Academic Genealogy of Alistair Savage

Total Page:16

File Type:pdf, Size:1020Kb

Academic Genealogy of Alistair Savage Nilos Kabasilas Elissaeus Judaeus Demetrios Kydones Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Vittorino da Feltre Marsilio Ficino Cristoforo Landino 1416 Università di Padova 1462 Università di Firenze Heinrich von Langenstein Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Angelo Poliziano 1363, 1375 Université de Paris 1433 Constantinople / Università di Mantova Università di Mantova 1477 Università di Firenze Johannes von Gmunden Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Demetrios Chalcocondyles Gaetano da Thiene Sigismondo Polcastro Scipione Fortiguerra Moses Perez Leo Outers 1406 Universität Wien 1478 Università degli Studi di Ferrara 1452 Mystras / Accademia Romana 1493 Università di Firenze 1485 Université Catholique de Louvain Georg von Peuerbach Johann (Johannes Kapnion) Reuchlin Matthaeus Adrianus Alexander Hegius Jan Standonck Georgius Hermonymus Janus Lascaris Nicoletto Vernia Pietro Roccabonella Pelope Girolamo (Hieronymus Aleander) Aleandro Jean Tagault François Dubois Maarten (Martinus Dorpius) van Dorp 1440 Universität Wien 1477, 1481 Universität Basel / Université de Poitiers 1474 1474, 1490 Collège Sainte-Barbe / Collège de Montaigu 1472 Università di Padova Università di Padova Università di Padova 1499, 1508 Università di Padova 1516 Université de Paris 1504, 1515 Université Catholique de Louvain Desiderius Erasmus Jacobus (Jacques Masson) Latomus Niccolò Leoniceno Luca Pacioli Johannes Müller Regiomontanus Jan (Johannes Campensis) van Campen Guillaume Budé Marco Musuro Pietro Pomponazzi Rutger Rescius Jacobus (Jacques Dubois) Sylvius Petrus (Pieter de Corte) Curtius 1497 /1506 Collège de Montaigu 1502 Collège de Montaigu 1446 Scuola Pubblica di Vicenza 1457 Universität Leipzig / Universität Wien 1519 Université Catholique de Louvain / Universität Ingolstadt 1486, 1491 Université d'Orléans / Université de Paris 1486 Università di Firenze 1487 Università di Padova 1513 Université de Paris 1530 Université de Paris / Université de Montpellier 1513, 1530 Université Catholique de Louvain 1506 University of Turin 1519 Katholieke Universiteit Leuven 1453 Università di Padova Giovanni Battista della Monte Domenico Maria Novara da Ferrara Leonhard (Leonard Vitreatoris z Dobczyc) von Dobschütz Bonifazius Erasmi Ulrich Zasius Nicolas (Nicolaes Cleynaerts) Clénard Vittore Trincavelli Johannes Winter von Andernach Gemma (Jemme Reinerszoon) Frisius Università di Padova 1483 Università di Firenze 1489 Uniwersytet Jagielloński 1509 Martin-Luther-Universität Halle-Wittenberg 1501 Albert-Ludwigs-Universität Freiburg im Breisgau 1515, 1521 Université Catholique de Louvain Università di Padova 1527, 1532 Université Catholique de Louvain / Collège de Tréguier 1529, 1536 Université Catholique de Louvain Università degli Studi di Ferrara Nicolaus (Mikołaj Kopernik) Copernicus Johannes Volmar Johannes Stöffler Jakob Milich Bassiano Landi Jacques Toussain Johannes (Johann Sturm) Sturmius Andreas (Andries van Wesel) Vesalius 1499 Uniwersytet Jagielloński / Università di Bologna / Università degli Studi di Ferrara / Università di Padova 1515 Martin-Luther-Universität Halle-Wittenberg 1476 Universität Ingolstadt 1520, 1524 Albert-Ludwigs-Universität Freiburg im Breisgau / Universität Wien 1542 Università di Padova 1521 Université de Paris 1527 Université Catholique de Louvain 1537 Université Catholique de Louvain / Università di Padova Georg Joachim von Leuchen Rheticus Philipp Melanchthon Erasmus Reinhold Petrus (Pierre de La Ramée) Ramus Antonio Musa Brasavola Matteo Realdo (Renaldus Columbus) Colombo Thomas Cranmer 1535 Martin-Luther-Universität Halle-Wittenberg 1511, 1514 