Transition Metal and Lanthanide Chemistry of Dipyridylpyrrolide Ligands

Total Page:16

File Type:pdf, Size:1020Kb

Transition Metal and Lanthanide Chemistry of Dipyridylpyrrolide Ligands TRANSITION METAL AND LANTHANIDE CHEMISTRY OF DIPYRIDYLPYRROLIDE LIGANDS James McPherson A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy School of Chemistry Faculty of Science June 2019 Thesis/Dissertation Sheet Surname/Family Name : McPherson Given Name/s : James Abbreviation for degree as give in the University calendar : PhD Faculty : Science School : Chemistry Thesis Title : Transition metal and lanthanide chemistry of dipyridylpyrrolide ligands Abstract Pincer ligands attract great current interest because they bestow exceptional stability on their metal complexes. Modification of the pincer scaffold can be used to tune the electron density at the metal ion and, therefore, the physical and chemical properties. This thesis reports studies of 2,5-di(2- pyridyl)pyrrolide (dpp–) NNN-pincer ligands and their transition and rare-earth metal complexes. Homoleptic complexes were prepared and screened for useful physical (e.g., magnetic or photophysical) or chemical (e.g., redox or reactive) properties. Predictable control of the properties through the substitution of the pyrrolide ring was a particular goal, and was achieved. The critical review of the literature on the chemistry of dpp– ligands and related pyridine-pyrrolide pincers, Chapter 1, concluded that a range of dpp– derivatives with flexible coordination modes was accessible, but with underdeveloped coordination chemistry. – Chapter 2 provides a theoretical quantification (B3LYP-GD3BJ/6-31G** calculations) of the internal stain (∆EL(strain)) that builds when a dpp or related pyridine-pyrrolide pincer ligand binds a metal ion. A relationship was discovered correlating ∆EL(strain) and the change in interatomic separation of the two terminal donor atoms when bound (ρL(coord)) and metal-free (ρL(relax)). The relationship was employed to explain, a posteriori, the occurrence of spin crossover activity in Fe(II)-pincer complexes. R1,R2 A series of five structurally similar cobalt(II) complexes, [Co(dpp )2], bearing different pyrrolide 3,4-substituents are discussed in Chapter 3. The oxidation and spin states of the cobalt ion were switched by appropriate external stimuli, with the CoIII/CoII couple predictably sensitive to the Swain- Lupton electronic parameters for the pyrrolide substituents. Chapter 4 describes the first lanthanide(III) complexes of dpp– ligands. Ligand-sensitised, lanthanide-centred emission was observed for CO Me,Me CO Me,Me [Eu(dpp 2 )3] (red emission) and [Yb(dpp 2 )3] (near-infrared emission). 2+ – Chapter 5 reports enhanced reactivity for [Ru(dpp)2] complexes compared to the ubiquitous [Ru(tpy)2] . Hemilability of the dpp ligand results from its large ρL(relax), and this was exploited for catalytic transformations of small molecules bound at the ruthenium(II) centre. Four small preliminary studies are included in Chapter 6, each providing an entry point into more detailed future investigations. Chapter 7 provides a summary of the results, highlights advances made and suggests how these could be used into the future. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). …………………………………………………………… ……………………………………..……………… ……….……………………...…….… Signature Witness Signature Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………………………........................... Date ……………………………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………………………........................... Date ……………………………………………........................... ORIGINALITY STATEMENT I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial portions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or style, presentation and linguistic expression is acknowledged. James McPherson March 2019 INCLUSION OF PUBLICATIONS STATEMENT UNSW is supportive of candidates publishing their research results during their candidature as detailed in the UNSW Thesis Examination Procedure. Publications can be used in their thesis in lieu of a Chapter if: • The student contributed greater than 50% of the content in the publication and is the “primary author”, ie. the student was responsible primarily for the planning, execution and preparation of the work for publication • The student has approval to include the publication in their thesis in lieu of a Chapter from their supervisor and Postgraduate Coordinator. • The publication is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in the thesis Please indicate whether this thesis contains published material or not. This thesis contains no publications, either published or submitted for publication ☐ Some of the work described in this thesis has been published and it has been ☐ documented in the relevant Chapters with acknowledgement This thesis has publications (either published or submitted for publication) ☒ incorporated into it in lieu of a chapter and the details are presented below CANDIDATE’S DECLARATION I declare that: • I have complied with the Thesis Examination Procedure • where I have used a publication in lieu of a Chapter, the listed publication(s) below meet(s) the requirements to be included in the thesis. Name Signature Date (dd/mm/yy) James McPherson Postgraduate Coordinator’s Declaration