A Hyper-Elastic Creep Approach and Characterization Analysis for Rubber Vibration Systems

Total Page:16

File Type:pdf, Size:1020Kb

A Hyper-Elastic Creep Approach and Characterization Analysis for Rubber Vibration Systems polymers Article A Hyper-Elastic Creep Approach and Characterization Analysis for Rubber Vibration Systems Dingxin Leng 1, Kai Xu 1, Liping Qin 2, Yong Ma 2 and Guijie Liu 1,* 1 Department of Mechanical and Electrical Engineering, Ocean University of China, Qingdao 266024, China; [email protected] (D.L.); user_ [email protected] (K.X.) 2 Seventh thirteen Institute of China Shipbuilding Industry Corporation, Zhengzhou 450009, China; [email protected] (L.Q.); [email protected] (Y.M.) * Correspondence: [email protected]; Tel./Fax: +86-0532-66781131 Received: 22 March 2019; Accepted: 15 May 2019; Published: 4 June 2019 Abstract: Rubber materials are extensively utilized for vibration mitigation. Creep is one of the most important physical properties in rubber engineering applications, which may induce failure issues. The purpose of this paper is to provide an engineering approach to evaluate creep performance of rubber systems. Using a combination of hyper-elastic strain energy potential and time-dependent creep damage function, new creep constitutive models were developed. Three different time-decay creep functions were provided and compared. The developed constitutive model was incorporated with finite element analysis by user subroutine and its engineering potential for predicting the creep response of rubber vibration devices was validated. Quasi-static and creep experiments were conducted to verify numerical solutions. The time-dependent, temperature-related, and loading-induced creep behaviors (e.g., stress distribution, creep rate, and creep degree) were explored. Additionally, the time–temperature superposition principle was shown. The present work may enlighten the understanding of the creep mechanism of rubbers and provide a theoretical basis for engineering applications. Keywords: finite element analysis; creep behavior; rubber; vibration system; hyper-elasticity; creep damage 1. Introduction Vibration mitigation is an essential design requirement in several industries, such as aerospace, rocket-engine, and automotive [1]. Passive damping technology often utilizes viscoelastic materials to decrease the vibratory level transmitted and the vibration field generated. Traditional viscoelastic materials are rubbers, which are widely utilized for years of service [2]. In practice, when a constant load is applied to a rubber material, its deformation is not a constant; it gradually increases with time, which is known as creep. The creep presents a time-dependent characteristic, which induces the dimensional instability of rubber products over their expected lifetime and may finally lead to early failure and deteriorate the vibration mitigation performance. Hence, it is important to accurately predict the creep behaviors of rubbers so that the fracture failure due to the creep effect can be prevented. Creep is typically classified in three stages, as shown in Figure1[ 3]. The first one is primary creep or transient creep, which is related to the physical rearrangement of polymer chains (e.g., bond stretching/bending and crosslinking between chains of rubber materials) [4]. In the primary creep stage, the strain rate is initially high and reduces with time. When the strain rate diminishes to a minimum value, the secondary stage begins and an obvious time-dependent behavior is presented, that is, the stain increases remarkably after an important length of elapsing time. The third stage is termed as Polymers 2019, 11, 988; doi:10.3390/polym11060988 www.mdpi.com/journal/polymers Polymers 2019, 11, 988 2 of 19 Polymers 2018, 10, x FOR PEER REVIEW 2 of 20 that is, the stain increases remarkably after an important length of elapsing time. The third stage is the creeptermed failure as the stage,creep failure in which stage, the in creepwhich resistancethe creep resistance is weakened is weaken anded fracture and fracture inside inside the rubber the is presented.rubber Inis presented. engineering In applications,engineering application creep analysiss, creep practically analysis practically considers considers the first twothe first creep two stages. creep stages. FigureFigure 1. 