TNP Reptiles and Amphibians Enhanced Study Guide 7 2018

Total Page:16

File Type:pdf, Size:1020Kb

TNP Reptiles and Amphibians Enhanced Study Guide 7 2018 Tennessee Naturalist Program Tennessee Reptiles and Amphibians Scutes, Scales, and Skin Enhanced Study Guide 7/2018 Tennessee Naturalist Program www.tnnaturalist.org Inspiring the desire to learn and share Tennessee’s nature These study guides are designed to reFlect and reinForce the Tennessee Naturalist Program’s course curriculum outline, developed and approved by the TNP Board oF Directors, For use by TNP instructors to plan and organize classroom discussion and Fieldwork components and by students as a meaningFul resource to review and enhance class instruction. This guide was compiled speciFically For the Tennessee Naturalist Program and reviewed by experts in these disciplines. It may contain copyrighted work From other authors and publishers, used here by permission. No part of this document may be reproduced or shared without consent of the Tennessee Naturalist Program and appropriate copyright holders. 2 Tennessee Reptiles and Amphibians Scutes, Scales, and Skin Objectives Present an overview oF reptiles and amphibians including characteristics particular to these two classes oF animals. Explore their behavior, physiology, and ecology, relating these to habitat needs, environmental adaptations, and ecosystem roles, including human interactions. Introduce common species, their distinguishing characteristics and distribution. Time Minimum 4 hours – 2 in class, 2 in Field Suggested Materials ( * recommended but not required; ** TNP Flash drive) • Reptiles and Amphibians Eastern/Central North America, Third Edition Expanded (Peterson Field Guides), Roger Conant and Joseph T. Collins * • “Vocalizations oF Tennessee Frogs and Toads,” CD, TAMP (available Free upon request) • Tennessee’s Reptiles and Amphibians Enhanced Study Guide, TNP ** Expected Outcomes Students will gain a basic understanding oF 1. general characteristics oF and diFFerences between reptiles and amphibians 2. liFe cycle 3. breeding, juvenile, and adult habits and habitats 4. evolutionary development and ecosystem roles 5. amphibians as bioindicators 6. Frogs and toads oF Tennessee 7. salamanders oF Tennessee 8. lizards, turtles, and snakes oF Tennessee 9. rare species; threats and conservation issues 3 Reptiles and Amphibians Curriculum Outline I. Reptile and Amphibian Characteristics A. Egg diFFerences B. Skin diFFerences C. Claws D. Ectothermic II. Amphibian liFe cycle and associated habitats A. Egg masses B. Larvae and juvenile stages C. Adults, hibernation and migration D. Communication and breeding 1. amplexus in Frogs and toads 2. salamander Fertilization E. Evolutionary development oF salamanders F. Amphibian ecological roles 1. bioindicators III. Amphibians oF Tennessee - Class Amphibia: General Characteristics and IdentiFication A. Order Anura (no tail) - Frogs and Toads (voice ID) 1. Family BuFonidae - true toads 2. Family Pelobatidae - spadeFoot toads 3. Family Hylidae - treeFrogs 4. Family Microhylidae - narrowmouth toads 5. Family Ranidae - true Frogs B. Order Caudata (tail) - Salamanders 1. Family Ambystomatidae - cup mouths 2. Family Salamandridae - newts 3. Family Plethodontidae - lungless 4. Families Cryptobranchidae, Proteidae, Amphiumidae, Sirenidae - giants IV. Reptile LiFe Cycle and Associated Habitats A. Eggs and live birth B. Adults, breeding, shedding, hibernation (hibernacula) C. Ecological roles 4 V. Reptiles oF Tennessee - Class Reptilia: General Characteristics and IdentiFication A. Order Testudines - Turtles 1. Family Chelydridae - snapping turtles 2. Family Kinosternidae - musk and mud turtles 3. Family Emydidae - box and water turtles 4. Family Trionychidae - soFtshell turtles B. Order Squamata, Suborder Lacertilia - Lizards 1. Family Polychridae - anoles 2. Family Scincidae - skinks 3. Family Phrynosomatidea, Genus Sceloporus - spiny lizards 4. Family Teiidae - whiptails 5. Family Anguidae - glass lizards C. Order Squamata, Suborder Serpentes - Snakes 1. Family Colubridae - colubrids, typical snakes (non-venomous) 2. Family Viperidae, SubFamily Crotalinae - pit vipers (venomous) VI. Conservation Issues A. Habitat loss B. Commercial exploitation C. Pollution D. Disease 1. Chytrid Fungus 2. Rana virus E. Human misperception VII. Resources A. Publications B. Organizations C. Internet VIII. Review Questions 5 Tennessee Reptiles and Amphibians Tennessee has a rich herpetoFauna. HerpetoFauna are the amphibians and reptiles that occur in an area. The word herpetoFauna comes From the Greek word herpeton meaning “creeping animal.” Tennessee’s amphibians are the Frogs, toads and salamanders. Other amphibians include caecilians but they are Found only in the tropics. Our state’s reptiles are the lizards, turtles and snakes. Other reptiles