{PDF} Charles Darwin, the Copley Medal, and the Rise of Naturalism

Total Page:16

File Type:pdf, Size:1020Kb

{PDF} Charles Darwin, the Copley Medal, and the Rise of Naturalism CHARLES DARWIN, THE COPLEY MEDAL, AND THE RISE OF NATURALISM 1862-1864 1ST EDITION PDF, EPUB, EBOOK Marsha Driscoll | 9780205723171 | | | | | Charles Darwin, the Copley Medal, and the Rise of Naturalism 1862-1864 1st edition PDF Book In recognition of his distinguished work in the development of the quantum theory of atomic structure. In recognition of his distinguished studies of tissue transplantation and immunological tolerance. Dunn, Dann Siems, and B. Alessandro Volta. Tomas Lindahl. Thomas Henry Huxley. Andrew Huxley. Adam Sedgwick. Ways and Means, Science and Society Picture Library. John Smeaton. Each year the award alternates between the physical and biological sciences. On account of his curious Experiments and Discoveries concerning the different refrangibility of the Rays of Light, communicated to the Society. David Keilin. For his seminal work on embryonic stem cells in mice, which revolutionised the field of genetics. Derek Barton. This game is set in and involves debates within the Royal Society on whether Darwin should receive the Copley Medal, the equivalent of the Nobel Prize in its day. Frank Fenner. For his Paper communicated this present year, containing his Experiments relating to Fixed Air. Read and download Log in through your school or library. In recognition of his pioneering work on the structure of muscle and on the molecular mechanisms of muscle contraction, providing solutions to one of the great problems in physiology. James Cook. Wilhelm Eduard Weber. For his investigations on the morphology and histology of vertebrate and invertebrate animals, and for his services to biological science in general during many past years. Retrieved John Ellis. For his Experiments towards the discovery of the properties of Electricity. Frederick Sanger. For his distinguished contributions to both pure and applied mathematics and to theoretical physics. Harold W. External Websites. Electric Scotland. Edward Waring. William Bayliss. For his invention of an Engine for driving the Piles to make a Foundation for the Bridge to be erected at Westminster, the Model whereof had been shown to the Society. Charles Darwin, the Copley Medal, and the Rise of Naturalism 1862-1864 1st edition Writer Edward Sabine. John Mudge. John Goodricke and Thomas Hutchins. For his contributions to chemical philosophy especially for his application of Avogadro's theory. David Cox. Benjamin Collins Brodie. Carl F. Alan Fersht. Benjamin Franklin. William Thomson, Baron Kelvin. In recognition of his outstanding studies of cosmic ray showers and heavy mesons and in the field of palaeomagnetism. George Porter. In recognition of the value of his physiological and pathological researches in regard to their influence on the modern practice of surgery. The Royal Society. Alan Cottrell. Charles Algernon Parsons. Urbain-Jean-Joseph Le Verrier. Charles Frank. Edward Albert Sharpey-Schafer. Hidden categories: All articles with dead external links Articles with dead external links from May Articles with short description Short description matches Wikidata Articles with hCards Wikipedia articles with GND identifiers Featured lists. Martin J. This spectacular research revealed the entire pathway to vitamin B 12 ". Louis Agassiz. Georg Simon Ohm. On account of the many curious and useful Experiments contained in his observations on different kinds of Air, read at the Society in March, , and printed in the Philosophical Transactions. For his seminal contributions to the understanding of the biochemistry of DNA repair. Alan R. Archives of Disease in Childhood. Export Citation Export to NoodleTools. Ronald Aylmer Fisher. Charles Darwin, the Copley Medal, and the Rise of Naturalism 1862-1864 1st edition Reviews Be on the lookout for your Britannica newsletter to get trusted stories delivered right to your inbox. John Maynard Smith. In recognition of his fundamental contributions to a wide range of topics in geometry, topology, analysis and theoretical physics. In recognition of his contribution to the understanding of mechanical properties of materials and related topics through his pioneering studies on crystal plasticity, dislocation impurity interactions, fracture and irradiation effects. Sturm ". The mechanical equivalent of heat. For his work on the use of clouds in advancing our knowledge of atoms and their