Ruprecht-Karls-Universität Heidelberg / Eberhard-Karls-Universität Tübingen 1535 Martin-Luther-Universität Halle-Wittenberg 1536 Collège de Navarre 1520 Università degli Studi di Ferrara 1544 Università di Padova 1515 University of Cambridge Theodor Zwinger Immanuel Tremellius Sebastian (Theodoricus) Dietrich Caspar Peucer Johannes Hommel Valentine Naibod Gabriele Falloppio 1553 Collège de France 1549 University of Cambridge 1544 Martin-Luther-Universität Halle-Wittenberg 1545 Martin-Luther-Universität Halle-Wittenberg 1543 Martin-Luther-Universität Halle-Wittenberg Martin-Luther-Universität Halle-Wittenberg / Universität Erfurt 1547 Università di Padova / Università degli Studi di Ferrara 1559 Università di Padova 1561 Ruprecht-Karls-Universität Heidelberg Johannes Caselius Valentin (Valentinus Otho) Otto Valentin Thau John Craig Hieronymus (Girolamo Fabrici d'Acquapendente) Fabricius Rudolph (Snel van Royen) Snellius 1560, 1566 Martin-Luther-Universität Halle-Wittenberg / Universität Leipzig / Università di Pisa 1570 Martin-Luther-Universität Halle-Wittenberg 1555 Universität Leipzig 1580 Universität Basel 1559 Università di Padova 1572 Universität zu Köln / Ruprecht-Karls-Universität Heidelberg Salomon Alberti Paul Wittich Petrus Ryff Nicolò Fontana Tartaglia 1564, 1574 Martin-Luther-Universität Halle-Wittenberg / Università di Padova 1566 Universität Leipzig / Martin-Luther-Universität Halle-Wittenberg 1584 Universität Basel Andreas Schato Duncan Liddel Jan Jessenius Jacobus (Jacob Harmensz.) Arminius Ostilio Ricci 1562, 1578 Martin-Luther-Universität Halle-Wittenberg 1582,1596 Universität Viadrina Frankfurt an der Oder / Universität Breslau / Universität Helmstedt 1588, 1591 Universität Leipzig / Università di Padova 1582 Philipps-Universität Marburg / Universiteit Leiden Universita' di Brescia Melchior Jöstel Ernestus Hettenbach Heinrich Maius Cornelius Martini Gilbert Jacchaeus Galileo Galilei 1583, 1600 Martin-Luther-Universität Halle-Wittenberg 1576, 1591 Martin-Luther-Universität Halle-Wittenberg 1592 Universität Helmstedt 1601/1603/1611 University of St. Andrews / Universität Helmstedt / Universiteit Leiden 1585 Università di Pisa Georg Calixt Ambrosius Rhodius Wolfgang Franz Jacobus Martini Adriaan van den Spieghel Benedetto Castelli 1607 Universität Helmstedt 1600, 1610 Martin-Luther-Universität Halle-Wittenberg 1590 Martin-Luther-Universität Halle-Wittenberg 1596 Universität Helmstedt 1603 Université Catholique de Louvain / Università di Padova 1610 Università di Padova Paul Röber Christoph Notnagel Andreas Kunad Abraham Klein (Calovius) Daniel Sennert Emmanuel Stupanus Adolph Vorstius Evangelista Torricelli Marin Mersenne 1613 Martin-Luther-Universität Halle-Wittenberg 1630 Martin-Luther-Universität Halle-Wittenberg 1632 Universität Rostock 1594, 1599 Martin-Luther-Universität Halle-Wittenberg 1613 Universität Basel 1619, 1622 Universiteit Leiden / Università di Padova Università di Roma La Sapienza 1611 Université Paris IV-Sorbonne 1617 Martin-Luther-Universität Halle-Wittenberg Johann Andreas Quenstedt Aegidius Strauch Georg Großhain Werner Rolfinck Franciscus de le Boë Sylvius Vincenzo Viviani Gilles Personne de Roberval 1643, 1644 Universität Helmstedt / Martin-Luther-Universität Halle-Wittenberg 1651, 1657 Martin-Luther-Universität Halle-Wittenberg 1629 Martin-Luther-Universität Halle-Wittenberg 1625 Martin-Luther-Universität Halle-Wittenberg / Università di Padova 1634, 1637 Universiteit Leiden / Universität Basel 1642 Università di Pisa Michael Walther, Jr. Johannes Musaeus Balthasar Widmarcter Georg Wolffgang Wedel Isaac Barrow Benjamin Pulleyn 1661, 1687 Martin-Luther-Universität Halle-Wittenberg 1634 Universität Erfurt 1640 Friedrich-Schiller-Universität Jena 1667 Friedrich-Schiller-Universität Jena / Universiteit