I declare that: • the information below is accurate • where listed publication(s) have been used in lieu of Chapter(s), their use complies with the Thesis Examination Procedure • the minimum requirements for the format of the thesis have been met. PGC’s Name PGC’s Signature Date (dd/mm/yy) Prof. Naresh Kumar Details of publication #1: Full title: Tridentate pyridine-pyrrolide chelate ligands: An under-appreciated ligand set with an immensely promising coordination chemistry Authors: James N. McPherson, Biswanath Das and Stephen B. Colbran Journal or book name: Coordination Chemistry Reviews Volume/page numbers: 375, 285-332 Date accepted/ published: 28/3/2018 Status Published X Accepted and In press In progress (submitted) The Candidate’s Contribution to the Work Prepared and compiled the manuscript for submission. Wrote the major section describing the complexes of 2,5-di(2-pyridyl)pyrrolide ligands and their pyrrole precursors. Location of the work in the thesis and/or how the work is incorporated in the thesis: Chapter 1: Introduction Primary Supervisor’s Declaration I declare that: • the information above is accurate • this has been discussed with the PGC and it is agreed that this publication can be included in this thesis in lieu of a Chapter • All of the co-authors of the publication have reviewed the above information and have agreed to its veracity by signing a ‘Co-Author Authorisation’ form. Supervisor’s name Supervisor’s signature Date (dd/mm/yy) A/Prof. Stephen Colbran Details of publication #2: Full title: A
Recommended publications
  • Organic Synthesis Using Bimetallic Catalysis
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2020-04-23 Organic Synthesis using Bimetallic Catalysis Chloe Christine Ence Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Physical Sciences and Mathematics Commons BYU ScholarsArchive Citation Ence, Chloe Christine, "Organic Synthesis using Bimetallic Catalysis" (2020). Theses and Dissertations. 8397. https://scholarsarchive.byu.edu/etd/8397 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Organic Synthesis Using Bimetallic Catalysis Chloe Ence A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy David J. Michaelis, Chair Steven L. Castle Merritt B. Andrus Joshua L. Price Joshua L. Andersen Department of Chemistry and Biochemistry Brigham Young University Copyright © 2020 Chloe Ence All Rights Reserved ABSTRACT Organic Synthesis Using Bimetallic Catalysis Chloe Ence Department of Chemistry and Biochemistry, BYU Doctor of Philosophy Bimetallic Catalysis is an emerging field of study that uses two metals to cooperatively perform organic transformations. These metals can serve to activate or bind substrates in order to increase the rate and selectivity of reactions. This work first describes the synthesis and utilization of six new chiral, titanium-containing phosphinoamide ligands. These Lewis acidic ligands withdraw electron density from an active palladium center to induce chirality and increase the rate of allylic amination of hindered, secondary N-alkyl amines.
    [Show full text]
  • Nitrogen-Based Ligands : Synthesis, Coordination Chemistry and Transition Metal Catalysis
    Nitrogen-based ligands : synthesis, coordination chemistry and transition metal catalysis Citation for published version (APA): Caipa Campos, M. A. (2005). Nitrogen-based ligands : synthesis, coordination chemistry and transition metal catalysis. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR594547 DOI: 10.6100/IR594547 Document status and date: Published: 01/01/2005 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Publications Braunstein
    P. Braunstein - p 1 PUBLICATION LIST Pierre BRAUNSTEIN Laboratoire de Chimie de Coordination Institut de Chimie (UMR 7177 CNRS) Université de Strasbourg 4, rue Blaise Pascal 67081 STRASBOURG Cedex Téléphone: (+33) 03 68 85 13 08 E-mail: [email protected] P. Braunstein - p 2 BOOKS / SPECIAL ISSUES * “Guest Editor” de "Recent Advances in Di- and Polynuclear Chemistry", New J. Chem. 1988, 12, 307-720. * “Guest Editor” avec W. A. Herrmann de "New Perspectives in Organometallic Chemistry", New J. Chem. 1990, 14, 389-587. * “Guest Editor” avec P. Sobota et J. J. Ziolkowski (Pologne) des "Proceedings of the 13th Summer School on Coordination Chemistry”, Polanica-Zdroj, Pologne, 2-8/6/1996, New J. Chem. 1997, 21, 647-846. * “Guest Editor” de "Inorganic Chemistry in France", Coord. Chem. Rev. 1998, 178-180, 1-1846. * “Editor” avec P. R. Raithby et L. A. Oro de lʻouvrage “Metal Clusters in Chemistry”, Wiley-VCH, 1999, 3 volumes, 1798 pages * REVIEW ARTICLES R1. J. TIROUFLET, P. BRAUNSTEIN Aspects de la chimie organométallique des métaux de transition. Partie I: Synthèse et réactivité. L'Actualité Chimique (Soc. Chim. Fr.), 1975, n° 3, 4-16. R2. J. TIROUFLET, P. DIXNEUF, P. BRAUNSTEIN Aspects de la chimie organométallique des métaux de transition. Partie III: Cinq familles typiques: métallocarbènes, métallocarbynes, ylures, clusters, métallocarboranes et quelques applications. L'Actualité Chimique (Soc. Chim. Fr.), 1975, n° 5, 3-16. R3. E. SAPPA, A. TIRIPICCHIO, P. BRAUNSTEIN Alkyne-substituted Homo- and Heterometallic Carbonyl Clusters of the Iron, Cobalt, and Nickel Triads. Chem. Rev. 1983, 83, 203-239. R4. P. BRAUNSTEIN, J. ROSE Gold in Bimetallic Molecular Clusters.
