AROMATIC HYDROCARBONS: Part I

Total Page:16

File Type:pdf, Size:1020Kb

AROMATIC HYDROCARBONS: Part I AROMATIC HYDROCARBONS: Part I DR SUNIL K. SINGH Assistant Professor in Chemistry SK SINGH, KMC Concept of Aromaticity Aromatic compounds apparently contain alternate double and single bonds in a cyclic structure and resemble benzene in chemical behaviour. They undergo substitution rather than addition reactions. This characteristic behaviour is known as aromaticity. Addition reaction: Substitution reaction: Br Br 2 H E CCl + 4 Br E + H+ Br2 No Reaction SK SINGH, KMC CCl4 Following are the main criteria of aromaticity: Chemical behaviour: electrophilic aromatic substitution. Structural: bond length equalization due to cyclic delocalization of electrons. C-C bond length in benzene id 139 pm. SK SINGH, KMC Contd……………….. Enhanced stability (large resonance energy). Heat of hydrogenation of Benzene is 49.8 Kcal/mole. Heat of hydrogenation of 1,3,5- hexatriene is 85.8 Kcal/ mole. Smaller the heat of hydrogenation Magnetic: "ring current" effects. more is the stability. Benzene is ~36 Kcal/mole more stable than the 1,3,5- • anomalous chemical shifts in NMR. hexatriene. • large magnetic anisotropies • high diamagnetic susceptibility. SK SINGH, KMC Huckel’s Rule and aromaticity A molecule is aromatic if all the following conditions are fulfilled: It is cyclic, planar and it has continuous delocalization of p electrons (electrons in p orbitals) with or without the participation of lone pair(s)/ -ve charge/ +ve charge. Huckel’s rule: The delocalised p-electron system must contain a total of (4n+2)p electrons, where n is a whole number (i.e., n = 0,1,2,3,………). Note that the p-orbitals in which the electrons are delocalizing must be parallel to each other so that a continuous overlap of electrons is possible along the ring. SK SINGH, KMC Contd…………………………….. So whenever a cyclic, planar and (4n+2)p electrons are continuously delocalized, it leads to the extra stability of the molecule referred to as aromatic compound. Whenever a cyclic, planar and (4n)p electrons are continuously delocalized, it leads to the extra destability of the molecule referred to as anti-aromatic compound. When either the molecule is not cyclic or is not planar or the continuous delocalization of p electrons is not there, the molecule is aliphatic or non- aromatic compound. Stability Order: Aromatic > NonaromaticSK SINGH, KMC / Aliphatic > Antiaromatic In other words Condition for Aromatic Anti- Non- Aromaticity Compounds aromatic aromatic Compounds Compounds 1. Cyclic, planar Fulfill the first Fulfill the first Not fulfilled and continuous condition condition delocalization of p electrons 2. (4n+2)p (4n+2)p (4n)p No need to electrons electrons electrons look for this condition if 1st (Huckel’s rule) [(4n+2)p electrons condition is condition not not fulfilled fulfilled] SK SINGH, KMC Construction of MO diagram for conjugated cyclic polyenes Frost Diagram (Polygon Method): A circle is inscribed with a polygon with one vertex down; The Vertex represent the energy levels (p molecular orbital levels); The semicircle line shows the nonbonding level. p * * * 4 p3 p2 n n ……………………………………..p2 ……………………………………..p3 …………………………………….. p 1 p1 …………………………………….. …………………………………….. …………………………………….. SK SINGH, KMC p-Molecular orbital level diagram of benzene: Points to remember: Aromaticity is observed when all bonding MO’s are filled and nonbonding MOn’s, if present, are empty of completely filled. Antiaromaticity is observed if it has a electron in antibonding molecular orbital or it has half-filled bonding molecular orbital(s) / nonbonding molecular orbital(s), provided it satisfies the 1st condition of aromaticity. SK SINGH, KMC Examples: Three membered cyclic species Practice Problems Nonaromatic Aromatic Antiaromatic Antiaromatic (Unstable) Cyclopropene, Cyclopropenyl cation, Cyclopropenyl anion Nonaromatic More acidic proton Pracice Problems: O O O Cyclopropenone