Leiden 1652 University of Cambridge Johann Pasch Johann Georg Macasius Rudolf Wilhelm Krause Johann Adolph Wedel Isaac Newton 1683 Martin-Luther-Universität Halle-Wittenberg 1638, 1640 Friedrich-Schiller-Universität Jena 1671 Universiteit Leiden 1694 Friedrich-Schiller-Universität Jena 1668 University of Cambridge Friedrich Leibniz Georg Balthasar Metzger Georg Ernst Stahl Simon Paul Hilscher Georg Erhard Hamberger Roger Cotes 1622 Universität Leipzig 1644, 1650 Friedrich-Schiller-Universität Jena / Universität Basel 1684 Friedrich-Schiller-Universität Jena 1704 Friedrich-Schiller-Universität Jena 1721 Friedrich-Schiller-Universität Jena 1706 University of Cambridge Jakob Thomasius Elias Rudolph Camerarius, Sr. Michael Alberti Johann Andreas Segner Robert Smith 1643 Universität Leipzig 1663 Eberhard-Karls-Universität Tübingen 1703, 1704 Martin-Luther-Universität Halle-Wittenberg 1726, 1734 Friedrich-Schiller-Universität Jena 1715 University of Cambridge Otto Mencke Rudolf Jakob Camerarius Elias Rudolph Camerarius, Jr. Johann Georg Büsch Walter Taylor 1665 Universität Leipzig 1684, 1686 Eberhard-Karls-Universität Tübingen 1691 Eberhard-Karls-Universität Tübingen 1752 Georg-August-Universität Göttingen 1723 University of Cambridge Johann Christoph Wichmannshausen Johann Andreas Planer Burchard David Mauchart Ferdinand Christoph Oetinger Johann Elert Bode Stephen Whisson 1685 Universität Leipzig 1686, 1709 Martin-Luther-Universität Halle-Wittenberg / Eberhard-Karls-Universität Tübingen 1722 Eberhard-Karls-Universität Tübingen 1739 Martin-Luther-Universität Halle-Wittenberg Handelsakademie Hamburg 1742 University of Cambridge Ignatz Mühlwenzel Christian August Hausen Phillip Friedrich Gmelin John Cranke Thomas Postlethwaite Henry Bracken Edward Waring 1713 Martin-Luther-Universität Halle-Wittenberg 1742 Eberhard-Karls-Universität Tübingen 1774 University of Cambridge 1756 University of Cambridge 1760 University of Cambridge Joseph Stepling Abraham Gotthelf Kästner Johann Friedrich
Recommended publications
  • “A Valuable Monument of Mathematical Genius”\Thanksmark T1: the Ladies' Diary (1704–1840)
    Historia Mathematica 36 (2009) 10–47 www.elsevier.com/locate/yhmat “A valuable monument of mathematical genius” ✩: The Ladies’ Diary (1704–1840) Joe Albree ∗, Scott H. Brown Auburn University, Montgomery, USA Available online 24 December 2008 Abstract Our purpose is to view the mathematical contribution of The Ladies’ Diary as a whole. We shall range from the state of mathe- matics in England at the beginning of the 18th century to the transformations of the mathematics that was published in The Diary over 134 years, including the leading role The Ladies’ Diary played in the early development of British mathematics periodicals, to finally an account of how progress in mathematics and its journals began to overtake The Diary in Victorian Britain. © 2008 Published by Elsevier Inc. Résumé Notre but est de voir la contribution mathématique du Journal de Lady en masse. Nous varierons de l’état de mathématiques en Angleterre au début du dix-huitième siècle aux transformations des mathématiques qui a été publié dans le Journal plus de 134 ans, en incluant le principal rôle le Journal de Lady joué dans le premier développement de périodiques de mathématiques britanniques, à finalement un compte de comment le progrès dans les mathématiques et ses journaux a commencé à dépasser le Journal dans l’Homme de l’époque victorienne la Grande-Bretagne. © 2008 Published by Elsevier Inc. Keywords: 18th century; 19th century; Other institutions and academies; Bibliographic studies 1. Introduction Arithmetical Questions are as entertaining and delightful as any other Subject whatever, they are no other than Enigmas, to be solved by Numbers; .
