Herpetological Journal FULL PAPER
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Successful Reproduction of the Mole Salamander Ambystoma Talpoideum in Captivity, with an Emphasis on Stimuli Environmental Determinants
SHORT NOTE The Herpetological Bulletin 141, 2017: 28-31 Successful reproduction of the mole salamander Ambystoma talpoideum in captivity, with an emphasis on stimuli environmental determinants AXEL HERNANDEZ Department of Environmental Sciences, Faculty of Sciences and Technics, University Pasquale Paoli of Corsica, Corte, 20250, France Author Email: [email protected] ABSTRACT - Generating and promoting evidence-based husbandry protocols for urodeles, commonly known as newts and salamanders, is urgently needed because most of the up-to-date ex situ programs are focused on frogs and toads than Urodela. Data on biology, life history, ecology and environmental parameters are lacking for many species and are needed to establish suitable husbandry and breeding conditions in captive environments. Two adult females and two adult males, of the mole salamander Ambystoma talpoideum successfully reproduced in captivity. It was found that reproduction of this species depends on various complex stimuli: including natural photoperiod 12:12, rainwater (acidic to neutral pH) and an aquarium full of various debris. Additionally high temperature variations ranging from 2 °C to 17 °C (a decrease followed by an increase) between November and February showed that it is possible to breed adults in aquariums provided the right stimuli are applied at the right moment of time in winter. A. talpoideum shows an explosive breeding mode as previously reported for the whole genus Ambystoma. INTRODUCTION with an emphasis on the environmental determinant stimuli involved. These data may assist in improving breeding these ince the 1980s, the current global amphibian extinction salamanders under artificial conditions. crisis has been discussed and acknowledged (Wake, A. -
Assessing Population Health of the Toluca Axolotl Ambystoma Rivulare (Taylor, 1940) from México, Using Leukocyte Profiles
Herpetological Conservation and Biology 10(2):592–601. Submitted: 29 May 2014; Accepted: 6 March 2015; Published: 31 August 2015. ASSESSING POPULATION HEALTH OF THE TOLUCA AXOLOTL AMBYSTOMA RIVULARE (TAYLOR, 1940) FROM MÉXICO, USING LEUKOCYTE PROFILES CARLOS BARRIGA-VALLEJO1,2, OSWALDO HERNÁNDEZ-GALLEGOS2, IONE HUNT VON HERBING3, ANA ESTHELA LÓPEZ-MORENO2, MARÍA DE LOURDES RUIZ-GÓMEZ2, GISELA GRANADOS-GONZALEZ2, MÓNICA VANESA GARDUÑO-PAZ2, JOSÉ FERNANDO MÉNDEZ- SÁNCHEZ2, JAVIER BANDA-LEAL4, AND ANDREW K. DAVIS5,6 1Laboratorio de Ecofisiología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Apartado Postal - 513, C.P. 66450, Nuevo León, México 2Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario 100, Toluca Centro, C.P. 50000, México 3Department of Biological Sciences, University of North Texas, Denton, Texas 76201 4Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Herpetología, Apartado Postal # 513, San Nicolás de los Garza, Nuevo León, C.P. C.P. 66450, México 5Odum School of Ecology, University of Georgia, Athens, Georgia, USA 30602 6Corresponding author, e-mail: [email protected] Abstract.—World-wide declines of amphibians have heightened the need for information relating to their health status and immune function under natural conditions. Evaluation of differential white blood cell (leukocyte) counts from thin blood smears is one way to gain this information, and this approach is increasingly being used by herpetologists to gauge the integrity of amphibian populations. This approach is especially useful in natural settings because amphibian leucocyte profiles can vary depending on biological and physiological processes, including those caused by environmental factors. -
The Salamanders of Tennessee
Salamanders of Tennessee: modified from Lisa Powers tnwildlife.org Follow links to Nongame The Salamanders of Tennessee Photo by John White Salamanders are the group of tailed, vertebrate animals that along with frogs and caecilians make up the class Amphibia. Salamanders are ectothermic (cold-blooded), have smooth glandular skin, lack claws and must have a moist environment in which to live. 1 Amphibian Declines Worldwide, over 200 amphibian species have experienced recent population declines. Scientists have reports of 32 species First discovered in 1967, the golden extinctions, toad, Bufo periglenes, was last seen mainly species of in 1987. frogs. Much attention has been given to the Anurans (frogs) in recent years, however salamander populations have been poorly monitored. Photo by Henk Wallays Fire Salamander - Salamandra salamandra terrestris 2 Why The Concern For Salamanders in Tennessee? Their key role and high densities in