    [Show full text]
  • 1 Ligand Rearrangement and Hemilability in Rhodium(I) And
    Ligand Rearrangement and Hemilability in Rhodium(I) and Iridium(I) Complexes Bearing Terphenyl Phosphines Juan José Moreno, María Fernández-Espada, Eric Krüger, Joaquín López-Serrano, Jesús Campos,* Ernesto Carmona. Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC). Avenida Américo Vespucio 49, 41092 Sevilla (Spain). Abstract We describe the synthesis of a series of cationic rhodium(I) and iridium(I) compounds stabilized by sterically demanding phosphines that contain a terphenyl substituent, PMe2Ar’ (Ar’ = 2,6-diarylphenyl radical). Salt metathesis of metal precursors [MCl(COD)(PMe2Ar)] (M = Rh, Ir; COD = cyclooctadiene) with NaBArF (BArF = B(3,5-C6H3(CF3)2)4) results in a series of cationic complexes in which the loss of the chloride ligand is compensated by the appearance of weak π-interactions with one of the flanking aryl rings of the terphenyl substituent. The same experiments carried out with carbonyl compounds [MCl(CO)2(PMe2Ar)] led to the corresponding cationic carbonyl complexes, whose CO-induced rearrangement reactivity has been investigated, both experimentally and computationally. The differences in reactivity between rhodium and iridium complexes, and as a result of varying the sterics of terphenyl phosphines are discussed. Introduction Phosphines are among the most widely used ancillary ligands in coordination and organometallic chemistry, largely due to the possibility of finely modulating their steric and electronic properties in a predictive manner.1 The range of physicochemical properties of transition metal complexes that can be tuned by the judicious choice of a phosphine ligand is exceptional.
    [Show full text]
  • Investigations Into Dianionic Scopionate Ligands and Their Metal Complexes
    Investigations into dianionic scopionate ligands and their metal complexes by Elizabeth Nicole Cooper B.S., Fort Hays State University, 2017 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Chemistry College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2021 Approved by: Major Professor Peter E. Sues Copyright © Elizabeth Cooper 2021. Abstract Ligand design helps to define reactivity in coordination complexes and organometallic chemistry. Ligand characteristics greatly influence the reactivity of transition metal complexes and simple changes in the steric or electronic properties of a ligand can drastically affect the activity and selectivity of a catalyst. Scorpionate ligands are an easily tunable and display flexible binding modes in that they can act as bidentate or tridentate donors. In literature scorpionate ligands with charged donors are underrepresented and this is an area with great potential to explore and discover new organometallic complexes with novel reactivity. Inspired by scorpionate ligands and phenolate ligands throughout the literature, a set of eight neutral ligands were synthesized and utilized in the generation of metal complexes. These novel ligands were diphenolate ligands with a nitrogen or oxygen containing tail. The steric hinderance of these structures was varied using the ortho substituents on the phenol groups. The various tails also allowed the binding strength of the ligands to be varied. Studies on the activity of the complexes bearing these scorpionate ligands were performed. The effect of the steric size of the ligands as well as binding strength of the tail were investigated. Table of Contents List of Figures ...............................................................................................................................