    [Show full text]
  • Mathematical Genealogy of the Wellesley College Department Of
    Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe
    [Show full text]
  • Philosophical Transactions (A)
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1889. A. A bney (W. de W.). Total Eclipse of the San observed at Caroline Island, on 6th May, 1883, 119. A bney (W. de W.) and T horpe (T. E.). On the Determination of the Photometric Intensity of the Coronal Light during the Solar Eclipse of August 28-29, 1886, 363. Alcohol, a study of the thermal properties of propyl, 137 (see R amsay and Y oung). Archer (R. H.). Observations made by Newcomb’s Method on the Visibility of Extension of the Coronal Streamers at Hog Island, Grenada, Eclipse of August 28-29, 1886, 382. Atomic weight of gold, revision of the, 395 (see Mallet). B. B oys (C. V.). The Radio-Micrometer, 159. B ryan (G. H.). The Waves on a Rotating Liquid Spheroid of Finite Ellipticity, 187. C. Conroy (Sir J.). Some Observations on the Amount of Light Reflected and Transmitted by Certain 'Kinds of Glass, 245. Corona, on the photographs of the, obtained at Prickly Point and Carriacou Island, total solar eclipse, August 29, 1886, 347 (see W esley). Coronal light, on the determination of the, during the solar eclipse of August 28-29, 1886, 363 (see Abney and Thorpe). Coronal streamers, observations made by Newcomb’s Method on the Visibility of, Eclipse of August 28-29, 1886, 382 (see A rcher). Cosmogony, on the mechanical conditions of a swarm of meteorites, and on theories of, 1 (see Darwin). Currents induced in a spherical conductor by variation of an external magnetic potential, 513 (see Lamb). 520 INDEX.
    [Show full text]
  • Where, Oh Waring? the Classic Problem and Its Extensions
    Where, Oh Waring? The Classic Problem and its Extensions Brian D. Beasley Presbyterian College, Clinton, SC Brian Beasley (B.S., Emory University; M.S., University of North Carolina; Ph.D., University of South Carolina) has taught at Pres- byterian College since 1988. He became a member of the Mathe- matical Association of America in 1989 and joined ACMS in 2007. Outside the classroom, Brian enjoys family time with his wife and two sons. He is an enthusiastic Scrabble player, a not-so-avid jog- ger, and a very shaky unicyclist. In the 2009-2010 academic year, one of our mathematics majors, Olivia Hightower, became interested in the history of Edward Waring and his famous conjecture about expressing positive integers as the sum of kth powers. Olivia's investigation eventually led to her honors project on Waring's Problem, in which she focused on the history of the conjecture, the eventual proof that all positive integers may be written as the sum of at most nine cubes, and the work of Hardy and Wright in establishing lower bounds in the case of sufficiently large integers. Her research renewed her professor's own interest in Waring, leading to the following article. This paper will sketch brief outlines of Waring's life and the history behind the eventual solution to his problem. In addition, it will present some of the related questions currently being studied, such as expressing sufficiently large integers as sums of powers, sums of powers of primes, and sums of unlike powers. We begin with a short summary of the biography of Edward Waring.