many forests The stability in their counts and populations Their vulnerability to air and water pollution Their sensitivity as a measure of change The threatened and endangered status of several species Their inherent beauty and appeal as a creature to study and conserve. *Possible Factors Influencing Declines Around the World Climate Change Habitat Modification Habitat Fragmentation Introduced Species UV-B Radiation Chemical Contaminants Disease Trade in Amphibians as Pets *Often declines are caused by a combination of factors and do not have a single cause. Major Causes for Declines in Tennessee Habitat Modification -The destruction of natural habitats is undoubtedly the biggest threat facing amphibians in Tennessee. Housing, shopping center, industrial and highway construction are all increasing throughout the state and consequently decreasing the amount of available habitat for amphibians. -
A Survey of Leukocyte Profiles of Red-Backed Salamanders from Mountain Lake, Virginia, and Associations with Host Parasite Types
Comparative Clinical Pathology (2019) 28:1743–1750 https://doi.org/10.1007/s00580-019-03015-9 ORIGINAL ARTICLE A survey of leukocyte profiles of red-backed salamanders from Mountain Lake, Virginia, and associations with host parasite types Andrew K. Davis1 & Claire Golladay2 Received: 7 March 2019 /Accepted: 9 July 2019 /Published online: 19 July2019 # Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract In this project, red-backed salamanders, Plethodon cinereus, were collected from the heart of their range (Mountain Lake, Virginia, USA), in an effort to document the typical, or baseline, leukocyte profile of this species in its natural state. From microscopic examination of thin blood films, we determined relative proportions of all leukocyte types and determined the ratio of neutrophils to lymphocytes, which is a useful index of stress levels. In addition, individuals were examined for three naturally occurring endoparasites: two gastro-intestinal (trematodes and a ciliated protozoan in the genus Cepedietta) and one in the blood (a Rickettsial bacteria). This allowed us to conduct statistical comparisons of leukocyte data across parasite infection groups. Of 36 salamanders, 11 (31%) had trematode parasites, 7 (19%) contained Cepedietta parasites, 6 (17%) were parasitized by Rickettsia, and 12 had no parasites. The most common leukocytes were lymphocytes (87.4%), followed by neutrophils (4.2%), monocytes (3.3%), eosinophils (2.6%), and basophils (2.5%). The average neutrophil/lymphocyte ratio for these sala- manders was remarkably low (0.05) for an amphibian population. Statistical comparisons of leukocyte profiles among parasite infection groups indicated parasitized salamanders had twice as many circulating leukocytes as nonparasitized individuals, which could be considered an “inflammation response”. -
Heredia-Bobadilla Et Al. 2016 Completo.Pdf
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/309513614 Genetic structure and diversity in an isolated population of an endemic mole salamander (Ambystoma rivulare... Article in Genetica · December 2016 DOI: 10.1007/s10709-016-9935-9 CITATIONS READS 0 163 6 authors, including: Octavio Monroy-vilchis Martha M Zarco-González Universidad Autónoma del Estado de México … Universidad Autónoma del Estado de México … 79 PUBLICATIONS 584 CITATIONS 29 PUBLICATIONS 257 CITATIONS SEE PROFILE SEE PROFILE Daniel Martinez German D Mendoza Metropolitan Autonomous University Metropolitan Autonomous University 17 PUBLICATIONS 25 CITATIONS 303 PUBLICATIONS 1,908 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: COORDINADOR DEL CENTRO DE INVESTIGACIÓN EN CIENCAS BIOLÓGICAS APLICADAS View project Growth parameters of black spiny-tailed iguana (Ctenosaura pectinata). View project All content following this page was uploaded by Armando Sunny on 16 November 2016. The user has requested enhancement of the downloaded file. Genetica (2016) 144:689–698 DOI 10.1007/s10709-016-9935-9 Genetic structure and diversity in an isolated population of an endemic mole salamander (Ambystoma rivulare Taylor, 1940) of central Mexico 1 1 Rosa-Laura Heredia-Bobadilla • Octavio Monroy-Vilchis • 1 2 Martha M. Zarco-Gonza´lez • Daniel Martı´nez-Go´mez • 2 1 Germa´n David Mendoza-Martı´nez • Armando Sunny Received: 18 August 2016 / Accepted: 18 October 2016 / Published online: 28 October 2016 Ó Springer International Publishing Switzerland 2016 Abstract Human activities are affecting the distribution of values of effective population size, small inbreeding species worldwide by causing fragmentation and isolation coefficients, and low gene flow were also found. -
Ambystoma Rivulare)” Secretaría De Educación Pública/Consejo Nacional De Ciencia Y Tecnología Ciencia Básica 2015- 259173.”
UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO INSTITUTO DE INVESTIGACIONES SOBRE LOS RECURSOS NATURALES PROGRAMA INSTITUCIONAL DE DOCTORADO EN CIENCIAS BIOLÓGICAS INSTITUTO DE INVESTIGACIONES SOBRE LOS RECURSOS NATURALES U.M.S.N.H. “Infección por Batrachochytrium dendrobatidis y su relación con la comunidad bacteriana presente en la piel del ensamble de anfibios de la Reserva de la Biosfera Mariposa-Monarca”. T E S I S PRESENTA: M. EN C. BISBRIAN ALHELÍ NAVA GONZÁLEZ Que presenta como reQuisito para obtener el grado de Doctora en Ciencias DIRECTORA DE TESIS DRA. IRERI SUAZO ORTUÑO CO-DIRECTORA DRA.GABRIELA PARRA-OLEA MORELIA, MICHOACÁN, MÉXICO, MAYO DEL 2020 1 Este trabajo se realizó en el Instituto de Investigaciones Sobre los Recursos Naturales de la Universidad Michoacana de San Nicolás de Hidalgo, en el Laboratorio de Herpetología y Ecología Animal, bajo la dirección de la Dr. Ireri Suazo Ortuño. Agradezco el financiamiento de este trabajo al Consejo Nacional de Ciencia y Tecnología por el apoyo recibido con número de becario 444637. Este estudio formó parte del proyecto “Efecto de la calidad del agua sobre parámetros poblacionales, fisiológicos y morfológicos de la salamandra de montaña (Ambystoma rivulare)” Secretaría de Educación Pública/Consejo Nacional de Ciencia y Tecnología Ciencia Básica 2015- 259173.” 2 AGRADECIMIENTOS Muchas gracias a mis asesores, Dra. Gabriela Parra, Dra. Ireri Suazo, Dr. Eduardo Mendoza, Dra. Teresa Vieyra y Dr. Miguel Matínez; las Dras. Luciana Raggi y Yuri Maldonado quienes contribuyeron enormemente al proyecto como asociadas, todos muchas gracias, ya que su tiempo y apoyo brindados, hacen posible la conclusión de este proyecto, resumen de esfuerzos incontables y largas horas de trabajo. -
Ambystoma Macrodactylum Croceum)
Ecology & conservation of the Santa Cruz long-toed salamander (Ambystoma macrodactylum croceum) A workshop on the natural history, ecology, and conservation of a critically-endangered species Wesley K. Savage, Ph.D. Department of Biological Sciences University of Massachusetts, Lowell [email protected] Workshop Goals 1. Explain key elements of SCLTS biology and life history 2. Review the regional landscape and areas where SCLTS is most likely to be found 3. Different life stages, timing of key life history events 4. Discuss effective sampling strategies 5. Discuss the complexities of conserving the species when habitat loss is increasing – irony 6. Provide an open forum for question and discussion 7. Conduct a field exercise in detection methods & mitigation design In general, we will cover: What a long-toed salamander is How it got here, where it lives, and what it does How to identify it How to identify habitat and detect presence Why it is endangered and how it is being managed, as well as prospects for recovery Workshop Outline I. Biogeographic history of the long-toed salamander and how the SC lineage arose II. Ecology and life history III. Surveying, monitoring, & management IV. Threats, mitigation approaches V. Practical conservation & recovery I. History through biogeographic origins Taxonomy and basic biology Diversity, distribution, evolution, and rarity Objective: understand why SCLTS is so rare and unique The history of SCLTS begins with biogeography and long-range colonization followed by divergence in allopatry It ends in -
Marbled Salamander Ambystoma Opacum
Natural Heritage Marbled Salamander & Endangered Species Ambystoma opacum Program State Status: Threatened www.mass.gov/nhesp Federal Status: None Massachusetts Division of Fisheries & Wildlife DESCRIPTION: The Marbled Salamander is a stout, medium-sized salamander with a stocky body, short limbs, and a broad, rounded snout. Dorsal coloration is black, marked with bold, variably-shaped grayish to whitish crossbands that create a “marbled” pattern from head to tail. Lateral and ventral coloration is uniformly dark gray to black. Banding on the mid- to upper dorsum tends to be bright white in mature males and dull gray in mature females. Banding on the tail can be white in both sexes, or gray in females. Total length is 3–5 inches. Marbled Salamander Photo by Lloyd Gamble larvae collected from the wild will transform to a