1.Strain Strain as as a a functionfunction of time time for for the the three three creep creep stages stages [3]. [3]. TheThe reliability reliability of of creep creep predictions predictions isis dependentdependent on on the the application application of computational of computational model models.s. Hyper-elasticHyper-elastic models models are are commonly commonly utilized utilized to describe the the nonlinear nonlinear properties properties of rubber of rubber materials materials and rubber-basedand rubber-base devices.d devices. In In mathematical mathematical expression, the the hyper hyper-elasticity-elasticity of rubber of rubber is issued is issued from from the strainthe strain energy energy density, density, which which is is a a function function of principal invariants invariants related related to the to theCauchy Cauchy–Green–Green deformationdeformation tensors tensors and and thethe Jacobian Jacobian matrix matrix of the of deformation the deformation gradient gradient [5]. Widely [5]. applied Widely hyper applied- hyper-elasticelastic models models include include the Mooney the Mooney–Rivlin–Rivlin model [6,7 model], the Biderman [6,7], the model Biderman [8], the model Ogden [model8], the [9 Ogden], modelthe [9 Yeoh], the model Yeoh model [10], the [10 Neo], the–Hookean Neo–Hookean model model[5], and [5 polynomial], and polynomial series [1 series1]. The [11 parameters]. The parameters in these phenomenological models are identified according to the experimental data. Additionally, in these phenomenological models are identified according to the experimental data. Additionally, some hyper-elastic models are based on microscopic responses of polymer chains in the network of somerubber hyper-elastic materials, models e.g., six areor eight based constrained on microscopic-chain model responsess [12,13]. of Hyper polymer-elastic chains models in focus the network on of rubberportraying materials, nonlinear e.g., force six– ordeflection eight constrained-chain responses of rubbers; models however, [12 ,they13]. cannot Hyper-elastic describe modelsthe time- focus on portrayingdependent creep nonlinear responses force–deflection due to the models responses without of referring rubbers; to th however,e elapsed theyloading cannot time [1 describe4]. the time-dependentCreep behavior creep responses is attributed due toto thethe models time-related without viscoelasticity referring to of the rubber elapsed materials. loading timeThe [14]. descriptionCreep behavior of viscoelastic is attributed behavior to the can time-related be achieved viscoelasticity by taking into account of rubber the materials. appropriate The amounts description of viscoelasticof elastic and behavior damping can elements be achieved into viscoelastic by taking models. into accountTypical computational the appropriate models, amounts such as of the elastic and dampingMaxwell element elements and into the viscoelastic Kelvin–Voight models. model Typical, are suitable computational for depicting models, linearly such viscoelastic as the Maxwell elementproperties; and the however Kelvin–Voight, long-term model, nonlinear are suitable creep forresponses depicting are linearlynot accurately viscoelastic predicted. properties; Subsequently, some complex viscoelastic models were proposed. Skrzypek [15] proposed a creep however, long-term nonlinear creep responses are not accurately predicted. Subsequently, some model by modifying Boltzmann’s superposition principle to describe nonlinear creep laws, in which complextime- viscoelasticdependent creep models strain were was stud proposed.ied. Lee [1 Skrzypek6] established [15] a proposed modified viscoelastic a creep model model by in prony modifying Boltzmann’sseries to study superposition creep characteristics principle toof compressed describe nonlinear rubber products creep laws, and a in finite which element time-dependent analysis was creep strainpresented. was studied. Majda Lee [3] [16developed] established a modified a modified Burger viscoelastic model with model tunable in pronydamping series and to stiffness study creep characteristicscoefficients offor compressed calculating rubbercreep productsdeformation and, which a finite was element validated analysis by wasexperimental presented. results. Majda [3] developedAlthough a modified these complex Burger viscoelastic model withmodels tunable can forecast damping creep and nonlinearity, stiffness their coeffi complexitycients for results calculating