is relatively more stable than anticipated. Explain. Cyclopropenone has larger dipole moment than cyclopropanone. Why ? I II Resonance Hybrid (II contribute more to the resonance hybrid) as cyclopropenyl cation is aromatic in SK SINGH,nat uKMCre, which provide it extra stability. Explanation: Aromatic Antiaromatic SK SINGH, KMC Four membered cyclic species Antiaromatic Aromatic Aromatic Cyclobutadiene, Cyclobutadiene dication, Cyclobutadiene dianion 2+2+ 2-2+ 2+ 2- C4H4 C4H4 SK SINGH, KMC Explanation: SK SINGH, KMC AROMATIC HYDROCARBONS: Part II DR SUNIL K. SINGH Assistant Professor in Chemistry SK SINGH, KMC Revision………………………………………. Condition for Aromatic Anti- Non- Aromaticity Compounds aromatic aromatic Compounds Compounds 1. Cyclic, planar Fulfill the first Fulfill the first Not fulfilled and continuous condition condition delocalization of p electrons 2. (4n+2)p (4n+2)p (4n)p No need to electrons electrons electrons look for this condition if 1st (Hückel’s rule) [(4n+2)p electrons condition is condition not not fulfilled fulfilled] SK SINGH, KMC Revision………………………………………. Points to remember: Aromaticity is observed when all bonding MO’s are filled and nonbonding MOn’s, if present, are empty of completely filled. Antiaromaticity is observed if it has a electron in antibonding molecular orbital or it has half-filled bonding molecular orbital(s) / nonbonding molecular orbital(s), provided it satisfies the 1st condition of aromaticity. SK SINGH, KMC Five membered cyclic compounds / species Cyclopentadiene Cyclopentadienyl cation Cyclopentadienyl anion (Nonaromatic) (Antiaromatic) (Aromatic) Practice Problems: 1. Cyclopentadienyl anion is much more stable than allyl anion. 2. (a). Use (i) resonance theory and (ii) MO theory to predict whether 5-bromo-1,3-cyclopentadiene readily undergo CH2 solvolysis in water. (b). Show that cyclopentadienyl cation is a diradical. Aromatic Compouns Nonaromatic Compound 3. Write the structure of the smallest aromatic compound. 1. Cyclic, Planar, delocalized p-electrons 2. Follow's Huckel's Rule SK SINGH, KMC MO Diagram: Practice problem: Cyclopentadiene is more acidic than + H+ ethane . H H pKa = 15 1. Cyclic, Planar, delocalized p-electrons 2. Follow's Huckel's Rule (Aromatic Compound) + H3C CH2 + H H3C CH3 Unstable pKa = 50 SK SINGH, KMC Six membered ring compound: Benzene or ([6]-annulene) 1. It is cyclic, planar and p-electons are deloclised. 2. It follow’s Hückel’s rule. 4n+2 = 6; n = 1 (an integer) SK SINGH, KMC Seven membered ring compounds / species Cycloheptatriene Cycloheptatrienyl cation Cycloheptatrienyl anion (Tropylium cation) (Nonaromatic) (Aromatic) (Antiaromatic) + fast Practice Problem: Solution: Br + Ag+ + AgBr (ppt) Tropylium bromide (7-bromocycloheptatriene) completely dissociates in water and give ppt of Tropylium cation Aromatic in nature (More Stable) AgBr instantaneously with AgNO3, unlike the open chain analog, 3-bromo-1,4-pentadiene. + slow Explain. Br + Ag + AgBr (ppt) SK SINGH, KMC Nonaromatic (Less stable) MO Diagram: Tropone Tropolone O O OH OH Tropylium cation Aromatic SK SINGH, KMC Aromatic Solution: Practice Problem: Which of the following compounds has the greater O O dipole moment ? O O C I II I More Stable Charge is separated in this resonating structure, three membered ring becomes aromatic. O O C C II Charge is separated in this resonating structure, but does not have any additional aromaticity. SK SINGH, KMC Heterocyclic compounds N H O S N Pyrrole Furan Thiophene Pyridine Aromatic Aromatic Aromatic Aromatic lone-pair of electron is in p- orbital, involved to complete the aromaticity sextet. - 6p e ’s Sp2-Hybridised 6p e-’s Not the part of p-cloud 4n+2 = 6; n = 1 SK SINGH, KMC Lone pair of e-’s is in 3p-orbital, part of the p-electron cloud. 6p e-’s SK SINGH, KMC SK SINGH, KMC Other Heterocycles N 1. 