light- olive color when kept in a light-colored container. Albino/leucistic larvae have been documented in Massachusetts on at least two occasions. Recently transformed juveniles (metamorphs) have a Distribution in Massachusetts base color of brown to black and are marked with light, 1990 - 2015 Based on records in silvery flecks that become more pronounced and Natural Heritage Database aggregated over the dorsum during the first several weeks post-metamorphosis. As the animal matures during the following 1–2 months, the markings elongate Recently hatched larvae are dark brown to blackish in to form the characteristic marbled pattern of an adult. coloration and measure approximately half-an-inch in total length. Throughout development, they have bushy, SIMILAR SPECIES: Adult Marbled Salamanders external gills, a broad head, a long caudal fin that cannot be confused with any other species in extends onto the back, and a row of bright-white spots Massachusetts. -
Entrapment of the California Tiger Salamander in Technogenic Structures As a Confounding Stressor for a Threatened Species
274 ARTICLES of the mole salamander (Ambystoma talpoideum). Can. J. Zool. tilmAn, d., j. KnoPS, d. wEdin, P. rEiCH, m. ritCHiE, And E. SiEmAnn. 1997. 59:315–322. The influence of functional diversity and composition on ecosys- ———. 1983. Burrowing ability and behavior of salamanders of the tem processes. Science 277:1300–1302. genus Ambystoma. Can. J. Zool. 61:616–620. uriAn, K., A. GorGonE, A. rEAd, b. bAlmEr, r. wEllS, Et Al. 2014. Rec- ———. 1998. Biological delineation of terrestrial buffer zones for ommendations for photo-identification methods used in capture- pond-breeding salamanders. Conserv. Biol. 12:1113–1119. recapture models with cetaceans. Mar. Mamm. Sci. 31:298–321. Simon, t. P., r. jAnKowSKi, And C. morriS. 2000. Modification of an index VAN HORNE, B. 1983. Density as a misleading indicator of habitat qual- of biotic integrity for assessing vernal ponds and small palustrine ity. J. Wildl. Manag. 47:893–901. wetlands using fish, crayfish, and amphibian assemblages along VAnni, m. j. 2002. Nutrient cycling by animals in freshwater ecosys- southern Lake Michigan. Aquat. Ecosyst. Health Manag. 3:407– tems. Ann. Rev. Ecol. Syst. 33:341–370. 418. WAKE, D. B. 1991. Declining amphibian populations. Science 253:860. SmitH, C. K., And j. w. PEtrAnKA. 2000. Monitoring terrestrial salaman- wAlKEr, b. H. 1992. Biodiversity and ecological redundancy. Conserv. ders: Repeatability and validity of area-constrained cover object Biol. 6:18–23. searches. J. Herpetol. 34:547–557. wAnG, y., And d. K. moSKoVitS. 2001. Tracking fragmentation of natural SpeybroECK, j., And K. StEEnHoudt. 2017. A pattern-based tool for long- communities and changes in land cover: Applications of Landsat term, large-sample capture-mark-recapture studies of fire sala- data for conservation in an urban landscape (Chicago Wilder- manders Salamandra species (Amphibia: Urodela: Salamandri- ness). -
Blue-Spotted Salamander Natural Heritage Ambystoma Laterale & Endangered Species Program State Status: Threatened (Pop
Blue-spotted Salamander Natural Heritage Ambystoma laterale & Endangered Species Program State Status: Threatened (Pop. 2; Bristol/Plymouth counties) www.mass.gov/nhesp Special Concern (Pop. 1: remainder of state) Massachusetts Division of Fisheries & Wildlife Federal Status: None DESCRIPTION: Blue-spotted Salamander is a medium-sized salamander with conspicuous markings of randomly distributed, sky-blue spots, blotches, and flecks on a base color of dark gray to black. While the blue markings are abundant over the entire body in juveniles, they tend to be more concentrated along the sides and on the limbs in adults. Adults measure 3–5 inches (7.5–13 cm) in total length. The tail is laterally compressed (especially in sexually active males) and is proportionally longer in males than in females. Blue- spotted Salamander is in the family of mole salamanders, and so it has distinctively long toes and a stockier build relative to other groups of salamanders in our region. Blue-spotted Salamander Photo by Leo P. Kenney Larvae have bushy, external gills and a broad caudal fin that extends well onto the back. Young larvae are not SIMILAR SPECIES: Blue-spotted Salamander is a easily distinguished from those of other Ambystoma member of an intricate group of salamanders known as species. Older larvae can still be difficult to identify, but the Ambystoma jeffersonianum complex. In they are generally characterized as brownish with a Massachusetts, the complex consists of two bisexual yellowish lateral stripe, whitish/unpigmented undersides, species, Jefferson Salamander (A. jeffersonianum) and and a heavily dark-mottled caudal fin. Blue-spotted Salamander, and a group of unisexual Ambystoma of a hybrid lineage. -