    [Show full text]
  • First-Principles Simulations of the Interaction of Metal-Organic Molecules with a Surface and As Building Blocks for Nanodevices
    Universite´ de Strasbourg IPCMS: CNRS - UMR 7504 These` de Doctorat FIRST-PRINCIPLES SIMULATIONS OF THE INTERACTION OF METAL-ORGANIC MOLECULES WITH A SURFACE AND AS BUILDING BLOCKS FOR NANODEVICES par Burak Ozdamar¨ pr´esent´eeen vue d'obtenir le grade de Docteur de l'Universit´ede Strasbourg Sp´ecialit´e:Physique de la mati`erecondens´eeet des mat´eriaux Soutenue publiquement le 28/10/2016 `al'IPCMS devant le jury compos´ede: Prof. Dr. Roberto Marquardt UdS-LCQ Pr´esident Prof. Dr. J¨urg Hutter UZH-CMSZH Rapporteur Prof. Dr. Andres Saul AMU-CINaM Rapporteur Prof. Dr. Fabrizio Cleri UL1-IEMN Rapporteur Dr. S´ebastien Le Roux UdS-IPCMS Examinateur Prof. Dr. Mauro Boero UdS-IPCMS Directeur de th`ese Tired of lying in the sunshine staying home to watch the rain You are young and life is long and there is time to kill today And then one day you find ten years have got behind you No one told you when to run, you missed the starting gun. Roger Waters iii Abstract UNIVERSITE´ DE STRASBOURG Institut de Physique et Chimie des Mat´eriauxde Strasbourg Doctor of Philosophy FIRST-PRINCIPLES SIMULATIONS OF THE INTERACTION OF METAL-ORGANIC MOLECULES WITH A SURFACE AND AS BUILDING BLOCKS FOR NANODEVICES by Burak Ozdamar¨ The purpose of this study is to investigate the interaction of organometallic com- plexes with transition metals. This topic in question has a broad array of applica- tions in a number of domain; realization of nanojunctions for molecular nanoelec- tronics, biological imaging and nanocatalysis. Within this general framework, this PhD project aims to model the fundamental interactions of molecular building blocks at the atomic level in order to understand their role in the assembly and functionalization of nanostructures.
    [Show full text]
  • Metalation Studies on Titanocene Dithiolates
    inorganics Article Metalation Studies on Titanocene Dithiolates Tilmann G. Kießling and Karlheinz Sünkel * ID Department of Chemistry, Ludwig-Maximilians University Munich, 81377 Munich, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-89-2180-77773 Received: 18 July 2018; Accepted: 22 August 2018; Published: 24 August 2018 Abstract: Titanocene bis-arylthiolates [(C5H4X)(C5H4Y)Ti(SC6H4R)2] (X,Y = H, Cl; R = H, Me) can be prepared from the corresponding titanocene dichlorides by reacting with the thiols in the presence of DABCO as a base. They react with n-butyl lithium to give unstable Ti(III) radical anions. While the unsubstituted thiolates (X = Y = R = H) react with lithium Di-isopropylamide by decomposing to dimeric fulvalene-bridged and thiolate-bridged Ti(III) compounds, the ring-chlorinated compounds can be deprotonated with LDA and give appropriate electrophiles di-substituted and tri-substituted titanocene dithiolates. Keywords: titanocene thiolates; metalation; chlorocyclopentadienyl ligands 1. Introduction Titanocene compounds, i.e., compounds of the type “Cp2TiXn” where “Cp” stands for a substituted or unsubstituted cyclopentadienyl ligand and “X” for any anionic or neutral ligand and n = 0–2 are arguably the second-most studied metallocenes after ferrocene. Soon after the first synthesis of (C5H5)2TiCl2 in 1954 [1], its potential for acting as a polymerization catalyst when combined with certain aluminum compounds was discovered [2]. Further studies showed that a judicious choice of substituents on the cyclopentadienyl ring had a great influence on the stereochemistry of the produced polymers, which gave rise to an enormous number of publications and also many review articles [3–8].