1. It is cyclic, planar and have an fully conjugated Resonating structures of Imidazole cyclic π electron cloud. N 2. It follows Hückel‘s rule. H Contain 6 p e’s. Imidazole 4n + 2 = 6; n =1 (integer) Aromatic Lone pair of electron is part of p-electron cloud Perpendicular to p-orbital SK SINGH, KMC Other Heterocycles 1. 1. It is cyclic, planar and have an fully conjugated cyclic π electron cloud. 2. It follows Hückels rule. Contain 6 p e’s. 4n+2 =6; n=1 Oxazole Aromatic Compound Practice Problem: Isoxazole (I) is aromatic or not ? Explain. I SK SINGH, KMC Cyclooctatetraene or [8]-Annulene: Predicted to be Antiaromatic compound. [8]-Annulene “Tub” shaped structure of Cyclooctatetraene Cyclooctatetraene is not planar, (Nonaromatic compound) (Not planar) SK SINGH, KMC Polycyclic aromatic compounds Hückel’s (4n+2 )p electron rule is strictly applicable to monocyclic compounds. However, it applies to a number of polycyclic compounds as well. 14 p-electrons: aromatic SK SINGH, KMC Azulene: An isomer of naphthalene 1. It is cyclic, planar have an fully conjugated cyclic π electron cloud. 2. It follows Hückels rule. Contain 10 p e’s. 4n+ 2 = 10; n = 2 I Cyclopentadiene II III Cycloheptatriene Tropylium cation Cyclopentadienyl anion Aromatic Aromatic 1. Contribution of the resonating structure III to the resonance hybrid is more. In this charged resonating structure there is seven membered aromatic ring tropylium cation and five membered aromatic ring cyclopentadienyl anion is present. 2. The main contributing structure to the hybrid show charge separation, which is responsible for the higher dipole moment (1.0 D). SK SINGH, KMC Cyclodecapentaene or ([10]-Annulene): Cyclodecapentaene seems to be aromatic as it is cyclic, seems to be planar, conjugated system and has 10p electrons. But the fact is that it is not aromatic. The reason is that if the molecule acquires planar geometry (I), there will be angular strain in the molecule as each angle will try to be 120o (due to sp2 hybridization) but cannot do so, also it will lead to five cis double bonds. In order to become stable, it tries to exist as (II) where there are three cis and two trans double bonds. Looking closely we find that the two H atoms on the two trans double bonds come very close to each other and thus the molecule actually exists in a manner where the ring becomes puckered or non-planar so that the two half-cyclic rings are tilted in order to make these two hydrogen atoms slightly away from each other (III).
Recommended publications
  • 69-4845 BEGLAND, Robert Walter, 1941
    This dissertation has been microfilmed exactly as received 69-4845 BEGLAND, Robert Walter, 1941- PARTICIPATION AND STERIC EFFECTS OF NEIGHBORING DIVALENT OXYGEN. The Ohio State University, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan PARTICIPATION AND STEPJ.C EFFECTS OF NEIGHBORING DIVALENT OXYGEN DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Robert Walter Beglnnd, B.S., M.S. * it * * it it * The Ohio State University 1968 Approved by Adviser \J Departmeirt of Chemistry DEDICATION This dissertation is dedicated to my w ife June, ny con Michael Brian and my son Douglas Samuel. i i ACKNOWLEDGMENT The author wishes to express his appreciation to Dr. L. A. Paquette for his guidance, encouragement and considerable time spent in the course of this research. The author also wishes to express his appreciation to his parents, Mr. and Mrs. Walter C. Bcgland, for their assistance and encouragement throughout his college training, and to lir. and Mrs. Lester Berndt. i i i VITA July 23, 1941 Born - Oak Park, Illinois 1963 B.S. in Education, The Ohio State University Columbus, Ohio 1965 M.S., The Ohio State University Columbus, Ohio 1968 Ph.D., The Ohio State University Columbus, Ohio PUBLICATIONS 1. Transannular Participation of Ether Oxygen in the Hydrolysis of a Mesocyclic Dienamine, J. Am. Chen. Soc. 87, 3784 (1965). 2. Stabilized Derivatives of cis,cis,cis-1,3.5-Cyclodecatricne Keto-Enol Tautomerism in 2,3-DicarboiEeth.oxy-cis,c is -3,5~ cyclodecadienones and c.is-3-Cycloalkenones.