creepin deformation, time-consuming which calculations was validated and substantial by experimental creep experime results.ntal Although results these must complexbe input viscoelasticted to modelsdetermi canne forecast large numbers creep of nonlinearity, model parameters, their complexitywhich limits the results practical in time-consumingapplication. calculations It is noteworthy that a mechanical model for creep analysis with high efficiency and reasonable and substantial creep experimental results must be inputted to determine large numbers of model accuracy is particularly attractive. Recently, Luo proposed an easily implemented creep damage parameters, which limits the practical application. model for predicting long-term creep characteristics of polyisoprene rubbers [17]. However, his work focusedIt is noteworthy on the creep that analysis a mechanical under a model fixed loading for creep level analysis and temperature with
Recommended publications
  • Engineering Viscoelasticity
    ENGINEERING VISCOELASTICITY David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 October 24, 2001 1 Introduction This document is intended to outline an important aspect of the mechanical response of polymers and polymer-matrix composites: the field of linear viscoelasticity. The topics included here are aimed at providing an instructional introduction to this large and elegant subject, and should not be taken as a thorough or comprehensive treatment. The references appearing either as footnotes to the text or listed separately at the end of the notes should be consulted for more thorough coverage. Viscoelastic response is often used as a probe in polymer science, since it is sensitive to the material’s chemistry and microstructure. The concepts and techniques presented here are important for this purpose, but the principal objective of this document is to demonstrate how linear viscoelasticity can be incorporated into the general theory of mechanics of materials, so that structures containing viscoelastic components can be designed and analyzed. While not all polymers are viscoelastic to any important practical extent, and even fewer are linearly viscoelastic1, this theory provides a usable engineering approximation for many applications in polymer and composites engineering. Even in instances requiring more elaborate treatments, the linear viscoelastic theory is a useful starting point. 2 Molecular Mechanisms When subjected to an applied stress, polymers may deform by either or both of two fundamen- tally different atomistic mechanisms. The lengths and angles of the chemical bonds connecting the atoms may distort, moving the atoms to new positions of greater internal energy.
    [Show full text]
  • Viscoelasticity of Filled Elastomers: Determination of Surface-Immobilized Components and Their Role in the Reinforcement of SBR-Silica Nanocomposites
    Viscoelasticity of Filled Elastomers: Determination of Surface-Immobilized Components and their Role in the Reinforcement of SBR-Silica Nanocomposites Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) genehmigt durch die Naturwissenschaftliche Fakultät II Institut für Physik der Martin-Luther-Universität Halle-Wittenberg vorgelegt von M. Sc. Anas Mujtaba geboren am 03.04.1980 in Lahore, Pakistan Halle (Saale), January 15th, 2014 Gutachter: 1. Prof. Dr. Thomas Thurn-Albrecht 2. Prof. Dr. Manfred Klüppel 3. Prof. Dr. Rene Androsch Öffentliche Verteidigung: July 3rd, 2014 In loving memory of my beloved Sister Rabbia “She will be in my Heart ξ by my Side for the Rest of my Life” Contents 1 Introduction 1 2 Theoretical Background 5 2.1 Elastomers . .5 2.1.1 Fundamental Theories on Rubber Elasticity . .7 2.2 Fillers . 10 2.2.1 Carbon Black . 12 2.2.2 Silica . 12 2.3 Filled Rubber Reinforcement . 15 2.3.1 Occluded Rubber . 16 2.3.2 Payne Effect . 17 2.3.3 The Kraus Model for the Strain-Softening Effect . 18 2.3.4 Filler Network Reinforcement . 20 3 Experimental Methods 29 3.1 Dynamic Mechanical Analysis . 29 3.1.1 Temperature-dependent Measurement (Temperature Sweeps) . 31 3.1.2 Time-Temperature Superposition (Master Curves) . 31 3.1.3 Strain-dependent Measurement (Payne Effect) . 33 3.2 Low-field NMR . 34 3.2.1 Theoretical Concept . 34 3.2.2 Experimental Details . 39 4 Optimizing the Tire Tread 43 4.1 Relation Between Friction and the Mechanical Properties of Tire Rubbers 46 4.2 Usage of tan δ As Loss Parameter .