include alligators, crocodiles and tuataras. A Checklist oF Tennessee Amphibians and Reptiles is in Appendix A. Here is a list oF the numbers oF species oF “herps” that occur in our state. Frogs and Toads – 21 Salamanders – 54 Lizards – 9 Turtles – 15 Snakes – 32 I. Reptile and Amphibian Characteristics DiFFerences between amphibians and reptiles are as Follows. Amphibians Reptiles Have moist skin without scales Dry skin covered in scales Eggs are gelatinous Eggs have a leathery shell No claws on toes When Feet are present, toes have claws Both amphibians and reptiles are ectothermic (cold-blooded) meaning that their body temperature is determined by the temperature oF their environment. They are also both vertebrates. II and III. Amphibians -- Order Anura, Frogs and Toads A Frog is an amphibian, an animal that lives part oF its liFe in water and part oF its liFe on land. Frogs and toads are members oF a group oF animals called anurans. In Latin this means “a” (no) and “nuran” (tail). Thus, they belong to an order which means "no tail." Another name For their order is Salientia which means “to leap.” 6 Eggs and Tadpoles Amphibians are born in the water and hatch From gelatinous eggs into tadpoles or pollywogs. The eggs oF amphibians are considered by scientists to be an evolutionary precursor to the land adequate reptilian egg. However, the amphibian egg is a marvel in itselF. Once laid and Fertilized, the amphibian egg takes in water and enlarges. The outer envelope seals the gelatinous contents inside. The enclosed Fluids perForm as a green house capturing the warmth oF the sun and protecting the inner contents. The progeny have a buFFer From dehydration while eggs. Puddles may dry up around egg masses but iF it rains soon the embryos will survive. Once tadpoles, they are not allotted this luxury. If a puddle dries, tadpoles drown in the terrestrial air, not having the lungs to take in atmospheric oxygen. If they can remain wet, the transFormation From tadpole to Frog is magical, and that is why that transFormation is called metamorphosis. A Latin word which means “magical change.” Tadpoles appear to be all head and tail. The word tadpole comes From two words -- "tad" which means toad and "poll" which means head. In other words, a toad that is all head. Tadpoles seem to be a totally diFFerent creatures than the Frog or toad they are to become. They breathe with gills. For the most part, they are vegetarians eating with scraping mouth parts that scour the surFaces oF rocks and vegetation For algae. In relation to their size, their intestinal tracts are very long to be able to digest cellulose. As time goes on, they develop legs. Back legs First and then Front, resulting in a Four legged creature. Their intestines shrink. Their gills transForm into lungs. Their mouth parts become equipped to eat meat. This includes their incredibly long, Fast action, Fly-snatching tongue. The time required For these events to occur depends on the species oF Frog, temperature, Food availability, etc. It takes at least one year and sometimes two years For bullFrog tadpoles to metamorphose. SpadeFoot toads on the other hand can transForm in less than a month. AFter metamorphosis, the tadpoles become Froglets, tiny replicas oF their adult parents, who in most cases leFt the pond aFter the breeding season and egg laying were complete. Once metamorphosed, many Frog species leave the pond or temporary body oF water in which they were born. OFten times, Froglets or toadlets leave the pond in a mass exodus during or immediately Following a rain giving the appearance oF it raining Frogs, as Folks once believed. Some species are more permanently aquatic and spend most oF their lives in or around the water. BullFrogs and green Frogs are the best examples oF aquatic Frog species. Courtship and Breeding As adults, the Frogs and toads Feed and grow, returning to the water annually to breed and lay eggs. Males arrive at the breeding pools First and begin their advertisement call. Frogs make their vocalizations by passing air From their lungs over the vocal chords to the vocal sac, which resonates to make the sound louder. Males’ vocal chords are larger and more developed than those oF Females. Each species oF Frog or toad has a unique advertisement call. Only males sing this courtship song. So unique are these calls that just as birders can identiFy a bird species by its song, Froggers can identiFy Frog species by their calls. Hence, you can know which species oF Frogs live at your pond without having to see them. 7 Once a pair have agreed to breed, male and Female Frogs enter the mating position. This position is called amplexus. The male clasps the Female From behind. He places his Front arms around her body and clasps her behind her Front legs. Males will oFten have swollen thumbs so that they can better grip the Female.