properties. Urbain-Jean-Joseph Le Verrier. For his Experiments towards the Discovery of Medicines for dissolving the Stone; and Preservatives for keeping Meat in long voyages at Sea. James Chadwick. Arthur Cayley. Robert Burns Woodward. Franklin Institute. Charles Hatchett. Humphry Davy. SpringerLink : — For his Experiment to show the property of a Diet of Madder Root in dyeing the Bones of living animals of a red colour. Whose communication to the Society was of such importance to the public. View all copies of this ISBN edition:. Abraham Trembley. Francis Galton. Alessandro Volta. Return to Book Page. Joseph Lister, Baron Lister. Peter Barlow. For his researches in organic chemistry, particularly on the composition of the fats, and for his researches on the contrast of coulours. Charles Darwin, the Copley Medal, and the Rise of Naturalism 1862-1864 1st edition Read Online This book is not yet featured on Listopia. Alan Cottrell. Louis Agassiz. Driscoll, Marsha ; Dunn, Elizabeth E. Stephen Hawking. Welcome back. Michael Faraday. Charles Lyell. Robert Bunsen. In recognition of his distinguished work in the development of the quantum theory of atomic structure. On account of his very curious and useful invention of making Thermometers, showing respectively the greatest degrees of heat and cold which have happened at any time during the absence of the observer. History at your fingertips. Brownrigg " "For his Experiments and Observations on the agreement between the specific gravities of the several Metals, and their colours when united to glass, as well as those of their other preparations. For his various Mathematical Contributions printed in the Philosophical Transactions. View all copies of this ISBN edition:. Rudolf Virchow. The Editors of Encyclopaedia Britannica Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree For his development of computational methods in quantum chemistry. Dmitry Ivanovich Mendeleyev. For the Communication of his Discovery of a new and singular Star; a discovery which does him particular honour, as, in all probability, this start has been for many years, perhaps ages, within the bounds of astronomic vision, and yet till now, eluded the most diligent researches of other observers. Oxford University Press. William Huggins. In recognition of his work on the symmetries of the laws of nature, and especially the unification of the electromagnetic and weak forces. https://files8.webydo.com/9583081/UploadedFiles/3163A36B-0FBE-BE1E-9B5C-EAFC5A92B14B.pdf https://files8.webydo.com/9583069/UploadedFiles/7571A3F9-AEF3-E273-48AE-BC5DA011A18A.pdf https://files8.webydo.com/9583702/UploadedFiles/62070673-D15C-783A-6EC3-9B013C92A070.pdf https://cdn.starwebserver.se/shops/tomasbergri/files/transference-focused-psychotherapy-for-borderline-personality-disorder-a-clinical-guide.pdf.
Recommended publications
  • Edward M. Eyring
    The Chemistry Department 1946-2000 Written by: Edward M. Eyring Assisted by: April K. Heiselt & Kelly Erickson Henry Eyring and the Birth of a Graduate Program In January 1946, Dr. A. Ray Olpin, a physicist, took command of the University of Utah. He recruited a number of senior people to his administration who also became faculty members in various academic departments. Two of these administrators were chemists: Henry Eyring, a professor at Princeton University, and Carl J. Christensen, a research scientist at Bell Laboratories. In the year 2000, the Chemistry Department attempts to hire a distinguished senior faculty member by inviting him or her to teach a short course for several weeks as a visiting professor. The distinguished visitor gets the opportunity to become acquainted with the department and some of the aspects of Utah (skiing, national parks, geodes, etc.) and the faculty discover whether the visitor is someone they can live with. The hiring of Henry Eyring did not fit this mold because he was sought first and foremost to beef up the graduate program for the entire University rather than just to be a faculty member in the Chemistry Department. Had the Chemistry Department refused to accept Henry Eyring as a full professor, he probably would have been accepted by the Metallurgy Department, where he had a courtesy faculty appointment for many years. Sometime in early 1946, President Olpin visited Princeton, NJ, and offered Henry a position as the Dean of the Graduate School at the University of Utah. Henry was in his scientific heyday having published two influential textbooks (Samuel Glasstone, Keith J.