    [Show full text]
  • Formation from Chlorophenols 82
    FORMATION OF AROMATIC COMPOUNDS BY CYCLOPENTADIENE MOIETIES IN COMBUSTION PROCESSES A Thesis Presented to The Academic Faculty by Do Hyong Kim In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Civil and Environmental Engineering Georgia Institute of Technology August 2005 FORMATION OF AROMATIC COMPOUNDS BY CYCLOPENTADIENE MOIETIES IN COMBUSTION PROCESSES Approved by: Dr. James A. Mulholland, Advisor Dr. Armistead G. Russell School of Civil and Environmental School of Civil and Environmental Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Michael H. Bergin Dr. C. David Sherrill School of Civil and Environmental School of Chemistry and Biochemistry Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Kurt D. Pennell School of Civil and Environmental Engineering Georgia Institute of Technology Date Approved: 06/29/2005 This dissertation is dedicated to my family ACKNOWLEDGEMENTS I would like to thank the following people for their help and support throughout my program at Georgia Tech. First of all, I would like to especially thank Dr. James. A. Mulholland, my advisor, for his endless and excellent guidance. Words cannot be good enough to express my gratitude toward him. It was always my pleasure to work and spend time with him during last seven years. My gratitude also goes to Drs. Ted Russell, Kurt D. Pennell, Michael H. Bergin and David Sherrill for their guidance, helpful comments and time spent serving on my thesis committee. I like to thank Dr. Guangxuan Zhu, our lab manager, who has fixed many a problem and given excellent advice on analytical techniques in the lab.
    [Show full text]
  • CURRICULUM VITAE WILLIAM E. GEIGER, JR. Professor Of
    CURRICULUM VITAE WILLIAM E. GEIGER, JR. Professor of Chemistry University of Vermont, Burlington VT 05405 802-656-0268; EMAIL [email protected] FAX 802-656-8705 Education B.S. Canisius College 1965 Chemistry Ph.D. Cornell University 1969 Analytical Chemistry Positions Research Associate, Univ. of California at Riverside 1968-69 Postdoctoral Research Associate, Northwestern Univ. 1969-70 Assistant Professor, Southern Illinois Univ. 1970-74 Assistant Professor, Univ. of Vermont 1974-77 Associate Professor, Univ. of Vermont 1977-82 Professor, Univ. of Vermont 1982-Present Pomeroy Professor, Univ. of Vermont 1997-Present Chair, Department of Chemistry, University of Vermont 1998-2001 Honors University of Vermont Scholar 1984 James Crowdle Award, Canisius College 1995 Dean’s Lecturer, UVM 2009 Vermont Academy of Science and Engineering 2009 William Geiger Research Laboratory (Free State University) 2011 Professional Organizations Member, American Chemical Society (ACS) Division of Analytical Chemistry Division of Inorganic Chemistry Society for Electroanalytical Chemistry (SEAC) Vermont Academy of Science and Engineering Selected Professional Activities Professeur Associe, Univ. of Bordeaux 1986 Editor, Newsletter of SEAC 1985-88 Editorial Advisory Board, Organometallics 1989-91 Board of Directors, SEAC 1992-95 Graduiertenkolleg Lecturer, Univ. of Freiburg 1996 Editorial Board, Chemtracts 1997-98 Leverhulme Fellow, University of Bristol 1998 Erskine Fellow, University of Canterbury 2000 Advisory Board, Center for Molecular Electrocatalysis 2009-present INVITED LECTURES AND COLLOQUIA Canisius College 10/70 Univ. Maryland at Baltimore 9/71 Franklin and Marshall College 9/71 Univ. of Missouri at St. Louis 2/73 Brown University 10/75 Univ. of Massachusetts at Amherst 12/75 Univ. of Massachusetts at Boston 2/76 SUNY at Buffalo 11/76 SUNY at Plattsburgh 1/77 Providence College 2/78 Wesleyan University 2/78 St.
    [Show full text]
  • Organometallic Chemistry Is Described to Better Acquaint the Reader with the Field
    A Dissertation Entitled Synthesis, Reactivity, and Catalysis of 3-Iminophosphine Palladium Complexes by Andrew Ronald Shaffer Submitted as partial fulfillment of the requirements for the Doctor of Philosophy in Chemistry ____________________________________ Advisor: Joseph A. R. Schmidt ____________________________________ Committee Member: Mark R. Mason ____________________________________ Committee Member: Yun-Ming Lin ____________________________________ Committee Member: Brian Ashburner ____________________________________ College of Graduate Studies The University of Toledo August 2009 An Abstract of Synthesis, Reactivity, and Catalysis of 3-Iminophosphine Palladium Complexes by Andrew Ronald Shaffer Submitted as partial fulfillment of the requirements for The Doctor of Philosophy in Chemistry The University of Toledo August 2009 Chapter 1. A brief outline, as well as a time table, of organometallic chemistry is described to better acquaint the reader with the field. Several detailed explanations of catalysis, specifically hydroamination, aryl amination, and Suzuki cross-coupling are presented in a very general context. Finally, basic principles of ligands and their design are outlined, as well as the importance of the research conducted herein. Chapter 2. Twenty-six new α,β-unsaturated β-chloroimines were synthesized from commercially available ketones using the Vilsmeier-Haack reagent, followed by Schiff- base condensation. Each imine was subsequently converted to an α,β-unsaturated 3- iminophosphine through either late-metal catalyzed phosphorus-carbon cross-coupling or via an addition/elimination sequence. Depending on the substituents present on the vinyl ii group, the resultant phosphines were isolated as either E- or Z-diastereomers with successful isolation of predominately single diastereomers for all twenty-seven new phosphines investigated. Chapter 3. Several palladium(II) 3-iminophosphine complexes were synthesized in moderate to high yield.