Recommended publications
  • Pond-Breeding Amphibian Guild
    Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Pond-breeding Amphibians Guild Primary Species: Flatwoods Salamander Ambystoma cingulatum Carolina Gopher Frog Rana capito capito Broad-Striped Dwarf Siren Pseudobranchus striatus striatus Tiger Salamander Ambystoma tigrinum Secondary Species: Upland Chorus Frog Pseudacris feriarum -Coastal Plain only Northern Cricket Frog Acris crepitans -Coastal Plain only Contributors (2005): Stephen Bennett and Kurt A. Buhlmann [SCDNR] Reviewed and Edited (2012): Stephen Bennett (SCDNR), Kurt A. Buhlmann (SREL), and Jeff Camper (Francis Marion University) DESCRIPTION Taxonomy and Basic Descriptions This guild contains 4 primary species: the flatwoods salamander, Carolina gopher frog, dwarf siren, and tiger salamander; and 2 secondary species: upland chorus frog and northern cricket frog. Primary species are high priority species that are directly tied to a unifying feature or habitat. Secondary species are priority species that may occur in, or be related to, the unifying feature at some time in their life. The flatwoods salamander—in particular, the frosted flatwoods salamander— and tiger salamander are members of the family Ambystomatidae, the mole salamanders. Both species are large; the tiger salamander is the largest terrestrial salamander in the eastern United States. The Photo by SC DNR flatwoods salamander can reach lengths of 9 to 12 cm (3.5 to 4.7 in.) as an adult. This species is dark, ranging from black to dark brown with silver-white reticulated markings (Conant and Collins 1991; Martof et al. 1980). The tiger salamander can reach lengths of 18 to 20 cm (7.1 to 7.9 in.) as an adult; maximum size is approximately 30 cm (11.8 in.).
    [Show full text]
  • Herpetological Journal FULL PAPER
    Volume 29 (April 2019), 71-81 Herpetological Journal FULL PAPER https://doi.org/10.33256/hj29.2.7181 Published by the British Predicting Ambystoma ordinarium distribution under differentHerpetological Society climate scenarios in central Mexico Rafael Hernández-Guzmán1, Luis H. Escalera-Vázquez2 & Ireri Suazo-Ortuño3 1CONACYT – Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México 2Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, edificio R, planta baja, Ciudad Universitaria. Morelia, Michoacán, México 3Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México Global climate change represents one of the most important threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of a changing climate due to their restrictive physiological requirements and low vagility; however, little is known about which amphibian species are more vulnerable to climate change. Therefore, we aimed to forecast changes in the distribution of the mountain stream salamander, Ambystoma ordinarium, using different climate scenarios. Approximately 70 representative presence records were selected to model the current potential distribution and two scenarios based on 2070 climate projections (RCP 2.6 and RCP 8.5) using the MaxEnt algorithm and three global climate models (BCC-CSM1-1, CCSM4 and HadGEM2-ES). A total of three scenarios were simulated using the 10-percentile training presence as the threshold rule. For all scenarios, the average of the area under the receiver operating characteristic curve for the replicated runs was greater than 0.95 ± 0.005, representing good performance for the current and projected geographical distributions of A.