    [Show full text]
  • Doctorat Honoris Causa
    DOCTORAT HONORIS CAUSA Acord núm. 204/2007 del Consell de Govern, pel qual s’aprova la concessió del doctorat Honoris Causa al Professor Sir Michael Atiyah. Document aprovat per la Comissió Permanent del dia 3/12/2007. Document aprovat pel Consell de Govern del dia 17/12/2007. DOCUMENT CG 14/12 2007 Secretaria General Desembre de 2007 PROPOSTA D’ACORD DEL CONSELL DE GOVERN PER A CONCEDIR EL DOCTORAT HONORIS CAUSA PER LA UNIVERSITAT POLITÈCNICA DE CATALUNYA, AL PROFESSOR SIR MICHAEL ATIYAH ANTECEDENTS: 1. El professor Sir Michael Atiyah ha estat guardonat, entre d’altres distincions, amb la Medalla Fields (1966), atorgada per la Unió Matemàtica Internacional, i el Premi Abel (2004), atorgat per l’Acadèmia de Ciències de Noruega, ambdues reconegudes com un Premi Nobel de les Matemàtiques. També ha estat un dels impulsors més decisius de la Societat Matemàtica Europea. 2. En relació amb Catalunya i Barcelona, i més concretament, amb la UPC, el professor Sir Michael Atiyah ha estat president del Comitè Científic del 3r Congrés Europeu de Matemàtiques celebrat a Barcelona l’any 2000. 3. El prestigi internacional del professor Sir Michael Atiyah el fa un candidat idoni com a primer doctor honoris causa per la UPC en un àrea en la qual la nostra Universitat compta amb una comunitat nombrosa i amb un gran prestigi i reconeixement internacionals. 4. El rector ha rebut una proposta formal per a investir el professor Sir Michael Atiyah com a doctor honoris causa per la Universitat Politècnica de Catalunya, signada pel degà de la Facultat de Matemàtiques i Estadística, el director del departament de Matemàtica Aplicada I, el director del departament de Matemàtica Aplicada II, el director del departament de Matemàtica Aplicada III, el director del departament de Matemàtica Aplicada IV, i el director del departament d’Estadística i Investigació Operativa.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • Philosophical Transactions, »
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS, » S e r ie s A, FOR THE YEAR 1898 (VOL. 191). A. Absorption, Change of, produced by Fluorescence (B urke), 87. Aneroid Barometers, Experiments on.—Elastic After-effect; Secular Change; Influence of Temperature (Chree), 441. B. Bolometer, Surface, Construction of (Petavel), 501. Brilliancy, Intrinsic, Law of Variation of, with Temperature (Petavel), 501. Burke (John). On the Change of Absorption produced by Fluorescence, 87. C. Chree (C.). Experiments on Aneroid Barometers at Kew Observatory, and their Discussion, 441. Correlation and Variation, Influence of Random Selection on (Pearson and Filon), 229. Crystals, Thermal Expansion Coefficients, by an Interference Method (Tutton), 313. D. Differential Equations of the Second Order, &c., Memoir on the Integration of; Characteristic Invariant of (Forsyth), 1. 526 INDEX. E. Electric Filters, Testing Efficiency of; Dielectrifying Power of (Kelvin, Maclean, and Galt), 187. Electricity, Diffusion of, from Carbonic Acid Gas to Air; Communication of, from Electrified Steam to Air (Kelvin, Maclean, and Galt), 187. Electrification of Air by Water Jet, Electrified Needle Points, Electrified Flame, &c., at Different Air-pressures; at Different Electrifying Potentials; Loss of Electrification (Kelvin, Maclean, and Galt), 187. Electrolytic Cells, Construction and Calibration of (Veley and Manley), 365. Emissivity of Platinum in Air and other Gases (Petavel), 501. Equations, Laplace's and other, Some New Solutions of, in Mathematical Physics (Forsyth), 1. Evolution, Mathematical Contributions to Theory o f; Influence of Random Selection on the Differentiation of Local Races (Pearson and Filon), 229. F. Filon (L. N. G.) and Pearson (Karl). Mathematical Contributions to the Theory of Evolution.—IV. On the Probable Errors of Frequency Constants and on the Influence of Random Selection on Variation and Correlation, 229.