    [Show full text]
  • Chapter 1 Tropone and Tropolone
    School of Molecular and Life Sciences New Routes to Troponoid Natural Products Jason Matthew Wells This thesis is presented for the Degree of Doctor of Philosophy of Curtin University November 2018 Declaration To the best of my knowledge and belief this thesis contains no material previously pub- lished by any other person except where due acknowledgement has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any other university. Signature: Date: i Abstract Malaria is an infectious disease found in humans and other animals, it is caused by a single-cell parasite of the Plasmodium genus with many different substrains. Of these, P. falciparum is the most deadly to humans causing the majority of deaths. Although research into the area of antimalarial compounds is wide spread, few have been devel- oped with new structural features. Cordytropolone 37 is a natural product isolated in 2001 from the insect pathogenic fungus Cordyceps sp. BCC 1681 and has been shown to have antimalarial activity against P. falciparum. It has a structure unrelated to antimalarial com- pounds currently used in therapy. It does not contain a peroxide bridge as with artemisinin 25 or quinoline rings as with chloroquine 22. This unique structure indicates that it could possibly interact with the malaria parasite in a fashion unlike current treatments. In order for cordytropolone to be further developed as a potential treatment, it must first be synthe- sised in a laboratory environment. This study attempts to develop the first total synthesis of cordytropolone. H HO O N O O N O N H H H O O Cl HO O 22 25 37 Figure 0.0.1: Cordytropolone 37 has a unique structure compared to the current common malaria treatments The first method investigated towards the total synthesis of cordytropolone involved an intramolecular Buchner ring expansion.
    [Show full text]
  • On the Use of Energy Decomposition Analyses to Unravel the Origin of the Relative Stabilities of Isomers
    ON THE USE OF ENERGY DECOMPOSITION ANALYSES TO UNRAVEL THE ORIGIN OF THE RELATIVE STABILITIES OF ISOMERS Majid El Hamdi Lahfid Dipòsit legal: Gi. 1531-2013 http://hdl.handle.net/10803/124220 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora.
    [Show full text]
  • Mass Spectrometry : Apparatus
    Mass – Spectrometry Mass spectrometry : Apparatus Mass spectrometry :Aparatus MASS Spectrum of acetophenone Fragment Ions Molecular ion (mass ion) MASS Spectrum of Benzamide Mass spectrometry: Processing steps of the sample 1. Ionization of molecules 2. Fragmentation of ionized molecules 3. Acceleration of ions 4. Analysys of the ions Resolution of mass spectrometer 푀 푀푛 10001 푅 = = = = 10000 Δ푀 푀푛−푀푚 10001−10000 M m Mn H ℎ ∗ 100 ≤ 10 % 퐻 Ion sources • 1. Electron ionization (EI) (Electron Impact) • 2. Chemical Ionization (CI) • 3. Fast Atom Bombardment (FAB) • 4. Laser Desorption (LD) • 5. Matrix-Assisted Laser Desorption Ionization (MALDI) • 6. ElectroSpray ionization (ESI) Electron Ionization (EI) – Ionization Chamber Electron Ionization (EI) What is going on physically? Electron Ionization - Energy of electrons Each electron is associated to a wave whose wavelength λ is given by ℎ λ = 푚 υ where m is its mass, v its velocity and h Planck’s constant. Wavelength is 2.7Å for a kinetic energy of 20 eV and 1.4 Å for 70 eV. Number of ions produced as a function of the electron energy. Advantages of EI 1. Reproducible method 2. High Ionization Efficiency 3. All vaporized molecules can be ionized (non polar and insoluble) 4. Molecular structural information (fragmentation) Disadvantages of EI 1. Only +ve ions are formed 2. Sample has to be volatile 3. Limits to 600Da or less MW 4. Extensive fragmentation Chemical Ionization (CI) 1. Sample is injected in atmosfere of gas (methane, izobutane, ammonia). 2. Gas is ionised by EI method. 3. During the collisions of methane ions with molecules of sample, energy is ransfered, as well as protons is transfered.