    [Show full text]
  • Elasticity and Viscoelasticity
    CHAPTER 2 Elasticity and Viscoelasticity CHAPTER 2.1 Introduction to Elasticity and Viscoelasticity JEAN LEMAITRE Universite! Paris 6, LMT-Cachan, 61 avenue du President! Wilson, 94235 Cachan Cedex, France For all solid materials there is a domain in stress space in which strains are reversible due to small relative movements of atoms. For many materials like metals, ceramics, concrete, wood and polymers, in a small range of strains, the hypotheses of isotropy and linearity are good enough for many engineering purposes. Then the classical Hooke’s law of elasticity applies. It can be de- rived from a quadratic form of the state potential, depending on two parameters characteristics of each material: the Young’s modulus E and the Poisson’s ratio n. 1 c * ¼ A s s ð1Þ 2r ijklðE;nÞ ij kl @c * 1 þ n n eij ¼ r ¼ sij À skkdij ð2Þ @sij E E Eandn are identified from tensile tests either in statics or dynamics. A great deal of accuracy is needed in the measurement of the longitudinal and transverse strains (de Æ10À6 in absolute value). When structural calculations are performed under the approximation of plane stress (thin sheets) or plane strain (thick sheets), it is convenient to write these conditions in the constitutive equation. Plane stress ðs33 ¼ s13 ¼ s23 ¼ 0Þ: 2 3 1 n 6 À 0 7 2 3 6 E E 72 3 6 7 e11 6 7 s11 6 7 6 1 76 7 4 e22 5 ¼ 6 0 74 s22 5 ð3Þ 6 E 7 6 7 e12 4 5 s12 1 þ n Sym E Handbook of Materials Behavior Models Copyright # 2001 by Academic Press.
    [Show full text]
  • A Bayesian Surrogate Constitutive Model to Estimate Failure Probability of Rubber-Like Materials
    A Bayesian Surrogate Constitutive Model to Estimate Failure Probability of Rubber-Like Materials Aref Ghaderia,b, Vahid Morovatia,c, Roozbeh Dargazany1a,d aDepartment of Civil and Environmental Engineering, Michigan State University [email protected] [email protected] [email protected] Abstract In this study, a stochastic constitutive modeling approach for elastomeric materials is developed to consider uncer- tainty in material behavior and its prediction. This effort leads to a demonstration of the deterministic approaches error compared to probabilistic approaches in order to calculate the probability of failure. First, the Bayesian lin- ear regression model calibration approach is employed for the Carroll model representing a hyperelastic constitutive model. The developed model is calibrated based on the Maximum Likelihood Estimation (MLE) and Maximum a Priori (MAP) estimation. Next, a Gaussian process (GP) as a non-parametric approach is utilized to estimate the probabilistic behavior of elastomeric materials. In this approach, hyper-parameters of the radial basis kernel in GP are calculated using L-BFGS method. To demonstrate model calibration and uncertainty propagation, these approaches are conducted on two experimental data sets for silicon-based and polyurethane-based adhesives, with four samples from each material. These uncertainties stem from model, measurement, to name but a few. Finally, failure proba- bility calculation analysis is conducted with First Order Reliability Method (FORM) analysis and Crude Monte Carlo (CMC) simulation for these data sets by creating a limit state function based on the stochastic constitutive model at failure stretch. Furthermore, sensitivity analysis is used to show the importance of each parameter of the probability of failure.
    [Show full text]
  • The Thermodynamic Properties of Elastomers: Equation of State and Molecular Structure
    CH 351L Wet Lab 4 / p. 1 The Thermodynamic Properties of Elastomers: Equation of State and Molecular Structure Objective To determine the macroscopic thermodynamic equation of state of an elastomer, and relate it to its microscopic molecular properties. Introduction We are all familiar with the very useful properties of such objects as rubber bands, solid rubber balls, and tires. Materials such as these, which are capable of undergoing large reversible extensions and compressions, are called elastomers. An example of such a material is natural rubber, obtained from the plant Hevea brasiliensis. An elastomer has rather unusual physical properties; for example, an ordinary elastic band can be stretched up to 15 times its original length and then be restored to its original size. Although we might initially consider elastomers to be a solids, many have isothermal compressibilities comparable with that of liquids (e.g. toluene), about 10-4 atm-1 (compared with solids such as polystyrene or aluminum which have values of ~10–6 atm–1). Certain evidence suggests that an elastomer is a disordered "solid," i.e., a glass, that cannot flow as a result of internal, structural restrictions. The reversible deformability of an elastomer is reminiscent of a gas. In fact the term elastic was first used by Robert Boyle (1660) in describing a gas, "There is a spring or elastical power in the air in which we live." In this experiment, you will encounter certain formal thermodynamic similarities between an elastomer and a gas. One of the rather dramatic and anomalous properties of an elastomer is that once brought to an extended form, it contracts upon heating.
