Spawning and Production of the Serpae Tetra, Hyphessobrycon Serpae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Hardy Tetra Community Aquarium
Elmer’s Aquarium Community Tank Ideas Tank Size: 10 gal or more H ardy Tetra Community Aquarium Why Keep Them? This community is our most popular community tank for beginners with tanks of 10 to 30 gallons. Tetras represent a large group of fish, and many of them make great choices for a beginner’s community tank. Many tetras are active, colorful, hardy and get along well with other tank mates. Housing: This community tank is suitable for tanks of 10 gallon and up. Filtration can include an AquaClear power filter with a supplemental air pump and sponge filter. They like to swim in the middle water layers. Provide some bushy plants (live or plastic) toward the rear of the tank, and leave the front open for swimming. Water Conditions: Temperature 74-80. pH- (6.6-7.2) Use Seachem Neutral Regulator with each partial water change. Live Plants: Live plants are highly recommended for this community, but not required. Live plants will help bring out the best coloration and behavior in these fish as well as maintain optimal tank conditions. Feeding: Feed this community two to three small feedings per day. Feed flakes, small pellets, and some assorted frozen foods such as mysis shrimp for the most nutrition. How Many? Tetras, Danios, Rasboras, Barbs, Moons and Swordtails are schooling fish and should be bought in groups of at least 3 or more. Tank Mates: Choose other fish of similar size and temperament. Our staff can help you find them in our store. Tetras: Black Skirt Tetra, White Skirt Tetra, Serpae Tetra, Glowlight Tetra, Flame Von Rio Tetra, Bleeding Heart Tetra, Pristella Tetra, Black Phantom Tetra, Red Phantom Tetra, Silver Tip Tetra, Red Eye Tetra, Gold Tetra, Diamond Tetra, Emperor Tetra, GloFish Tetra, Bloodfin Tetra, Head & Tail Light Tetra, Rasboras: Harlequin Rasbora, Brilliant Rasbora, Scissortail Rasbora. -
Phylogenetic Relationships Within the Speciose Family Characidae
Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Oogenesis of the Cardinal Tetra Paracheirodon Axelrodi Schultz (1956): a Histological and Histochemical Study
Oogenesis of the cardinal tetra Paracheirodon axelrodi Schultz (1956): a histological and histochemical study Brito, MFG.1* and Bazzoli, N.2 1Departamento de Biologia, Universidade Federal de Sergipe – UFS, Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon s/n, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, SE, Brasil 2Programa de Pós-Graduação em Zoologia, Pontifícia Universidade Católica de Minas Gerais – PUC Minas, Av. Dom José Gaspar 500, Coração Eucarístico, Prédio 41, CEP 30535-610, Belo Horizonte, MG, Brasil *E-mail: [email protected] Abstract A histological and histochemical study of Paracheirodon axelrodi oogenesis was conducted. Four types of oocytes were determined, presenting a thin zona pellucida and squamous follicle cells in all developmental stages. The yolk globules in vitellogenic oocytes are spherical and the micropyle possessed an ample vestibule and short micropylar canal. Atresic follicles were frequent, since ovulation did not occur. The histochemical reactions demonstrated the presence of neutral glycoproteins in the zona pellucida and follicle cells; glycopro- teins and lipids in the yolk globules and carboxylated acid glycoconjugates in the cortical alveoli. The knowl- edge of the reproductive parameters becomes an important tool in captivity breeding programs, reducing the fishing effort on the native stock. Keywords: Paracheirodon axelrodi, reproduction, oocyte, follicle atresia. 1 Introduction Capture of small-sized ornamental fishes captured in the P. axelrodi are still unknown (HARRIS and PETRY, 2001). Negro River and tributaries present a great value in the na- Such information that can aid culturing techniques of this spe- tional and international trade markets. Approximately 70% cies on a larger scale is extremely necessary, thereby reducing of the fish exported from the Amazon State comes from the fishing pressures on native stocks. -
Tetra (Paracheirodon Axelrodi, Characidae) in Its Natural Habitat