    [Show full text]
  • Approaches to Bridged Annulenes Using Both Classical and Reactive Intermediates. the Synthesis of the First Diatropic Bridged Th
    APPROACHES TO BRIDGED ANNULENES USING BOTH CLASSICAL AND REACTIVE INTERMEDIATES. THE SYNTHESIS OF THE FIRST DIATROPIC BRIDGED THIAANNULENE AND SEVERAL FUSED DIHYDROPYRENES by VIVEKANANTAN S. HER B.Sc., Madurai Kamaraj University, IN D IA 1984 M.Sc., Indian Institute of Technology, Bombay, INDIA 1986 A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ill the Department of Chemistry We accept this dissertation as conforming to the required standard Dr. R. H. M itchell Dr. A. Fischer Dr. T. M. Fyles Dr. E. E. Ishiguro Dr. R. V. W illiams © VIVEKANANTAN S. IYER, 1994 University of Victoria All rights reserved. This dissertation may not he reproduced in whole or in part, by mimeograph or by any other means without the permission of the author. 11 Supervisor: Professor Dr. R. H. Mitchell ABSTRACT The successful synthesis of the first bri~ged thia[13]annulene, trans-9b,9c­ dimethyl-9b,9c-dihydrophenyleno[l,9-bc)thiophene, 120, was achieved in 11 steps, starting from 3-methylthiophene, 111. Using the external and internal proton chemical shifts of 120, it was shown unambiguously to be the first diatropic bridged thia annulene. From the proton chemical shifts of 120, its diatropicity was estimated to be about 35-40% that of dimethyldihydropyrene 12. Synthesis of the potential intermediate 2,4-bis(bromomethyl)-3-methylthiophene, 110, is expected to lead to synthese;, of a variety of new bridged annulenes. Synthesis of the quasi-biphenyiene, 155, was attempted. The precursor to 155, 1,3-bis(methoxymethyl}-2-methylbiphenylene, 170, was synthesised from 1,2- dibromobenzene, 82, in 4 steps.
    [Show full text]
  • Cycloalkanes, Cycloalkenes, and Cycloalkynes
    CYCLOALKANES, CYCLOALKENES, AND CYCLOALKYNES any important hydrocarbons, known as cycloalkanes, contain rings of carbon atoms linked together by single bonds. The simple cycloalkanes of formula (CH,), make up a particularly important homologous series in which the chemical properties change in a much more dramatic way with increasing n than do those of the acyclic hydrocarbons CH,(CH,),,-,H. The cyclo- alkanes with small rings (n = 3-6) are of special interest in exhibiting chemical properties intermediate between those of alkanes and alkenes. In this chapter we will show how this behavior can be explained in terms of angle strain and steric hindrance, concepts that have been introduced previously and will be used with increasing frequency as we proceed further. We also discuss the conformations of cycloalkanes, especially cyclo- hexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo- alkenes and cycloalkynes. 12-1 NOMENCLATURE AND PHYSICAL PROPERTIES OF CYCLOALKANES The IUPAC system for naming cycloalkanes and cycloalkenes was presented in some detail in Sections 3-2 and 3-3, and you may wish to review that ma- terial before proceeding further. Additional procedures are required for naming 446 12 Cycloalkanes, Cycloalkenes, and Cycloalkynes Table 12-1 Physical Properties of Alkanes and Cycloalkanes Density, Compounds Bp, "C Mp, "C diO,g ml-' propane cyclopropane butane cyclobutane pentane cyclopentane hexane cyclohexane heptane cycloheptane octane cyclooctane nonane cyclononane "At -40". bUnder pressure. polycyclic compounds, which have rings with common carbons, and these will be discussed later in this chapter.
    [Show full text]
  • Recent Studies on the Aromaticity and Antiaromaticity of Planar Cyclooctatetraene
    Symmetry 2010 , 2, 76-97; doi:10.3390/sym2010076 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Review Recent Studies on the Aromaticity and Antiaromaticity of Planar Cyclooctatetraene Tohru Nishinaga *, Takeshi Ohmae and Masahiko Iyoda Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; E-Mails: [email protected] (T.O.); [email protected] (M.I.) * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 29 December 2009; in revised form: 23 January 2010 / Accepted: 4 February 2010 / Published: 5 February 2010 Abstract: Cyclooctatetraene (COT), the first 4n π-electron system to be studied, adopts an inherently nonplanar tub-shaped geometry of D2d symmetry with alternating single and double bonds, and hence behaves as a nonaromatic polyene rather than an antiaromatic compound. Recently, however, considerable 8 π-antiaromatic paratropicity has been shown to be generated in planar COT rings even with the bond alternated D4h structure. In this review, we highlight recent theoretical and experimental studies on the antiaromaticity of hypothetical and actual planar COT. In addition, theoretically predicted triplet aromaticity and stacked aromaticity of planar COT are also briefly described. Keywords: antiaromaticity; cyclooctatetraene; NMR chemical shifts; quantum chemical calculations; ring current 1. Introduction Cyclooctatetraene (COT) was first prepared by Willstätter in 1911 [1,2]. At that time, the special stability of benzene was elusive and it was of interest to learn the reactivity of COT as the next higher vinylogue of benzene. However, unlike benzene, COT was found to be highly reactive to electrophiles just like other alkenes.
