Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2020 doi:10.20944/preprints202009.0629.v2 Article GEO-GEO Stereo-Tracking of Atmospheric Motion Vectors (AMVs) from the Geostationary Ring James L. Carr 1,* , Dong L. Wu 2 , Jaime Daniels 3 , Mariel D. Friberg 2,4 , Wayne Bresky 5 and Houria Madani 1 1 Carr Astronautics, 6404 Ivy Lane, Suite 333, Greenbelt, MD 20770, USA;
[email protected] 2 NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA;
[email protected] 3 NOAA/NESDIS Center for Satellite Applications and Research, College Park, MD 20740, USA 4 Universities Space Research Association, Columbia, MD 21046, USA 5 I.M. Systems Group (IMSG), Rockville, MD 20852, USA * Correspondence:
[email protected] Abstract: Height assignment is an important problem for satellite measurements of Atmospheric Motion Vectors (AMVs) that are interpreted as winds by forecast and assimilation systems. Stereo methods assign heights to AMVs from the parallax observed between observations from different vantage points in orbit while tracking cloud or moisture features. In this paper, we fully develop the stereo method to jointly retrieve wind vectors with their geometric heights from geostationary satellite pairs. Synchronization of observations between observing systems is not required. NASA and NOAA stereo-winds codes have implemented this method and we have processed large datasets from GOES-16, -17, and Himawari-8. Our retrievals are validated against rawinsonde observations and demonstrate the potential to improve forecast skill. Stereo winds also offer an important mitigation for the loop heat pipe anomaly on GOES-17 during times when warm focal plane temperatures cause infra-red channels that are needed for operational height assignments to fail.