass loss? What is the moment of inertia about the center of mass for these two objects? Divide by m Figure 3: Falcon 9 first stage after landing on drone barge. Source: SpaceX nd On December 22 2015, the Falcon 9 Orbcomm-2 What is the constant force required for its journey halfway (assuming first stage lands successfully. This is the first ever orbital- that the force required to flip it 90o is the equal and opposite to class rocket landing. From the video and flight logs, we Flip Maneuver stabilize the flip). can gather specifications about the first stage. ⃑ How much time does it take for the first stage to descend? We assume this is the time it takes � Flight Specifications for the first stage to reorientate itself. -
Project Selene: AIAA Lunar Base Camp
Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location . -
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided. -
Available Online Journal of Scientific and Engineering Research, 2019, 6(11):202-215 Research Article Theoretical
Available online www.jsaer.com Journal of Scientific and Engineering Research, 2019, 6(11):202-215 ISSN: 2394-2630 Research Article CODEN(USA): JSERBR Theoretical Consideration of Star Trek's Space Navigation Yoshinari Minami Advanced Space Propulsion Investigation Laboratory (ASPIL), (Formerly NEC Space Development Division), Japan, E-Mail: [email protected] Abstract As is well known, Star Trek is a masterpiece that has been known worldwide since 1966 as a science fiction set in the famous galaxy universe. A starship (Enterprise) arrives at a star system in a short period of time to a star system that is tens, hundreds and thousands of light years away from the Earth. This method of making a starship reach a distant star system is skillfully expressed in the movie using images. Unfortunately, however, there is no concrete explanation from the physical point of view of the propulsion method of the starship and the principle of warp navigation, that is, the space propulsion theory and the space navigation theory. This paper is an attempt to explain Star Trek's space navigation by applying the hyper-space navigation theory to the field propulsion theory that the author has published in international conferences and peer-reviewed journals since 1993 [1]. Since this paper mainly describes the concept of the principle, most of the mathematical expressions are reduced. See the references for theoretical formulas [1- 6]. Keywords Star Trek; starship; galaxy; space-time; interstellar travel; star flight; navigation; field propulsion; space drive; imaginary time; hyperspace; wormhole; time hole; astrophysics 1. Introduction Space development in the 21st century, unless there is a groundbreaking advance in the space transportation system, the area of activity of human beings will be restricted to the vicinity of the Earth forever and new knowledge cannot be obtained. -
The SKYLON Spaceplane
The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration. -
Development of the Crew Dragon ECLSS
ICES-2020-333 Development of the Crew Dragon ECLSS Jason Silverman1, Andrew Irby2, and Theodore Agerton3 Space Exploration Technologies, Hawthorne, California, 90250 SpaceX designed the Crew Dragon spacecraft to be the safest ever flown and to restore the ability of the United States to launch astronauts. One of the key systems required for human flight is the Environmental Control and Life Support System (ECLSS), which was designed to work in concert with the spacesuit and spacecraft. The tight coupling of many subsystems combined with an emphasis on simplicity and fault tolerance created unique challenges and opportunities for the design team. During the development of the crew ECLSS, the Dragon 1 cargo spacecraft flew with a simple ECLSS for animals, providing an opportunity for technology development and the early characterization of system-level behavior. As the ECLSS design matured a series of tests were conducted, including with humans in a prototype capsule in November 2016, the Demo-1 test flight to the ISS in March 2019, and human-in-the-loop ground testing in the Demo-2 capsule in January 2020 before the same vehicle performs a crewed test flight. This paper describes the design and operations of the ECLSS, the development process, and the lessons learned. Nomenclature AC = air conditioning AQM = air quality monitor AVV = active vent valve CCiCap = Commercial Crew Integrated Capability CCtCap = Commercial Crew Transportation Capability CFD = computational fluid dynamics conops = concept of operations COPV = composite overwrapped -
Teaching Speculative Fiction in College: a Pedagogy for Making English Studies Relevant