    [Show full text]
  • Alkenes and Alkynes
    02/21/2019 CHAPTER FOUR Alkenes and Alkynes H N O I Cl C O C O Cl F3C C Cl C Cl Efavirenz Haloprogin (antiviral, AIDS therapeutic) (antifungal, antiseptic) Chapter 4 Table of Content * Unsaturated Hydrocarbons * Introduction and hybridization * Alkenes and Alkynes * Benzene and Phenyl groups * Structure of Alkenes, cis‐trans Isomerism * Nomenclature of Alkenes and Alkynes * Configuration cis/trans, and cis/trans Isomerism * Configuration E/Z * Physical Properties of Hydrocarbons * Acid‐Base Reactions of Hydrocarbons * pka and Hybridizations 1 02/21/2019 Unsaturated Hydrocarbons • Unsaturated Hydrocarbon: A hydrocarbon that contains one or more carbon‐carbon double or triple bonds or benzene‐like rings. – Alkene: contains a carbon‐carbon double bond and has the general formula CnH2n. – Alkyne: contains a carbon‐carbon triple bond and has the general formula CnH2n‐2. Introduction Alkenes ● Hydrocarbons containing C=C ● Old name: olefins • Steroids • Hormones • Biochemical regulators 2 02/21/2019 • Alkynes – Hydrocarbons containing C≡C – Common name: acetylenes Unsaturated Hydrocarbons • Arene: benzene and its derivatives (Ch 9) 3 02/21/2019 Benzene and Phenyl Groups • We do not study benzene and its derivatives until Chapter 9. – However, we show structural formulas of compounds containing a phenyl group before that time. – The phenyl group is not reactive under any of the conditions we describe in chapters 5‐8. Structure of Alkenes • The two carbon atoms of a double bond and the four atoms bonded to them lie in a plane, with bond angles of approximately 120°. 4 02/21/2019 Structure of Alkenes • Figure 4.1 According to the orbital overlap model, a double bond consists of one bond formed by overlap of sp2 hybrid orbitals and one bond formed by overlap of parallel 2p orbitals.
    [Show full text]
  • Sc-Homoaromaticity
    This is a repository copy of Modern Valence-Bond Description of Homoaromaticity. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/106288/ Version: Accepted Version Article: Karadakov, Peter Borislavov orcid.org/0000-0002-2673-6804 and Cooper, David L. (2016) Modern Valence-Bond Description of Homoaromaticity. Journal of Physical Chemistry A. pp. 8769-8779. ISSN 1089-5639 https://doi.org/10.1021/acs.jpca.6b09426 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Modern Valence-Bond Description of Homoaromaticity Peter B. Karadakov; and David L. Cooper; Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K. Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K. Abstract Spin-coupled (SC) theory is used to obtain modern valence-bond (VB) descriptions of the electronic structures of local minimum and transition state geometries of three species that have been con- C sidered to exhibit homoconjugation and homoaromaticity: the homotropenylium ion, C8H9 , the C cycloheptatriene neutral ring, C7H8, and the 1,3-bishomotropenylium ion, C9H11.
