Organic Synthesis Using Bimetallic Catalysis
Total Page:16
File Type:pdf, Size:1020Kb
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2020-04-23 Organic Synthesis using Bimetallic Catalysis Chloe Christine Ence Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Physical Sciences and Mathematics Commons BYU ScholarsArchive Citation Ence, Chloe Christine, "Organic Synthesis using Bimetallic Catalysis" (2020). Theses and Dissertations. 8397. https://scholarsarchive.byu.edu/etd/8397 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Organic Synthesis Using Bimetallic Catalysis Chloe Ence A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy David J. Michaelis, Chair Steven L. Castle Merritt B. Andrus Joshua L. Price Joshua L. Andersen Department of Chemistry and Biochemistry Brigham Young University Copyright © 2020 Chloe Ence All Rights Reserved ABSTRACT Organic Synthesis Using Bimetallic Catalysis Chloe Ence Department of Chemistry and Biochemistry, BYU Doctor of Philosophy Bimetallic Catalysis is an emerging field of study that uses two metals to cooperatively perform organic transformations. These metals can serve to activate or bind substrates in order to increase the rate and selectivity of reactions. This work first describes the synthesis and utilization of six new chiral, titanium-containing phosphinoamide ligands. These Lewis acidic ligands withdraw electron density from an active palladium center to induce chirality and increase the rate of allylic amination of hindered, secondary N-alkyl amines. X-ray quality crystals were grown for each ligand and completed the allylic amination of hindered secondary amines in minutes whereas other non-titanium-containing ligands produced trace product. Although enantioselectivity was low initially, through a dynamic kinetic resolution enantioselectivity was increased over time, reaching 53% enantioselectivity. The second type of bimetallic catalysis discussed is dinuclear Pd(II) and Pd(I) catalysis. These dimers were built on a 2-phosphinoamide ligand scaffold and present interesting molecular structure and unique reactivity. These dimers were found to perform tandem aryl- ketone coupling to produce disubstituted naphthalene products under oxidative conditions. It is proposed that the Pd(II) dimer undergoes oxidative addition to produce a Pd(III) dimer which subsequently produces an aryl-ketone intermediate. This process is made possible by the cooperativity of the two palladium centers which enable the formation of a Pd(III) dimer, circumventing the need for the high energy Pd(IV) oxidation state. Oxidative conditions then allows coupling and cyclization of a second ketone to form the naphthalene product. Keywords: bimetallic catalysis, organic synthesis, heterodimer, homodimer, allylic amination, naphthalene ACKNOWLEDGEMENTS I would like to thank my committee members for their feedback. My advisor and mentor, David Michaelis, has provided guidance, time, and patience to help me learn, grow, and achieve my goals during my PhD. I also thank other professors, graduate students, and undergraduate students for their help in pursuing and completing projects. Thank you to my family and friends, who have provided encouragement and advice throughout my life and time at BYU. TABLE OF CONTENTS TITLE PAGE .................................................................................................................................... i ABSTRACT ................................................................................................................................... ii ACKNOWLEDGEMENTS .......................................................................................................... iii TABLE OF CONTENTS ............................................................................................................... iv LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ...................................................................................................................... vii Chapter 1 ......................................................................................................................................... 1 1.1 Introduction ........................................................................................................................... 1 1.2 Early Bimetallic Chemistry ................................................................................................... 2 1.3 Electronic Communication Between Metals ......................................................................... 3 1.4 Dinuclear Nickel Catalysis ................................................................................................... 4 1.6 Triple-bonded [M]–Co Catalysts .......................................................................................... 9 1.7 Ni–[M] Catalysis ................................................................................................................. 12 1.8 Bimetallic Paddlewheel Complexes .................................................................................... 13 1.9 Dicopper Azide-Alkyne Cycloaddition ................................................................................ 15 1.10 Gold-Catalyzed Oxidative Heteroarylation ...................................................................... 16 1.11 Pd(III)–Pd(III) dimer ........................................................................................................ 17 1.12 Ti–Pd Catalyzed allylic amination .................................................................................... 17 1.13 Pd–Pd dimer ..................................................................................................................... 19 1.14 Conclusion ........................................................................................................................ 20 1.15 References ......................................................................................................................... 21 Chapter 2 ....................................................................................................................................... 29 2.1 Introduction ......................................................................................................................... 29 2.2 Chiral Ligand Synthesis ...................................................................................................... 31 2.3 Reactivity Studies ................................................................................................................ 33 2.4 Enantioselectivity Studies ................................................................................................... 34 2.5 o-Tolyl Derivatives .............................................................................................................. 36 2.6 Reaction Conditions Optimization ...................................................................................... 36 2.7 Conclusion .......................................................................................................................... 37 iv Chapter 3 ....................................................................................................................................... 41 3.1 Introduction ......................................................................................................................... 41 3.2 New Pd(II) Dimer ................................................................................................................ 44 3.3 Synthesis of New Dimers ..................................................................................................... 45 3.4 Pd(II) Dimer Molecular and Orbital Struture .................................................................... 46 3.5 Naphthalene Intro and Synthesis ........................................................................................ 47 3.6 Naphthalene Synthesis Optimizations ................................................................................. 49 3.7 Substrate Scope ................................................................................................................... 51 3.8 Mechanistic Studies ............................................................................................................. 53 3.9 Heterocoupling of Methyl Ketones ..................................................................................... 56 3.10 Conclusion ........................................................................................................................ 57 3.11 References ......................................................................................................................... 57 Chapter 4 ....................................................................................................................................... 62 4.1 Introduction ......................................................................................................................... 62 4.2 Proximity-Driven Reactivity with a Bifunctional Peptide-Based Catalyst ......................... 64 4.3 Proximity-Driven Enantioselectivity