    [Show full text]
  • AROMATIC HYDROCARBONS: Part I
    AROMATIC HYDROCARBONS: Part I DR SUNIL K. SINGH Assistant Professor in Chemistry SK SINGH, KMC Concept of Aromaticity Aromatic compounds apparently contain alternate double and single bonds in a cyclic structure and resemble benzene in chemical behaviour. They undergo substitution rather than addition reactions. This characteristic behaviour is known as aromaticity. Addition reaction: Substitution reaction: Br Br 2 H E CCl + 4 Br E + H+ Br2 No Reaction SK SINGH, KMC CCl4 Following are the main criteria of aromaticity: Chemical behaviour: electrophilic aromatic substitution. Structural: bond length equalization due to cyclic delocalization of electrons. C-C bond length in benzene id 139 pm. SK SINGH, KMC Contd……………….. Enhanced stability (large resonance energy). Heat of hydrogenation of Benzene is 49.8 Kcal/mole. Heat of hydrogenation of 1,3,5- hexatriene is 85.8 Kcal/ mole. Smaller the heat of hydrogenation Magnetic: "ring current" effects. more is the stability. Benzene is ~36 Kcal/mole more stable than the 1,3,5- • anomalous chemical shifts in NMR. hexatriene. • large magnetic anisotropies • high diamagnetic susceptibility. SK SINGH, KMC Huckel’s Rule and aromaticity A molecule is aromatic if all the following conditions are fulfilled: It is cyclic, planar and it has continuous delocalization of p electrons (electrons in p orbitals) with or without the participation of lone pair(s)/ -ve charge/ +ve charge. Huckel’s rule: The delocalised p-electron system must contain a total of (4n+2)p electrons, where n is a whole number (i.e., n = 0,1,2,3,………). Note that the p-orbitals in which the electrons are delocalizing must be parallel to each other so that a continuous overlap of electrons is possible along the ring.
    [Show full text]
  • Synthesis of the Metallocenes for the Production of Exotic High Energy Ion Beams
    Synthesis of the Metallocenes for the Production of Exotic High Energy Ion Beams Ntombizonke Yvonne Kheswa A thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Physics & Astronomy, University of the Western Cape, South Africa. Supervised by: Prof. J. N. Orce, Department of Physics & Astronomy University of the Western Cape Prof. S. Titinchi, Department of Chemistry, University of the Western Cape Dr. R. Thomae Accelerator and Engineering Department iThemba LABS March 2019 https://etd.uwc.ac.za DECLARATION I declare that Synthesis of the Metallocenes for the Production of Exotic High Energy Ion Beams is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references. Signed: Ntombizonke Kheswa Date: 1 March 2019 i https://etd.uwc.ac.za Synthesis of the Metallocenes for the Production of Exotic High Energy Ion Beams Department of Physics and Astronomy, University of the Western Cape, Private Bag X17, 7535 Bellville, South Africa. ABSTRACT The Subatomic Physics Department of iThemba Laboratory for Accelerated Based Sciences (iThemba LABS) conducts experiments that require a variety of particle beams in order to study nuclear properties (reaction, structure, etc.) of various nuclides. These particle beams are accelerated using the K-200 Separated Sector Cyclotron (SSC) and delivered to different physics experimental vaults. Prior to acceleration, the particle beam is first ionised using an Electron Resonance Ion Source (ECRIS). The main goal of this study is the production of exotic metallic beams of 60Ni8+ and 62Ni8+ using ECRIS4, which are required for the Coulomb excitation experiments approved by the Programme Advisory Committee (PAC) at iThemba LABS.
    [Show full text]