    [Show full text]
  • Magdalene College Magazine 2017-18
    magdalene college magdalene magdalene college magazine magazine No 62 No 62 2017–18 2017 –18 Designed and printed by The Lavenham Press. www.lavenhampress.co.uk MAGDALENE COLLEGE The Fellowship, October 2018 THE GOVERNING BODY 2013 MASTER: The Rt Revd & Rt Hon the Lord Williams of Oystermouth, PC, DD, Hon DCL (Oxford), FBA 1987 PRESIDENT: M E J Hughes, MA, PhD, Pepys Librarian, Director of Studies and University Affiliated Lecturer in English 1981 M A Carpenter, ScD, Professor of Mineralogy and Mineral Physics 1984 H A Chase, ScD, FREng, Director of Studies in Chemical Engineering and Emeritus Professor of Biochemical Engineering 1984 J R Patterson, MA, PhD, Praelector, Director of Studies in Classics and USL in Ancient History 1989 T Spencer, MA, PhD, Director of Studies in Geography and Professor of Coastal Dynamics 1990 B J Burchell, MA, and PhD (Warwick), Tutor, Joint Director of Studies in Human, Social and Political Science and Reader in Sociology 1990 S Martin, MA, PhD, Senior Tutor, Admissions Tutor (Undergraduates), Director of Studies and University Affiliated Lecturer in Mathematics 1992 K Patel, MA, MSc and PhD (Essex), Director of Studies in Economics & in Land Economy and UL in Property Finance 1993 T N Harper, MA, PhD, College Lecturer in History and Professor of Southeast Asian History (1990: Research Fellow) 1994 N G Jones, MA, LLM, PhD, Dean, Director of Studies in Law and Reader in English Legal History 1995 H Babinsky, MA and PhD (Cranfield), College Lecturer in Engineering and Professor of Aerodynamics 1996 P Dupree,
    [Show full text]
  • Waring's Problem
    MATHEMATICS MASTER’STHESIS WARING’SPROBLEM JANNESUOMALAINEN HELSINKI 2016 UNIVERSITYOFHELSINKI HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department Faculty of Science Department of Mathematics and Statistics Tekijä — Författare — Author Janne Suomalainen Työn nimi — Arbetets titel — Title Waring’s Problem Oppiaine — Läroämne — Subject Mathematics Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages Master’s Thesis 9/2016 36 p. Tiivistelmä — Referat — Abstract Waring’s problem is one of the two classical problems in additive number theory, the other being Goldbach’s conjecture. The aims of this thesis are to provide an elementary, purely arithmetic solution of the Waring problem, to survey its vast history and to outline a few variations to it. Additive number theory studies the patterns and properties, which arise when integers or sets of integers are added. The theory saw a new surge after 1770, just before Lagrange’s celebrated proof of the four-square theorem, when a British mathematician, Lucasian professor Edward Waring made the profound statement nowadays dubbed as Waring’s problem: for all integers n greater than one, there exists a finite integer s such that every positive integer is the sum of s nth powers of non- negative integers. Ever since, the problem has been taken up by many mathematicians and state of the art techniques have been developed — to the point that Waring’s problem, in a general sense, can be considered almost completely solved. The first section of the thesis works as an introduction to the problem. We give a profile of Edward Waring, state the problem both in its original form and using present-day language, and take a broad look over the history of the problem.
    [Show full text]
  • {PDF} Charles Darwin, the Copley Medal, and the Rise of Naturalism
    CHARLES DARWIN, THE COPLEY MEDAL, AND THE RISE OF NATURALISM 1862-1864 1ST EDITION PDF, EPUB, EBOOK Marsha Driscoll | 9780205723171 | | | | | Charles Darwin, the Copley Medal, and the Rise of Naturalism 1862-1864 1st edition PDF Book In recognition of his distinguished work in the development of the quantum theory of atomic structure. In recognition of his distinguished studies of tissue transplantation and immunological tolerance. Dunn, Dann Siems, and B. Alessandro Volta. Tomas Lindahl. Thomas Henry Huxley. Andrew Huxley. Adam Sedgwick. Ways and Means, Science and Society Picture Library. John Smeaton. Each year the award alternates between the physical and biological sciences. On account of his curious Experiments and Discoveries concerning the different refrangibility of the Rays of Light, communicated to the Society. David Keilin. For his seminal work on embryonic stem cells in mice, which revolutionised the field of genetics. Derek Barton. This game is set in and involves debates within the Royal Society on whether Darwin should receive the Copley Medal, the equivalent of the Nobel Prize in its day. Frank Fenner. For his Paper communicated this present year, containing his Experiments relating to Fixed Air. Read and download Log in through your school or library. In recognition of his pioneering work on the structure of muscle and on the molecular mechanisms of muscle contraction, providing solutions to one of the great problems in physiology. James Cook. Wilhelm Eduard Weber. For his investigations on the morphology and histology of vertebrate and invertebrate animals, and for his services to biological science in general during many past years. Retrieved John Ellis.