    [Show full text]
  • From Arthur Cayley Via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and Superstrings to Cantorian Space–Time
    Available online at www.sciencedirect.com Chaos, Solitons and Fractals 37 (2008) 1279–1288 www.elsevier.com/locate/chaos From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and superstrings to Cantorian space–time L. Marek-Crnjac Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, P.O. Box 2964, SI-1001 Ljubljana, Slovenia Abstract In this work we present a historical overview of mathematical discoveries which lead to fundamental developments in super string theory, super gravity and finally to E-infinity Cantorian space–time theory. Cantorian space–time is a hierarchical fractal-like semi manifold with formally infinity many dimensions but a finite expectation number for these dimensions. The idea of hierarchy and self-similarity in science was first entertain by Right in the 18th century, later on the idea was repeated by Swedenborg and Charlier. Interestingly, the work of Mohamed El Naschie and his two contra parts Ord and Nottale was done independently without any knowledge of the above starting from non- linear dynamics and fractals. Ó 2008 Published by Elsevier Ltd. 1. Introduction Many of the profound mathematical discovery and dare I say also inventions which were made by the mathemati- cians Arthur Cayley, Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan and Emmy Noether [1] are extremely important for high energy particles in general [2] as well as in the development of E-infinity, Cantorian space–time the- ory [3,4]. The present paper is dedicated to the historical background of this subject. 2. Arthur Cayley – beginner of the group theory in the modern way Arthur Cayley was a great British mathematician.
    [Show full text]
  • Biology, Bioinformatics, Bioengineering, Biophysics, Biostatistics, Neuroscience, Medicine, Ophthalmology, and Dentistry
    Biology, Bioinformatics, Bioengineering, Biophysics, Biostatistics, Neuroscience, Medicine, Ophthalmology, and Dentistry This section contains links to textbooks, books, and articles in digital libraries of several publishers (Springer, Elsevier, Wiley, etc.). Most links will work without login on any campus (or remotely using the institution’s VPN) where the institution (company) subscribes to those digital libraries. For De Gruyter and the associated university presses (Chicago, Columbia, Harvard, Princeton, Yale, etc.) you may have to go through your institution’s library portal first. A red title indicates an excellent item, and a blue title indicates a very good (often introductory) item. A purple year of publication is a warning sign. Titles of Open Access (free access) items are colored green. The library is being converted to conform to the university virtual library model that I developed. This section of the library was updated on 06 September 2021. Professor Joseph Vaisman Computer Science and Engineering Department NYU Tandon School of Engineering This section (and the library as a whole) is a free resource published under Attribution-NonCommercial-NoDerivatives 4.0 International license: You can share – copy and redistribute the material in any medium or format under the following terms: Attribution, NonCommercial, and NoDerivatives. https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright 2021 Joseph Vaisman Table of Contents Food for Thought Biographies Biology Books Articles Web John Tyler Bonner Morphogenesis Evolution
    [Show full text]
  • LMS – EPSRC Durham Symposium
    LMS – EPSRC Durham Symposium Anthony Byrne Grants and Membership Administrator 12th July 2016, Durham The work of the LMS for mathematics The charitable aims of the Society: Funding the advancement of mathematical knowledge Encouraging mathematical research and collaboration ’, George Legendre Celebrating mathematical 30 Pieces achievements Publishing and disseminating mathematical knowledge Advancing and promoting mathematics The attendees of the Young Researchers in Mathematics Conference 2015, held at Oxford Historical Moments of the London Mathematical Society 1865 Foundation of LMS at University College London George Campbell De Morgan organised the first meeting, and his father, Augustus De Morgan became the 1st President 1865 First minute book list of the 27 original members 1866 LMS moves to Old Burlington House, Piccadilly J.J. Sylvester, 2nd President of the Society. 1866 Julius Plûcker Thomas Hirst Plûcker Collection of boxwood models of quartic surfaces given to Thomas Archer Hirst, Vice- President of LMS, and donated to the Society 1870 Move to Asiatic Society, 22 Albemarle Street William Spottiswoode, President 1874 Donation of £1,000 from John William Strutt (Lord Rayleigh) Generous donation enabled the Society to publish volumes of the Proceedings of the London Mathematical Society. J.W. Strutt (Lord Rayleigh), LMS President 1876-78 1881 First women members Charlotte Angas Scott and Christine Ladd 1884 First De Morgan medal awarded to Arthur Cayley 1885 Sophie Bryant First woman to have a paper published in LMS Proceedings 1916 Return to Burlington House the home of LMS until 1998 1937 ACE ’s Automatic Turing LMS Proceedings, 1937 Computing Engine, published Alan Turing’s first paper 1950 On Computable Numbers 1947 Death of G.H.