The food spectrum of the cardinal - tetra (Paracheirodon axelrodi, Characidae) in its natural habitat. Ilse WALKER1 ABSTRACT The cardinal tetra (Paracheirodon axelrodi) is the most intensively commercialized ornamental fish from the Rio Negro Basin (Amazonas State, Brasil). Analysis of the stomach and gut contents of fish caught in their natural habitats show conclusively that the cardinal is essentially a predator, feeding on the mesofauna that adheres to submerged litter, roots and waterplants. Microcrustacea and chironomid larvae (Diptera) were the most frequently ingested prey, while algae intake was relatively infrequent. It is argued that the relatively small size of the cardinals captured in their natural habitat is due to the annual migrations imposed by the inundation cycles, rather than to resource limitation, because it is known from earlier investigations of similar habitats, that these plant substrates are densely colonized by the aquatic mesofauna. Cardinals raised in captivity are larger and have higher rates of growth. KEY WORDS Rio Negro, cardinal, diet. Estratégias alimentares do cardinal-tetra (Paracheirodon axelrodi, Characidae) em seu ambiente natural. RESUMO O cardinal (Paracheirodon axelrodi) é o peixe ornamental comercializado com maior intensidade na Bacia do Rio Negro (Estado do Amazonas, Brasil). Análise do conteúdo estomacal de peixes capturados nos seus habitats naturais mostra, que o cardinal é essencialmente um predador, alimentando-se da mesofauna que está colonizando a liteira submersa, arbustos submersos, raízes flutuantes e plantas aquáticas. As presas principais são microcrustáceos e larvas de quironomídeos (Chironomidae, Diptera), enquanto ingestão de algas é pouco freqüente. Considera-se que o tamanho relativamente pequeno de cardinais capturados nos ambientes naturais é devido as migrações anuais que acompanham os ciclos anuais de enchente e vazante, e não à falta de recursos; já que é conhecido de ambientes parecidos de outros rios da região, que estes substratos aquáticos são densamente colonizados pela mesofauna. -
Tetra Black Neon
Black Neon Tetra Hyphessobrycon herbertaxelrodi Natural Range Colour and Varieties These tetras are native to Paraguay and the Silver belly with a black top underneath the dor- southern parts of Brazil. sal and a green to white line through the body from the eye to the tail, they are shaped similar Maximum Size and Longevity to Kerri Tetra just smaller. They will grow to approximately 4cms and can live for up to 5 years. Sexing and Breeding It is not that hard to tell the difference between Water Quality males and females. Females will be a lot Prefer soft acid water plumper and rounder in the body due to their bel- · Temperature: 22°C - 27°C. lies being full with eggs. Black neon's are egg · pH: 5.5—7.0 layers and will lay their eggs in a scattered for- · General Hardness: 100 ppm. mation, laying them on leaves glass and rocks in the aquarium. Parents should be removed from Feeding the tank after they laid the eggs as the adults will Black Neon Tetras are an omnivore and will feed eat the eggs and fry. on live foods such as brine shrimp and live black worm. They also readily take a variety of fish General Information foods such as flake and TetraMin Tropical A lot of people think that Black Neon tetras and Crisps. Neon tetras are the same types of fish; this is not true. Although having the same names (Neon) Compatibility these fish are completely different and have These tetras are a peaceful fish and will be com- variations on the water quality they will live in patible with most other tetras, they should be and the level of difficulty in keeping them. -
Diet of Astyanax Species (Teleostei, Characidae) in an Atlantic Forest River in Southern Brazil
223 Vol.45, N. 2 : pp. 223 - 232, June 2002 ISSN 1516-8913 Printed in Brazil BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Diet of Astyanax species (Teleostei, Characidae) in an Atlantic Forest River in Southern Brazil Fábio Silveira Vilella*; Fernando Gertum Becker and Sandra Maria Hartz Laboratório de Ecologia de Vertebrados; Departamento e Centro de Ecologia; Universidade Federal do Rio Grande do Sul; Av. Bento Gonçalves, 9500; Caixa Postal 15007; CEP 91501-970; Porto Alegre - RS - Brasil ABSTRACT Feeding habits of six species of Astyanax from river Maquiné are described. Fishes were sampled bi-monthly from November/95 to September/96 in two zones of the river. Items were identified, counted and had their abundance estimated according to a