    [Show full text]
  • Waring's Problem and the Circle Method
    GENERAL I ARTICLE Waring's Problem and the Circle Method C S Yogananda In 1770, in his book M editationes Algebraicae, Edward Waring made the statement that every positive integer is a sum of nine cubes, is also a sum of not more than 19 fourth powers, and so on. The so on was taken to mean that given a positive integer k there is a num­ ber depending only on k, say s, such that every positive integer can be expressed as a sum of at most s number C S Yogananda obtained of k -th powers. There is no obvious heuristic reason to his PhD in Mathematics believe the truth or falsity of the statement. There are in 1990 from the Institute examples either way. Lagrange had proved, coinciden­ of Mathematical Sciences, tally in 1770, that every positive integer can be written Chennai. He has been as a sum of not more than four squares. On the other involved in the Math- hand, if one wants to write any positive integer as a sum ematicalOlympiad Programme at different of powers of 2 then it is not too difficult to see that there levels since 1989. is no finite number, say m, such that every positive inte­ His research interests lie ger can be written as a sum of m or fewer powers of 2. in number theory; his (Proof: Suppose on the contrary that there is such a other interests include m 1 classical music and number 171" But then 2 + - 1 can not be written as mountaineering.
    [Show full text]
  • California Fair List 2018
    BERNARD QUARITCH LTD. PASADENA CONVENTION CENTER, FEBRUARY 9 FEBRUARY CENTER, CONVENTION PASADENA - 11, 2018, BOOTH 308 2018,BOOTH 11, CALIFORNIA INTERNATIONALCALIFORNIA ANTIQUARIAN BOOK FAIR st 51 BERNARD QUARITCH LTD 40 SOUTH AUDLEY ST, LONDON W1K 2PR Tel: +44 (0)20-7297 4888 Fax: +44 (0)20-7297 4866 e-mail: [email protected] web site: www.quaritch.com Bankers: Barclays Bank plc, Level 27, 1 Churchill Place, London E14 5HP Sort code: 20-65-90 Acct no: 10511722 Swift code: BARC GB22 Sterling account: IBAN: GB62 BARC 206590 10511722 Euro account: IBAN: GB91 BARC 206590 45447011 U.S. Dollar account: IBAN: GB10 BARC 206590 63992444 VAT number: GB 840 1358 54 Mastercard, Visa, and American Express accepted Recent Catalogues: 1436 Travel, Natural History & Scientific Exploration 1435 Music 1434 Medieval and Renaissance Manuscripts 1433 English Books & Manuscripts 1432 Continental Books Recent Lists: 2018/1 English Books & Manuscripts 2017/14 Politics, Statecraft, Mirrors of Princes 2017/13 Photography – Autumn Miscellany 2017/12 Economics 2017/11 Revolution and Propaganda Cover image and vignette opposite from item 23. © Bernard Quaritch 2018 WINE AND LOVE – WITH TRANSLATIONS BY COWLEY 1// ANACREON done into English out of the original Greek … Oxford, Printed by L. Lichfield … for Anthony Stephens … 1683. 8vo., pp. [20], 72, 79-114; a very good copy in contemporary mottled calf, front joint cracked. $945 First edition. The ‘Anacreontea’, a collection of 60 Greek poems on wine, beauty and erotic love, though long attributed to Anacreon was actually by numerous anonymous imitators. The present collection of fifty-two poems is similarly anonymous and collaborative, and contains translations (or imitations) attributed to Oldham, Cowley, Thomas Wood and Francis Wallis.