    [Show full text]
  • Synthetic and Mechanistic Studies of 3, 3-Dimethoxycyclopropene
    SYNTHETIC AND MECHANISTIC STUDIES OF 3 , 3-DIMETHOXYCYCLOPROPENE By RUDOLPH MILTON ALBERT, JR. A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1973 , This Dissertation is Dedicated to Carol and Elizabeth , Laura , Robert Rebecca and Daniel ACKNOWLEDGEMENTS I wish to express my deep appreciation to Dr. G.B. Butler for his friendship and guidance as my research director. The advice and suggestions of the other members of my supervisory committee are also acknowledged with gratitude. Hy colleagues in the laboratory made working more pleasant and for this I am grateful. A special note of thanks is extended to Dr. Richard L. Veazey for many valuable discussions and helpful suggestions. I wish also to thank the management of the Organic Chemicals Group, Glidden-Durkee Division of the SCM Corporation and especially Mr. R.P.T. Young for a very generous leave of absence which made it possible to come here at all. The patience and skill of my typist, Mrs. Jimmie McLeod, was of inestimable value in the preparation of this manuscript and I would like to give special recognition to her. Finally, I wish to give a special expression of gratitude to my family. All have sacrificed much to make the completion of this program possible and their abiding love has been a source of strength and determination. Ill TABLE OF CONTENTS Page ACKNOWLEDGEMENTS iii LIST OF TABLES vi LIST OF FIGURES vii ABSTRACT viii CHAPTER I. INTRODUCTION 1 II. STUDIES RELATED TO THE PREPARATION OF 3,3-DIMETHOXYCYCLOPROPENE 7 A.
    [Show full text]
  • Non-Empirical Calculations on the Electronic Structure of Olefins and Aromatics
    NON-EMPIRICAL CALCULATIONS ON THE ELECTRONIC STRUCTURE OF OLEFINS AND AROMATICS by Robert H. Findlay, B.Sc. Thesis presented for the Degree of Doctor of philosophy University of Edinburgh December 1973 U N /),, cb CIV 3 ACKNOWLEDGEMENTS I Wish to express my gratitude to Dr. M.H. Palmer for his advice and encouragement during this period of study. I should also like to thank Professor J.I.G. Cadogan and Professor N. Campbell for the provision of facilities, and the Carnegie Institute for the Universities of Scotland for a Research Scholarship. SUMMARY Non-empirical, self-consistent field, molecular orbital calculations, with the atomic orbitals represented by linear combinations of Gaussian-type functions have been carried out on the ground state electronic structures of some nitrogen-, oxygen-, sulphur- and phosphorus-containing heterocycles. Some olefins and olefin derivatives have also been studied. Calculated values of properties have been compared with the appropriate experimental quantities, and in most cases the agreement is good, with linear relationships being established; these are found to have very small standard deviations. Extensions to molecules for which there is no experimental data have been made. In many cases it has been iôtrnd possible to relate the molecular orbitals to the simplest member of a series, or to the hydrocarbon analogue. Predictions of the preferred geometry of selected molecules have been made; these have been used to predict inversion barriers and reaction mechanisms. / / The extent of d-orbital participation in molecules containing second row atoms has been investigated and found to be of trivial importance except in molecules containing high valence states of the second row atoms.
    [Show full text]
  • 6902206.PDF (3.699Mb)
    This dissertation has been microfilmed exactly as received 69-2206 IRE LAN, John Ralph Smiley, 1935- 9, lO-DlSUBSTlTUTED-9, lO-DlHYDRONAPHTHALENE CHEMISTRY. The University of Oklahoma, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., An n Arbor, Michigan THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE 9,10-DISUBSTITUTED-9,10-DIHYDR0NAPHTHALENE CHEMISTRY A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY JOHN RALPH SMILEY IRELAN Norman, Oklahoma 1968 9,10-DISUBSTITUTED-9,lO-DIHYDROWAPHTHALENE CHEMISTRY APPRCWED BY DISSERTATION COMMITTEE To Nancy and Our Parents ACKNOWLEDGMENTS The author wishes to express his appreciation to Dr. J. J. Bloomfield, who suggested these problems, for his council and assistance during the course of this work. Ap­ preciation is extended to the University of Oklahoma for financial aid in the form of teaching assistantships and for research assistantships on National Science Foundation Grants GP 260 and GP 44^9. Appreciation is also extended to Dr. Tom Karns, Mr. A1 Peters, and Dr. Francis J. Schmitz for their aid in the absence of Dr. Bloomfield. To many members of the faculty and my fellow graduate students are given my thanks for their assistance and fellowship. Finally, the author wishes to express his love and thanks to his wife, Nancy, whose patience, effort, and en­ couragement made this work possible. IV TABLE OF CONTENTS Page LIST OF TABLES .............................. vi INTRODUCTION................................. 1 Recent Literature ....................... 20 RESULTS AND DISCUSSION ....................... 26 Part I, Five-Membered Lactones ........... 26 Summary ................................ 36 Part II, Five-Membered Bridges ........... 37 Summary ................................ 46 Part III, Four-Membered Rings ...........
    [Show full text]