    [Show full text]
  • Saugus Iron Works National Historic Site Amphibian and Reptile Inventory March – September 2001
    National Park Service U.S. Department of the Interior Natural Resource Program Center Saugus Iron Works National Historic Site Amphibian and Reptile Inventory March – September 2001 Natural Resource Report NPS/NETN/NRR—2010/248 ON THE COVER Northern two-lined salamander - Saugus Iron Works NHS is a locally important site for this stream-dwelling salamander. Photograph by: Dave Brotherton Saugus Iron Works National Historic Site Amphibian and Reptile Inventory March – September 2001 Natural Resource Report NPS/NETN/NRR—2010/248 Robert P. Cook National Park Service Cape Cod National Seashore Wellfleet, MA 02667 David K. Brotherton Department of Herpetology Wildlife Conservation Society Bronx Zoo Bronx, NY 10460-1099 John L. Behler1 Department of Herpetology Wildlife Conservation Society Bronx Zoo Bronx, NY 10460-1099 1 deceased September 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Common Frog Rana Temporaria
    Common frog Rana temporaria Description Common frogs are common, widespread and easily recognisable amphibians. They have smooth, moist skin and long stripy legs. Common frogs are usually olive-green, although their colouration can be variable (from brown, yellow, cream or black, to pink, red, or lime-green). They have a dark patch (‘mask’) around the eye and eardrum, and often have other irregular black blotches over their body and limbs. They have large golden eyes with oval horizontal pupils. Frogs hop and jump rather than walk or crawl, and they are most active at night. They hibernate during the winter in pond mud or under piles of rotting leaves, logs or stones. Outside the breeding season, frogs are largely terrestrial and can be found in meadows, gardens and woodland. Breeding takes place in ponds, lakes, canals, and even wet grassland or puddles! Spawning usually occurs in January in the milder areas of the UK, but not until March to April in the North or upland areas. Mating pairs and masses of clumpy frogspawn can often be seen in waterbodies during this time. The eggs hatch into tadpoles within two to three weeks. What they eat Adult frogs eat snails, slugs, worms, insects and other invertebrates caught using their long sticky tongue. Young tadpoles feed on algae, but become carnivorous as they mature. Where and when to see them z Frogs can be spotted in ponds, lakes, canals, meadows, woodlands and gardens most commonly between February and October. z Look for frogspawn just below the surface of the water. Frogs lay a mass of jelly-like eggs, whereas toadspawn is produced in long strings.
    [Show full text]
  • Fauna of Australia 2A
    FAUNA of AUSTRALIA 9. FAMILY MICROHYLIDAE Thomas C. Burton 1 9. FAMILY MICROHYLIDAE Pl 1.3. Cophixalus ornatus (Microhylidae): usually found in leaf litter, this tiny frog is endemic to the wet tropics of northern Queensland. [H. Cogger] 2 9. FAMILY MICROHYLIDAE DEFINITION AND GENERAL DESCRIPTION The Microhylidae is a family of firmisternal frogs, which have broad sacral diapophyses, one or more transverse folds on the surface of the roof of the mouth, and a unique slip to the abdominal musculature, the m. rectus abdominis pars anteroflecta (Burton 1980). All but one of the Australian microhylids are small (snout to vent length less than 35 mm), and all have procoelous vertebrae, are toothless and smooth-bodied, with transverse grooves on the tips of their variously expanded digits. The terminal phalanges of fingers and toes of all Australian microhylids are T-shaped or Y-shaped (Pl. 1.3) with transverse grooves. The Microhylidae consists of eight subfamilies, of which two, the Asterophryinae and Genyophryninae, occur in the Australopapuan region. Only the Genyophryninae occurs in Australia, represented by Cophixalus (11 species) and Sphenophryne (five species). Two newly discovered species of Cophixalus await description (Tyler 1989a). As both genera are also represented in New Guinea, information available from New Guinean species is included in this chapter to remedy deficiencies in knowledge of the Australian fauna. HISTORY OF DISCOVERY The Australian microhylids generally are small, cryptic and tropical, and so it was not until 100 years after European settlement that the first species, Cophixalus ornatus, was collected, in 1888 (Fry 1912). As the microhylids are much more prominent and diverse in New Guinea than in Australia, Australian specimens have been referred to New Guinean species from the time of the early descriptions by Fry (1915), whilst revisions by Parker (1934) and Loveridge (1935) minimised the extent of endemism in Australia.
    [Show full text]
  • The Natural History, Distribution, and Phenotypic Variation of Cave-Dwelling Spring Salamanders, Gyrinophilus Spp
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2005 The aN tural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia Michael Steven Osbourn Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Osbourn, Michael Steven, "The aN tural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia" (2005). Theses, Dissertations and Capstones. Paper 735. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. The Natural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia. Thesis submitted to The Graduate College of Marshall University In partial fulfillment of the Requirements for the degree of Master of Science Biological Sciences By Michael Steven Osbourn Thomas K. Pauley, Committee Chairperson Daniel K. Evans, PhD Thomas G. Jones, PhD Marshall University May 2005 Abstract The Natural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia. Michael S. Osbourn There are over 4000 documented caves in West Virginia, potentially providing refuge and habitat for a diversity of amphibians and reptiles. Spring Salamanders, Gyrinophilus porphyriticus, are among the most frequently encountered amphibians in caves. Surveys of 25 caves provided expanded distribution records and insight into ecology and diet of G.