    [Show full text]
  • Cross-Linked Polymers and Rubber Elasticity Chapter 9 (Sperling)
    Cross-linked Polymers and Rubber Elasticity Chapter 9 (Sperling) • Definition of Rubber Elasticity and Requirements • Cross-links, Networks, Classes of Elastomers (sections 1-3, 16) • Simple Theory of Rubber Elasticity (sections 4-8) – Entropic Origin of Elastic Retractive Forces – The Ideal Rubber Behavior • Departures from the Ideal Rubber Behavior (sections 9-11) – Non-zero Energy Contribution to the Elastic Retractive Forces – Stress-induced Crystallization and Limited Extensibility of Chains (How to make better elastomers: High Strength and High Modulus) – Network Defects (dangling chains, loops, trapped entanglements, etc..) – Semi-empirical Mooney-Rivlin Treatment (Affine vs Non-Affine Deformation) Definition of Rubber Elasticity and Requirements • Definition of Rubber Elasticity: Very large deformability with complete recoverability. • Molecular Requirements: – Material must consist of polymer chains. Need to change conformation and extension under stress. – Polymer chains must be highly flexible. Need to access conformational changes (not w/ glassy, crystalline, stiff mat.) – Polymer chains must be joined in a network structure. Need to avoid irreversible chain slippage (permanent strain). One out of 100 monomers must connect two different chains. Connections (covalent bond, crystallite, glassy domain in block copolymer) Cross-links, Networks and Classes of Elastomers • Chemical Cross-linking Process: Sol-Gel or Percolation Transition • Gel Characteristics: – Infinite Viscosity – Non-zero Modulus – One giant Molecule – Solid
    [Show full text]
  • Elastomeric Materials
    ELASTOMERIC MATERIALS TAMPERE UNIVERSITY OF TECHNOLOGY THE LABORATORY OF PLASTICS AND ELASTOMER TECHNOLOGY Kalle Hanhi, Minna Poikelispää, Hanna-Mari Tirilä Summary On this course the students will get the basic information on different grades of rubber and thermoelasts. The chapters focus on the following subjects: - Introduction - Rubber types - Rubber blends - Thermoplastic elastomers - Processing - Design of elastomeric products - Recycling and reuse of elastomeric materials The first chapter introduces shortly the history of rubbers. In addition, it cover definitions, manufacturing of rubbers and general properties of elastomers. In this chapter students get grounds to continue the studying. The second chapter focus on different grades of elastomers. It describes the structure, properties and application of the most common used rubbers. Some special rubbers are also covered. The most important rubber type is natural rubber; other generally used rubbers are polyisoprene rubber, which is synthetic version of NR, and styrene-butadiene rubber, which is the most important sort of synthetic rubber. Rubbers always contain some additives. The following chapter introduces the additives used in rubbers and some common receipts of rubber. The important chapter is Thermoplastic elastomers. Thermoplastic elastomers are a polymer group whose main properties are elasticity and easy processability. This chapter introduces the groups of thermoplastic elastomers and their properties. It also compares the properties of different thermoplastic elastomers. The chapter Processing give a short survey to a processing of rubbers and thermoplastic elastomers. The following chapter covers design of elastomeric products. It gives the most important criteria in choosing an elastomer. In addition, dimensioning and shaping of elastomeric product are discussed The last chapter Recycling and reuse of elastomeric materials introduces recycling methods.