    [Show full text]
  • Alkali Metals- Group 1 (IA)
    Alkali Metals- Group 1 (IA) The alkali metals make up Group 1 of the periodic table. This family consists of the elements lithium, sodium, potassium, rubidium, cesium, and francium (Li, Na, K, Rb, Cs, and Fr, respectively). Group one elements share common characteristics. They are all soft, silver metals. Due to their low ionization energy, these metals have low melting points and are highly reactive. The reactivity of this family increases as you move down the table. Alkali metals are noted for how vigorously they react with water. Due to this, they are often stored in mineral oil and are not found in their elemental forms in nature. These characteristics can be explained by examining the electronic structure of each element in this group. Alkali metals have one valence electron. They readily give up this electron to assume the noble gas configuration as a cation. This makes the elements in this group highly reactive. History Explore the discoverer's biography, including general facts about his life and anecdotes regarding how he made this particular discovery. Also see other significant scientific discoveries built largely on this concept and other real-world applications in history that may not still be relevant. Discoverer/Developer See each tab for individual information about the discoverer of each element. Lithium Lithium was discovered in 1817 by Johan August Arfwedson. Arfwedson was born in 1792 to a wealthy family in Sweden. At a young age he attended the University of Uppsala and earned degrees in law and mineralogy. His interest in minerals is what led to his discovery of lithium.
    [Show full text]
  • “A Valuable Monument of Mathematical Genius”\Thanksmark T1: the Ladies' Diary (1704–1840)
    Historia Mathematica 36 (2009) 10–47 www.elsevier.com/locate/yhmat “A valuable monument of mathematical genius” ✩: The Ladies’ Diary (1704–1840) Joe Albree ∗, Scott H. Brown Auburn University, Montgomery, USA Available online 24 December 2008 Abstract Our purpose is to view the mathematical contribution of The Ladies’ Diary as a whole. We shall range from the state of mathe- matics in England at the beginning of the 18th century to the transformations of the mathematics that was published in The Diary over 134 years, including the leading role The Ladies’ Diary played in the early development of British mathematics periodicals, to finally an account of how progress in mathematics and its journals began to overtake The Diary in Victorian Britain. © 2008 Published by Elsevier Inc. Résumé Notre but est de voir la contribution mathématique du Journal de Lady en masse. Nous varierons de l’état de mathématiques en Angleterre au début du dix-huitième siècle aux transformations des mathématiques qui a été publié dans le Journal plus de 134 ans, en incluant le principal rôle le Journal de Lady joué dans le premier développement de périodiques de mathématiques britanniques, à finalement un compte de comment le progrès dans les mathématiques et ses journaux a commencé à dépasser le Journal dans l’Homme de l’époque victorienne la Grande-Bretagne. © 2008 Published by Elsevier Inc. Keywords: 18th century; 19th century; Other institutions and academies; Bibliographic studies 1. Introduction Arithmetical Questions are as entertaining and delightful as any other Subject whatever, they are no other than Enigmas, to be solved by Numbers; .
    [Show full text]
  • Of Dr. John Huxham
    Medical History, 1981, 25: 415421. THE FAME AND NOTORIETY OF DR. JOHN HUXHAM by WILLIAM SCHUPBACH* JOHN HUXHAM, M.D., F.R.S., F.R.C.P. Edinburgh (c. 1692-1768), was an English physician whose practice was confined to Plymouth but whose writings were read throughout Europe. His literary career started with his Observationes de aere et morbis epidemicis (1739), in which meteorological records made at Plymouth from 1728 to 1737 were collated month by month with the diseases observed there. Further volumes followed the same plan from 1738 to 1748, and from 1748 to 1752. In these works there is a now conspicuous contrast between the meteorological records, which are elaborately quantified according to a scheme laid down by James Jurin, F.R.S., in 1723, and the notes on morbidity and mortality, which are superficial and sometimes reduced to names of prevalent diseases. To do justice to the extensive medical knowledge which he acquired in compiling these observations, Huxham therefore published separate treatises on the Devonshire colic, on diphtheria, on smallpox, and his best-known work, An essay on fevers (1750), which was translated into Latin, French, and Italian. Here Huxham discussed the conditions under which fevers appeared, the different types of fevers, and the remedies which, according to his reasoning, should tend to cure them. Hippocrates, "the best and oldest master of our profession"',' is. the presiding genius of the work, but Sydenham and Huxham's teacher Boerhaave are also drawn on, and Huxham's own cases are introduced at intervals.2 Huxham's writings must have been received with great interest, for they were published in London, Edinburgh, Amsterdam, Bremen, Munich, Paris, Venice, Naples, and Lisbon.