    [Show full text]
  • From Marine Fishes Off New Caledonia, with a Key to Species of Cucullanus from Anguilliformes
    Parasite 25, 51 (2018) Ó F. Moravec and J.-L. Justine, published by EDP Sciences, 2018 https://doi.org/10.1051/parasite/2018050 urn:lsid:zoobank.org:pub:FC92E481-4FF7-4DD8-B7C9-9F192F373D2E Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Three new species of Cucullanus (Nematoda: Cucullanidae) from marine fishes off New Caledonia, with a key to species of Cucullanus from Anguilliformes František Moravec1 and Jean-Lou Justine2,* 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 Cˇ eské Budeˇjovice, Czech Republic 2 Institut Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 51, 57 rue Cuvier, 75005 Paris, France Received 16 July 2018, Accepted 8 August 2018, Published online 20 September 2018 Abstract – Based on light and scanning electron microscopical studies of nematode specimens from the digestive tract of some rarely collected anguilliform and perciform fishes off New Caledonia, three new species of Cucullanus Müller, 1777 (Cucullanidae) are described: C. austropacificus n. sp. from the longfin African conger Conger cinereus (Congridae), C. gymnothoracis n. sp. from the lipspot moray Gymnothorax chilospilus (Muraenidae), and C. incog- nitus n. sp. from the seabream Dentex fourmanoiri (Sparidae). Cucullanus austropacificus n. sp. is characterized by the presence of cervical alae, ventral sucker, alate spicules 1.30–1.65 mm long, conspicuous outgrowths of the ante- rior and posterior cloacal lips and by elongate-oval eggs measuring 89–108 · 48–57 lm; C. gymnothoracis n. sp. is similar to the foregoing species, but differs from it in the absence of cervical alae and the posterior cloacal outgrowth, in the shape and size of the anterior cloacal outgrowth and somewhat shorter spicules 1.12 mm long; C.
    [Show full text]
  • Conger Oceanicus
    Conger Eel − Conger oceanicus Overall Vulnerability Rank = High Biological Sensitivity = Moderate Climate Exposure = Very High Data Quality = 62% of scores ≥ 2 Expert Data Expert Scores Plots Conger oceanicus Scores Quality (Portion by Category) Low Moderate Stock Status 2.4 0.5 High Other Stressors 2.5 1.2 Very High Population Growth Rate 2.1 0.8 Spawning Cycle 2.9 2.4 Complexity in Reproduction 2.4 1.9 Early Life History Requirements 2.5 1.8 Sensitivity to Ocean Acidification 1.2 1.3 Prey Specialization 1.6 2.1 Habitat Specialization 2.4 3.0 Sensitivity attributes Sensitivity to Temperature 1.6 2.8 Adult Mobility 1.5 1.8 Dispersal & Early Life History 1.3 2.8 Sensitivity Score Moderate Sea Surface Temperature 4.0 3.0 Variability in Sea Surface Temperature 1.0 3.0 Salinity 2.4 3.0 Variability Salinity 1.2 3.0 Air Temperature 4.0 3.0 Variability Air Temperature 1.0 3.0 Precipitation 1.3 3.0 Variability in Precipitation 1.4 3.0 Ocean Acidification 4.0 2.0 Exposure variables Variability in Ocean Acidification 1.0 2.2 Currents 2.2 1.0 Sea Level Rise 2.4 1.5 Exposure Score Very High Overall Vulnerability Rank High Conger Eel (Anguilla oceanica) Overall Climate Vulnerability Rank: High (93% certainty from bootstrap analysis). Climate Exposure: Very High. Three exposure factors contributed to this score: Ocean Surface Temperature (4.0), Ocean Acidification (4.0) and Air Temperature (4.0). Conger Eel are semelparous: spawning in the ocean, developing in marine and estuarine habitats, then feeding growing, and maturing in marine and estuarine habitats.