Supporting Information Tables
Mapping the Global Emergence of Batrachochytrium dendrobatidis, the Amphibian Chytrid Fungus Deanna H. Olson, David M. Aanensen, Kathryn L. Ronnenberg, Christopher I. Powell, Susan F. Walker, Jon Bielby, Trenton W. J. Garner, George Weaver, the Bd Mapping Group, and Matthew C. Fisher Supplemental Information Taxonomic Notes Genera were assigned to families for summarization (Table 1 in main text) and analysis (Table 2 in main text) based on the most recent available comprehensive taxonomic references (Frost et al. 2006, Frost 2008, Frost 2009, Frost 2011). We chose recent family designations to explore patterns of Bd susceptibility and occurrence because these classifications were based on both genetic and morphological data, and hence may more likely yield meaningful inference. Some North American species were assigned to genus according to Crother (2008), and dendrobatid frogs were assigned to family and genus based on Grant et al. (2006). Eleutherodactylid frogs were assigned to family and genus based on Hedges et al. (2008); centrolenid frogs based on Cisneros-Heredia et al. (2007). For the eleutherodactylid frogs of Central and South America and the Caribbean, older sources count them among the Leptodactylidae, whereas Frost et al. (2006) put them in the family Brachycephalidae. More recent work (Heinicke et al. 2007) suggests that most of the genera that were once “Eleutherodactylus” (including those species currently assigned to the genera Eleutherodactylus, Craugastor, Euhyas, Phrynopus, and Pristimantis and assorted others), may belong in a separate, or even several different new families. Subsequent work (Hedges et al. 2008) has divided them among three families, the Craugastoridae, the Eleutherodactylidae, and the Strabomantidae, which were used in our classification. -
Crotalus Tancitarensis. the Tancítaro Cross-Banded Mountain Rattlesnake
Crotalus tancitarensis. The Tancítaro cross-banded mountain rattlesnake is a small species (maximum recorded total length = 434 mm) known only from the upper elevations (3,220–3,225 m) of Cerro Tancítaro, the highest mountain in Michoacán, Mexico, where it inhabits pine-fir forest (Alvarado and Campbell 2004; Alvarado et al. 2007). Cerro Tancítaro lies in the western portion of the Transverse Volcanic Axis, which extends across Mexico from Jalisco to central Veracruz near the 20°N latitude. Its entire range is located within Parque Nacional Pico de Tancítaro (Campbell 2007), an area under threat from manmade fires, logging, avocado culture, and cattle raising. This attractive rattlesnake was described in 2004 by the senior author and Jonathan A. Campbell, and placed in the Crotalus intermedius group of Mexican montane rattlesnakes by Bryson et al. (2011). We calculated its EVS as 19, which is near the upper end of the high vulnerability category (see text for explanation), its IUCN status has been reported as Data Deficient (Campbell 2007), and this species is not listed by SEMARNAT. More information on the natural history and distribution of this species is available, however, which affects its conservation status (especially its IUCN status; Alvarado-Díaz et al. 2007). We consider C. tancitarensis one of the pre-eminent flagship reptile species for the state of Michoacán, and for Mexico in general. Photo by Javier Alvarado-Díaz. Amphib. Reptile Conserv. | http://amphibian-reptile-conservation.org 128 September 2013 | Volume 7 | Number 1 | e71 Copyright: © 2013 Alvarado-Díaz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for Amphibian & Reptile Conservation 7(1): 128–170.