    [Show full text]
  • Robert Wilhelm Bunsen Und Sein Heidelberger Laboratorium Heidelberg, 12
    Historische Stätten der Chemie Robert Wilhelm Bunsen und sein Heidelberger Laboratorium Heidelberg, 12. Oktober 2011 Gesellschaft Deutscher Chemiker 1 Mit dem Programm „Historische Stätten der Chemie“ würdigt Robert Wilhelm Bunsen – die Gesellschaft Deutscher Chemiker (GDCh) Leistungen von geschichtlichem Rang in der Chemie. Als Orte der Erinnerung eine biographische Skizze werden Wirkungsstätten beteiligter Wissenschaftlerinnen und Wissenschaftler in einem feierlichen Akt ausgezeichnet. Eine Broschüre bringt einer breiten Öffentlichkeit deren wissenschaft- Bunsen war einer der Wegbereiter der Physikalischen Chemie liches Werk näher und stellt die Tragweite ihrer Arbeiten im und ein bedeutender Vertreter der anorganisch-analytischen aktuellen Kontext dar. Ziel dieses Programms ist es, die Erinne- Richtung. Seine wissenschaftliche Bedeutung liegt in der Ent- rung an das kulturelle Erbe der Chemie wach zu halten und die wicklung und Perfektionierung von Methoden und Instrumen- Chemie mit ihren historischen Wurzeln stärker in das Blickfeld ten. Diese Arbeitsschwerpunkte hat Bunsen von Beginn seiner der Öffentlichkeit zu rücken. Karriere an verfolgt und systematisch ausgebaut. Am 12. Oktober 2011 gedenken die GDCh, die Deutsche 1811 als jüngster von vier Söhnen einer bürgerlichen protestan- Bunsen-Gesellschaft für Physikalische Chemie (DBG), die Che- tischen Familie in Göttingen geboren, begann Bunsen dort 1828 mische Gesellschaft zu Heidelberg (ChGzH) und die Ruprecht- das Studium der Naturwissenschaften. Seine wichtigsten Lehrer Karls-Universität
    [Show full text]
  • April at PENN Calendar, Vol. 53, No. 27, March 27, 2007
    Charles Addams Fine Arts Gallery, Now South Asia Center Film Series ACADEMIC CALENDAR Charles Addams Fine Arts Hall: free; MFA Thesis Preview Exhibition; 5 p.m.; rm. 25, Williams Hall. Mon.-Fri., 10 a.m.-5 p.m. Meyerson Gallery. Through April 4. 2 María Candelaria. 20 Spring Term Classes End. Esther M. Klein Art Gallery : free; Love, Loss & Longing: The Impact 9 Waga seishun ni kuinashi. 23 Reading Days. Through April 25. Mon.-Sat., 9 a.m.-5 p.m. of U.S. Travel Policies on Cuban-Ameri- 26 Final Exams. Through May 4. Graduate School of Education can Families; photography exhibit; Inter- 16 Zinda Laash. April (GSE) Student Lounge: free; Mon.-Fri., national House. Through April 9. CHILDREN’S ACTIVITIES 9 a.m.-5 p.m. The Art of Reinvention: Travel, MEETINGS ICA: $6, $3/artists, seniors, students Exile, and Recuperation; political exile 14 Handicraft Tradition of India; ex- over 12; free/members, children 12 & under, of artists Franz Werfel and Kinga Araya; 12 PPSA; noon-1:30 p.m.; location tbd; A T P E N N plore India’s cultural traditions and create w/PennCard; Sun., 11 a.m.-1 p.m.; Wed.- Rosenwald Gallery, Van Pelt-Dietrich RSVP: [email protected]. a decorative handicraft; ages 7+; 10 a.m.; Fri., noon-8 p.m.; Sat.-Sun., 11 a.m.-5 p.m. Library. Through April 13. 19 WPSA; noon; rm. 218, Houston Penn Museum; $10, $5/members; register International House; free; for hours Undergraduate Senior Thesis Hall. Wherever these symbols appear, more by April 7: (215) 898-4016 (Museum).
    [Show full text]