    [Show full text]
  • 2004A IE Reports
    Contents Introduction…………………………………….…………………………………1 Using GIS to predict plant distributions: a new approach (Amy Lorang)……………………………………………………………………...3 Impacts of Hemlock Woolly Adelgid on Canadian and Carolina Hemlock Forests (Josh Brown)………………………………………………..……………………19 Effects of Adelgid-Induced Decline in Hemlock Forests on Terrestrial Salamander Populations of the Southern Appalachians: A Preliminary Study (Shelley Rogers)………………………………………………………………….37 Riparian zone structure and function in Southern Appalachian forested headwater catchments (Katie Brown)…………………………………………………………………….60 Successional Dynamics of Dulany Bog (Michael Nichols)………………………………………………………………...77 Mowing and its Effect on the Wildflowers of Horse Cove Road on the Highlands Plateau ((Megan Mailloux)……………………………………………………………….97 Acknowledgements……………………………………………………………..114 1 Introduction In the Fall of 2004, twelve undergraduate students from the University of North Carolina at Chapel Hill had the opportunity to complete ecological coursework through the Carolina Environmental Program’s Highlands field site. This program allows students to learn about the rich diversity of plants and animals in the southern Appalachians. The field site is located on the Highlands Plateau, North Carolina, near the junction of North Carolina, South Carolina and Georgia. The plateau is surrounded by diverse natural areas which create an ideal setting to study different aspects of land use change and threats to biodiversity. The Highlands Plateau is a temperate rainforest of great biodiversity, a patchwork of rich forests, granite outcrops, and wet bogs. Many rare or interesting species can be found in the area, with some being endemic to a specific stream or mountaintop. Some of these are remnants of northern species that migrated south during the last ice age; others evolved to suit a particular habitat, with a slightly different species in each stream.
    [Show full text]
  • FROGS in an EFFLUENT SOCIETY Risks, Remedies and Responsibilities by Dr Sara Broomhall First Published in June 2004 by WWF Australia © WWF Australia 2004
    FROGS IN AN EFFLUENT SOCIETY Risks, Remedies and Responsibilities by Dr Sara Broomhall First published in June 2004 by WWF Australia © WWF Australia 2004. All Rights Reserved. ISBN: 1 875941 67 3 Author: Dr Sara Broomhall WWF Australia GPO Box 528 Sydney NSW Australia Tel: +612 9281 5515 Fax: +612 9281 1060 www.wwf.org.au For copies of this booklet or a full list of WWF Australia publications on a wide range of conservation issues, please contact us on [email protected] or call 1800 032 551. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of WWF. Special thanks to Craig Cleeland for supplying the photographs for this booklet. CONTENTS FROGS AS ENVIRONMENTAL BAROMETERS The aim of this booklet is to help What is a pollutant? 2 you understand: Australian frogs 2 How do frogs interact with their environment? 3 What pollutants are – Life stages 3 – Habitat requirements 3 How frogs interact with their environment – Ecological position 3 – Frogs and pollutants in the food chain 3 Why water pollution affects frogs Why is environmental pollution a frog issue? 3 – Are frogs more sensitive to environmental pollutants than other species? 3 Where pollutants come from and how they enter the environment WHAT WE DO AND DON’T KNOW Why don’t we have all the answers? 4 How you may be polluting water – How relevant are these toxicity tests to real world situations anyway? 4 Categories of pollutants (such as pesticides) Where do pollutants come from? 4 How many chemicals do we use here in Australia?
    [Show full text]
  • Successful Reproduction of the Mole Salamander Ambystoma Talpoideum in Captivity, with an Emphasis on Stimuli Environmental Determinants
    SHORT NOTE The Herpetological Bulletin 141, 2017: 28-31 Successful reproduction of the mole salamander Ambystoma talpoideum in captivity, with an emphasis on stimuli environmental determinants AXEL HERNANDEZ Department of Environmental Sciences, Faculty of Sciences and Technics, University Pasquale Paoli of Corsica, Corte, 20250, France Author Email: [email protected] ABSTRACT - Generating and promoting evidence-based husbandry protocols for urodeles, commonly known as newts and salamanders, is urgently needed because most of the up-to-date ex situ programs are focused on frogs and toads than Urodela. Data on biology, life history, ecology and environmental parameters are lacking for many species and are needed to establish suitable husbandry and breeding conditions in captive environments. Two adult females and two adult males, of the mole salamander Ambystoma talpoideum successfully reproduced in captivity. It was found that reproduction of this species depends on various complex stimuli: including natural photoperiod 12:12, rainwater (acidic to neutral pH) and an aquarium full of various debris. Additionally high temperature variations ranging from 2 °C to 17 °C (a decrease followed by an increase) between November and February showed that it is possible to breed adults in aquariums provided the right stimuli are applied at the right moment of time in winter. A. talpoideum shows an explosive breeding mode as previously reported for the whole genus Ambystoma. INTRODUCTION with an emphasis on the environmental determinant stimuli involved. These data may assist in improving breeding these ince the 1980s, the current global amphibian extinction salamanders under artificial conditions. crisis has been discussed and acknowledged (Wake, A.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]