Georgia State University ScholarWorks @ Georgia State University English Dissertations Department of English Summer 8-7-2012 Teaching Speculative Fiction in College: A Pedagogy for Making English Studies Relevant James H. Shimkus Follow this and additional works at: https://scholarworks.gsu.edu/english_diss Recommended Citation Shimkus, James H., "Teaching Speculative Fiction in College: A Pedagogy for Making English Studies Relevant." Dissertation, Georgia State University, 2012. https://scholarworks.gsu.edu/english_diss/95 This Dissertation is brought to you for free and open access by the Department of English at ScholarWorks @ Georgia State University. It has been accepted for inclusion in English Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. TEACHING SPECULATIVE FICTION IN COLLEGE: A PEDAGOGY FOR MAKING ENGLISH STUDIES RELEVANT by JAMES HAMMOND SHIMKUS Under the Direction of Dr. Elizabeth Burmester ABSTRACT Speculative fiction (science fiction, fantasy, and horror) has steadily gained popularity both in culture and as a subject for study in college. While many helpful resources on teaching a particular genre or teaching particular texts within a genre exist, college teachers who have not previously taught science fiction, fantasy, or horror will benefit from a broader pedagogical overview of speculative fiction, and that is what this resource provides. Teachers who have previously taught speculative fiction may also benefit from the selection of alternative texts presented here. This resource includes an argument for the consideration of more speculative fiction in college English classes, whether in composition, literature, or creative writing, as well as overviews of the main theoretical discussions and definitions of each genre. -
CEO Yusaku Maezawa Announces the Launch of His Art Project, “#Dearmoon” the First Ever Flight of Private Passengers Around the Moon by Inviting Artists
Dear All media related readers September 18th, 2018 Start Today Co., Ltd. CEO Yusaku Maezawa Announces the Launch of His Art Project, “#dearMoon” The First Ever Flight of Private Passengers Around the Moon by Inviting Artists Yusaku Maezawa, CEO of Start Today Co., Ltd. (Headquarters in Chiba city) has announced his art project staged in space, “#dearMoon”, which will be the first ever flight of private passengers around the moon. This was announced at the Space Exploration Technologies Corp (State of California, USA - Hawthorne, from hereon SpaceX), accompanied by its CEO Elon Musk. Maezawa will invite up to eight selected world-renowned artists representing each field to join him on an orbiting flight on SpaceX's super heavy-lift launch vehicle “BFR”, which will fly them around the moon and earth for one week. This is an art project staged in space, which is purposed to have these artists create works of art from their inspiration of this experience of seeing the moon and round earth from space. The project was named “#dearMoon” to express admiration and respect to the moon, which has been such an inspiration to generations of humankind. Maezawa himself will certainly be joining these artists on this first ever flight of private passengers around the moon. The origin of this “project for humankind” came from Maezawa’s hope to “retain works of art 1 / 3 created from the inspiration of these artists who will fly around the moon” with him, for the future generation to admire. Maezawa has always believed that “art can bring people closer together, make them smile, inspire creativity and provide strength.” As an avid art lover and collector himself, he has founded the Contemporary Art Foundation, as well as lending the art work of Jean-Michel Basquiat to museums all over the world. -
Ringworld 01 Ringworld Larry Niven CHAPTER 1 Louis Wu
Ringworld 01 Ringworld Larry Niven CHAPTER 1 Louis Wu In the nighttime heart of Beirut, in one of a row of general-address transfer booths, Louis Wu flicked into reality. His foot-length queue was as white and shiny as artificial snow. His skin and depilated scalp were chrome yellow; the irises of his eyes were gold; his robe was royal blue with a golden steroptic dragon superimposed. In the instant he appeared, he was smiling widely, showing pearly, perfect, perfectly standard teeth. Smiling and waving. But the smile was already fading, and in a moment it was gone, and the sag of his face was like a rubber mask melting. Louis Wu showed his age. For a few moments, he watched Beirut stream past him: the people flickering into the booths from unknown places; the crowds flowing past him on foot, now that the slidewalks had been turned off for the night. Then the clocks began to strike twenty-three. Louis Wu straightened his shoulders and stepped out to join the world. In Resht, where his party was still going full blast, it was already the morning after his birthday. Here in Beirut it was an hour earlier. In a balmy outdoor restaurant Louis bought rounds of raki and encouraged the singing of songs in Arabic and Interworld. He left before midnight for Budapest. Had they realized yet that he had walked out on his own party? They would assume that a woman had gone with him, that he would be back in a couple of hours. But Louis Wu had gone alone, jumping ahead of the midnight line, hotly pursued by the new day. -
Satellite & Newspace Snapshot