    [Show full text]
  • A Forgotten Paper on the Fundamental Theorem of Algebra
    5. Smithies 13/9/00 11:25 AM Page 333 Notes Rec. R. Soc. Lond. 54 (3), 333–341 (2000) © 2000 The Royal Society A FORGOTTEN PAPER ON THE FUNDAMENTAL THEOREM OF ALGEBRA by FRANK SMITHIES 167 Huntingdon Road, Cambridge CB3 0DH, UK SUMMARY In 1798, there appeared in the Philosophical Transactions of the Royal Society a paper by James Wood, purporting to prove the fundamental theorem of algebra, to the effect that every non-constant polynomial with real coefficients has at least one real or complex zero. Since the first generally accepted proof of this result was given by Gauss in 1799, Wood’s paper deserves careful examination. After giving a brief outline of Wood’s career, I describe the argument of his paper. His proof turns out to be incomplete as it stands, but it contains an original idea, which was to be used later, in the same context, by von Staudt, Gordan and others, without knowledge of Wood’s work. After putting Wood’s work in context, I conclude by showing how his idea can be used to prove the complex form of the fundamental theorem of algebra, stating that every non-constant polynomial with complex coefficients has at least one zero in the complex field. INTRODUCTION Professor Peter Goddard, Master of St John’s College, Cambridge, has drawn attention to a paper by James Wood, one of his predecessors, entitled ‘On the roots of equations’, which appeared in Philosophical Transactions volume 88. It was communicated by Nevil Maskelyne, F.R.S., the Astronomer Royal, and was read on 17 May 1798.1 The paper purports to prove what is usually called the fundamental theorem of algebra, stating it in the form ‘Every equation has as many roots of the form a±√(±b2) as it has dimensions’; in more modern language, the author is saying that a non- constant polynomial of degree n≥1, with real coefficients, has n real or complex zeros (some of which may be repeated).
    [Show full text]
  • The Two Substantial Mathematical Essays in the Final Volume Are One by Masani on the Work of Wiener and One by Wermer on Function Algebras
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector HM 18 REVIEWS 85 The two substantial mathematical essays in the final volume are one by Masani on the work of Wiener and one by Wermer on function algebras. Masani claims to survey about “70 percent of Wiener’s mathematical work and 25 percent of his work in the empirical realms” [3, p. 3281. The mathematics treated is remarkable in its range and imagination, particularly for the ideas that arose in his concern with problems of physics and of engineering. For one example of how far he was ahead of his time, we find on p. 312 a 1926 quote from Wiener, followed by a comment by L. Schwartz, showing that Wiener recognized the need in differential equations for the theory that ultimately became the theory of distributions. Wermer sketches a fascinating story of interplay between abstract functional analysis and classical function theory. Finally, there is a treatment of the history of (the history of) mathematics in America-parentheses seem appropriate here, where the associative law may not apply-by Merzbach, one of the assistant editors. Along with sketches of the lives and works of the pioneers, she traces the subject through periods of growth and decay. Fortunately, she sees an upswing in command now, of which these volumes bear witness. She ends with a caution to workers in the history of mathematics “to beware of both its popularity and its methodological champions” [3, p. 6641. No doubt the readers of Historia Mathematics will recognize more immediately than does this mathematician the meaning of the second warning.
    [Show full text]
  • ACMS 18Th Biennial Conference Proceedings, Westmont College, 2011 Page 1 Friday, June 3 7:45 – 8:45 A.M
    Association of Christians in the Mathematical Sciences Eighteenth Biennial Conference Proceedings, June 1{4, 2011 Westmont College, Santa Barbara, CA Edited by Russell W. Howell Table of Contents Introduction.......................................... ii Conference Schedule.....................................1 Abstracts of Presentations..................................4 Brian D. Beasley, Where, Oh Waring? The Classic Problem and its Extensions .... 15 Ryan Botts, Lori Carter, Lesson's Learned: A Journey in Computational Science ... 22 Robert L. Brabenec, Thinking Philosophically about Mathematics ............ 29 Jeremy Case, PK Mathematicians ............................. 35 Loredana Ciurdariu, Pascal's Thoughts Seen in the Light of Scripture ......... 53 Eric Gossett, The Search for Hamilton ........................... 66 Nathan Gossett, The Need for a Graphics Programming Course in CS ......... 74 Wayne Iba, Real Simulations and Simulated Reality .................... 81 Stephen Lovett, Bringing Undergraduate Research into the Classroom ......... 90 Nathan Moyer, Connecting Mathematics Students to Philosophy and Faith ....... 95 Judith Palagallo, Calculus Communication Circle ..................... 103 Doug Phillippy, The Study of Mathematics: A Text from a Christian Perspective ... 107 Donna Pierce, Math History Study Abroad Program .................... 120 Michael Rempe, Google and the Mathematics of Web Search ............... 131 Gordon A. Swain, The History of the Area between a Line and a Parabola ....... 138 Mary Walkins, History
    [Show full text]