semi-quantitative scale. Frequency of occurrence, alimentary importance index (IFI) values and a similarity analysis of diets for each species-river zone sample were examined. All the species were considered typically omnivorous, with insects and vegetal matter being the most important items in their diet. These species could act as seed dispersers, particularly for macrophytes. Intra-specific spatial differences were not observed in comparisons of samples from two diferent regions of the river, except for A. fasciatus. The presence of Podostemaceae macrophytes in the mid-course of the river seemed to be important both as an autochthonous food resource and as habitat for several organisms preyed by the Astyanax species. Key words: Diet, seed dispersal, fish, Astyanax, Atlantic Forest, Brazil INTRODUCTION pH, temperature and food resources (Menezes et al., 1990; Uieda and Kikuchi, 1995). The Atlantic Forest includes a large region in Fishes are probably the less known vertebrates in eastern Brazil, from the state of Rio Grande do the Atlantic Forest, partly due to a lack of Norte (north) to Rio Grande do Sul (south). -
Two New Species of Knodus (Characidae: Stevardiinae) from the Upper Rio Tocantins Basin, with Evidence of Ontogenetic Meristic Changes
Neotropical Ichthyology Original article https://doi.org/10.1590/1982-0224-2020-0106 urn:lsid:zoobank.org:pub:C4F52922-98BE-485C-94F7-03D158B4EDEB Two new species of Knodus (Characidae: Stevardiinae) from the upper rio Tocantins basin, with evidence of ontogenetic meristic changes Correspondence: 1 1 Gabriel de Carvalho Deprá Gabriel de Carvalho Deprá , Renata Rúbia Ota , 1 2 [email protected] Oscar Barroso Vitorino Júnior and Katiane Mara Ferreira Two new species from the upper rio Tocantins basin are described in Knodus based on the traditional definition of the genus. The new species are distinguished from other congeners by meristic and morphometric characters, such as the number of cusps in the premaxillary and dentary teeth, the number of scale series between dorsal-fin origin and lateral line, the orbital diameter and the body depth. With the two new species, the number of endemic species in the upper rio Tocantins basin upstream of the mouth of the rio Paranã, rises to 53 (89 to the confluence with rio Araguaia). The existence of a meristic character that changes through ontogeny (allomery), viz. the number of scale series between dorsal-fin origin Submitted October 2, 2020 and lateral line, was detected in some species of Knodus through a regression Accepted January 1, 2021 analysis. Additionally, this paper describes an unambiguous, more informative by Paulo Lucinda and precise new method for counting vertebrae, which will enhance the efficacy Epub 08 March, 2021 of this trait in species comparisons. Keywords: Allochromy, Allomery, Endemism, Knodus breviceps, Secondary sexual characters. Online version ISSN 1982-0224 Print version ISSN 1679-6225 1 Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá. -
The Survival and Growth Performance of Juvenile Cardinal Tetra (Paracheirodon Axelrodi) with Application of Tropical Almond (Terminalia Catappa) Leaves
NUSANTARA BIOSCIENCE ISSN: 2087-3948 Vol. 8, No. 1, pp. 1-4 E-ISSN: 2087-3956 May 2016 DOI: 10.13057/nusbiosci/n080101 The survival and growth performance of juvenile cardinal tetra (Paracheirodon axelrodi) with application of tropical almond (Terminalia catappa) leaves NURHIDAYAT1,♥, LIZA WARDIN2, EDIYANTO SITORUS3 1Agencyof Research and Development of Ornamental Fish Culture, Ministry of Marine Affairs and Fishery. Jl. Perikanan No 13, Pancoran Mas, Depok 16436, West Jawa, Indonesia. Tel. +62-21-7765838, 7520482, Fax. +62-21-7520482, email: [email protected] 2SUPM Negeri Aceh, Banda Aceh. Nangroe Aceh Darussalam, Indonesia 3Faculty of Fishery and Marine Science, Universitas Satya Negara Indonesia. Jl. Arteri Pondok Indah No. 11, Kebayoran Lama, Jakarta Selatan 12240, Jakarta, Indonesia Manuscript received: 13 June 2015. Revision accepted: 3 December 2015. Abstract. Nurhidayat, Wardin L, Sitorus E. 2016. The survival and growth performance of juvenile cardinal tetra(Paracheirodon axelrodi) with application of tropical almond (Terminalia catappa) leaves. Nusantara Bioscience 8: 1-4. The proportional appearance of the length and the weight, and the color pattern are key factors of ornamental fishes. Modification of environment and application of food may be done to increase fish quality. The addition of active compound of tropical almond (Terminalia catappa) leaves at certain doses can be done to increase survival rate and the growth of juvenile cardinal tetra (Paracheirodon axelrodi). This research used completely randomized design with four treatments and four replications. Therefore, there were 16 experimental units. The treatments were four doses of almond leaves: D0 (without almond leaves), D1 (0.5 g/L), D2 (1.5 g/L) and D3 (2,5 g/L). -