Global Recruitment & Executive Search Satellite & NewSpace Specialists MARCH 2021 Satellite & NewSpace Snapshot INDUSTRY INSIGHTS - LATEST NEWS No Let Up In February as NASA Lands on Mars In this issue: and Funding Free For All Omnispace Close $60m Funding Round Continues To Help Develop Satellite Network for 5G, IoT and Global Communications While it might be the shortest month of the year, February still managed to cram in a number of exciting developments and further innovation to keep up the strong start in 2021. In fact, so much has happened this February we SpaceX Announce Inspiration4 Mission and struggled to condense it into just a few articles! Offer The Chance to Win a Seat on a Falcon 9 This month we have seen NASA land its Perseverance rover on the surface of Mars, SpaceX launch more of it’s Starlink constellation and have a rare first stage landing failure, investment keeps rolling into the NewSpace Omnispace Lyteloop economy with a number of start-ups closing funding rounds and more established players like Telesat receive further funding as well exciting news SpaceX Axiom Space from Intelsat as they move closer to coming out of chapter 11. NASA Telesat As more and more positive development take place in the space industry we wait with baited breath to see what more 2021 has up its sleeves for us. Intelsat Osprey Technology BlackSky Acquisition www.neuco-group.co.uk [email protected] Market Insights Omnispace Close $60m Funding Intelsat Announce Agreement with Round To Help Develop Satellite Creditors to Reduce Debt By More Network for 5G, IoT and Global Than 50% Communications The world’s largest satellite operator, Intelsat, announced Omnispace announced this month they had closed a this month that they have come to an agreement with round of equity financing of $60m to keep the launch of their creditors to reduce its debt liabilities by over 50%. -
Simone Caroti – the Generation Starship in Science Fiction
Book Review: The Generation Starship In Science Fiction A Critical History, 1934-2001 Simone Caroti reviewed by John I Davies Dr Simone Caroti has now delivered his presentation on The Generation Starship In Science Fiction to students taking the i4is-led interstellar elective at the International Space University in both 2020 and 2021. Here John Davies reviews his 2011 book based on his PhD work at Purdue University*. Within an overall chronological plan the major themes in Dr Caroti's book seem to me to be - ■ The conflict between the two conceptions of a worldship. Is it a world which happens have an artificial "substrate" or is it a ship with a mission which happens to require a multi-generation crew. ■ How can the vision of dreamers like Tsiolkovsky, J D Bernal and Robert Goddard be made to inspire the source civilisation, for whom this is a massive enterprise, the initial travellers, their intermediate descendants and those who must make a new world at journeys end? ■ And, more practically, how can culture, science and technology be sufficiently preserved over many generations? Opening Chapters The book sees the development of the worldship as a fictional theme in six overlapping eras - the first worldship ideas (not all as fiction), Published: McFarland 2011 mcfarlandbooks.com The Gernsback Era, 1926-1940 , The Campbell Era, 1937-1949, The Image credit: Bill Knapp,Arrival Birth of the Space Age, 1946-1957, The New Wave and Beyond, www.artprize.org/bill-knapp 1957-1979 and The Information Age, 1980-2001. Caroti read a lot of science fiction and speculative non-fiction before beginning his PhD at Purdue University. -
Watch the Historic Spacex Inspiration4 Launch at Kennedy
Watch the Historic SpaceX Inspiration4 Launch at Kennedy Space Center Visitor Complex Special package available to see the world’s first all-civilian mission to orbit, launch from Kennedy Space Center’s Launch Complex 39A CAPE CANAVERAL (September 3, 2021) – KENNEDY SPACE CENTER – Kennedy Space Center Visitor Complex will offer a “Feel the Heat” special package for the upcoming Inspiration4 launch. A SpaceX Falcon 9 rocket will launch a Crew Dragon spacecraft for this first-ever all-private, all-civilian orbital mission targeting no earlier than September 15 from Kennedy Space Center’s iconic Launch Complex 39A. The Inspiration4 mission is organized to raise money and awareness for St. Jude Children’s Research Hospital and will travel across a low-Earth orbit on a multi-day journey that will continually eclipse more than 90 percent of Earth’s population. The mission is commanded by billionaire Jared Isaacman, who will be joined by scientist and educator Sian Proctor, medical officer Hayley Arceneaux and mission specialist Christopher Sembroski. Kennedy Space Center Visitor Complex offers some of the closest public viewing of launches with distinctive experiences like live launch commentary from space experts and access to select exhibits and attractions prior to the launch. Package: “Feel the Heat” Location: Banana Creek at Apollo/Saturn V Center, four miles from Launch Complex 39A Cost: $250 per person Package includes: Two-day admission (second use is valid after launch, within 30 days) Special badge with lanyard Exclusive gift and mission lithograph Complimentary meal from Moon Rock Cafe Jumbotron live feed and commentary provided by a Kennedy Space Center Visitor Complex space expert Bus transportation to and from Banana Creek Digital photo at Apollo/Saturn V Center As always, the health and safety of employees and guests is the highest priority for Kennedy Space Center Visitor Complex.