Muscle Water Control in Crustaceans and Fishes As a Function of Habitat, Osmoregulatory Capacity, and Degree of Euryhalinity ⁎ Carolina A
Available online at www.sciencedirect.com Comparative Biochemistry and Physiology, Part A 149 (2008) 435–446 www.elsevier.com/locate/cbpa Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity ⁎ Carolina A. Freire a, , Enelise M. Amado b, Luciana R. Souza c, Marcos P.T. Veiga c, Jean R.S. Vitule c, Marta M. Souza d, Viviane Prodocimo a a Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil b Programa de Pós-Graduação em, Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil c Programa de Pós-Graduação em, Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil d Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil Received 7 December 2007; received in revised form 1 February 2008; accepted 2 February 2008 Available online 11 February 2008 Abstract This study aimed at detecting possible patterns in the relationship between Anisosmotic Extracellular Regulation (AER) and Isosmotic Intracellular Regulation (IIR) in crustaceans and teleost fish from different habitats and evolutionary histories in fresh water (FW), thus different osmoregulatory capabilities, and degrees of euryhalinity. Crustaceans used were the hololimnetic FW Aegla schmitti, and Macrobrachium potiuna, the diadromous FW Macrobrachium acanthurus, the estuarine Palaemon pandaliformis and the marine Hepatus pudibundus; fishes used were the FW Corydoras ehrhardti, Mimagoniates microlepis, and Geophagus brasiliensis, and the marine-estuarine Diapterus auratus. The capacity for IIR was assessed in vitro following wet weight changes of isolated muscle slices incubated in anisosmotic saline (~50% change). M. potiuna was the crustacean with the highest capacity for IIR; the euryhaline perciforms G. -
Eighty-Second Annual Mississippi Academy of Sciences Meeting
EIGHTY-SECOND ANNUAL MISSISSIPPI ACADEMY OF SCIENCES MEETING February 22-23, 2018 The University of Southern Mississippi Thad Cochran Center, Hattiesburg, Miss Sponsored by: Annual Meeting Sponsor Mississippi Academy of Sciences Sponsors University of Mississippi Medical Center, School of Health Related Professionals The University of Southern Mississippi Millsaps College Mississippi Academy of Sciences, Eighty-Second Annual Meeting Mississippi Academy of Sciences Volume 63 February 2018 Number 1 Table of Contents General Schedule 2 Conference Center Map 5 Academy Officers & Divisional Chairs 2015-16 7 Sustaining Members 8 Exhibitors 8 Life Members 10 Dodgen Lecturer, Plenary Speaker 13 HHMI/Millsaps Undergraduate Symposium 15 Mississippi INBRE Graduate Symposium 16 Divisional Symposia and Workshops 15 Overview of Divisional Programs 29 Agriculture & Plant Science 29 Cellular, Molecular & Developmental Biology 33 Chemistry & Chemical Engineering 41 Ecology & Evolutionary Biology 50 Geology & Geography 52 Health Sciences 56 History & Philosophy of Science 63 Marine & Atmospheric Sciences 65 Mathematics, Computer Science & Statistics 68 Physics & Engineering 70 Psychology & Social Sciences 74 Science Education 76 Zoology & Entomology 79 Editor: Michelle Tucci, University of Mississippi Medical Center Editorial Board: Gregorio Begonia, Jackson State University; Maria Begonia, Jackson State University; Ham Benghuzzi; University of Mississippi Medical Center; Ibrahim O. Farah, Jackson State University, Robin Rockhold, University of Mississippi Medical Center Program Editor: Kenneth Butler, University of Mississippi Medical Center The Journal of the Mississippi Academy of Sciences (ISSN 0076-9436) is pub-lished in January (annual meeting ab-stracts), April, July, and October, by the Mississippi Academy of Sciences. Members of the Academy receive the journal as part of their regular (non-student) membership.