    [Show full text]
  • Rubber As an Aid to Teach Thermodynamics∗ the Discovery by a Blind Scientist
    GENERAL ARTICLE Rubber as an Aid to Teach Thermodynamics∗ The Discovery by a Blind Scientist Geethamma V G and Sampath V The behaviour of rubber differs from that of conventional materials. Rubber heats up on stretching and cools on re- traction. Also, stretched rubber shrinks on heating (ther- moelastic shrinkage) while a stretched metal elongates. The elastic recovery of rubber is due to its tendency to maximize the entropy. The same property also causes the thermoe- lastic shrinkage. Metallic materials possess energy elastic- Geethamma V G was a ity, while ideal rubber possesses entropy elasticity. The ther- Fulbright Fellow at modynamic behaviour of rubber is similar to that of gaseous University of Illinois, USA materials. Hence rubber can be used as an aid for teaching and a Royal Society International Postdoctoral thermodynamics. Fellow at Cavendish Lab, University of Cambridge, UK. She was also a Young 1. Gough–Joule Effect Scientist Awardee. John Gough was not born blind. But by a sheer quirk of fate, he lost his eyesight due to smallpox before turning three. However, his senses of touch and hearing were intact, and he was bestowed with a sharp inquisitive mind and adequate skills for experimen- V Sampath is presently a tation. He tended to be philosophical too. John Dalton, a well Professor of Metallurgical known British scientist, who proposed the atomic theory, helped and Materials Engg. at IIT Gough by reading out to and writing for him. He had great admi- Madras. He holds a PhD from IISc, Bengaluru and has ration for Gough. three decades of research and In 1805, Gough observed two important properties of rubber [1].
    [Show full text]
  • Rubber and Rubber Balloons
    I. Miiller P. Strehlow Rubber and Rubber Balloons Paradigms of Thermodynamics Springer Contents 1 Stability of Two Rubber Balloons 1 2 Kinetic Theory of Rubber 7 2.1 Rubber Elasticity is "Entropy Induced" 7 2.2 Entropy of a Rubber Molecule 10 2.3 The Rubber Molecule with Arbitrarily Oriented Links 12 2.4 Entropy and Disorder, Entropic Elasticity 14 2.5 Entropy of a Rubber Bar 14 2.6 Uniaxial Force-Stretch Curve , 16 2.7 Biaxial Loading 17 2.8 Application to a Balloon 19 2.9 Criticism of the Kinetic Theory of Rubber 20 3 Non-linear Elasticity 21 3.1 Deformation Gradient and Stress-Stretch Relation 21 3.2 Material Symmetry and Isotropy 22 3.3 Material Objectivity 24 3.4 Representation of an Isotropic Function 24 3.5 Incompressibility. Mooney-Rivlin Material 26 3.6 Biaxial Stretching of a Mooney-Rivlin Membrane 27 3.7 Free Energy 27 3.8 Rubber Balloon with the Mooney-Rivlin Equation 28 3.9 Surface Tension 29 3.10 Cylindrical Balloon 30 3.11 Treloar's Biaxial Experiment 32 4 Biaxial Stretching of a Rubber Membrane - A Paradigm of Stability, Symmetry-Breaking, and Hysteresis 35 4.1 Load-Deformation Relations of a Biaxially Loaded Mooney-Rivlin Membrane 35 4.2 Deformation of a Square Membrane Under Symmetric Loading 35 4.3 Stability Criteria 37 4.4 Minimal Free Energy 38 4.5 Free Enthalpy, Gibbs Free Energy 39 VI Contents 4.6 Symmetry Breaking 41 4.7 Hysteresis 43 4.8 Non-monotone Force-Stretch Relation 44 4.9 Hysteresis and Breakthrough.
    [Show full text]
  • Elasticity: Thermodynamic Treatment André Zaoui, Claude Stolz
    Elasticity: Thermodynamic Treatment André Zaoui, Claude Stolz To cite this version: André Zaoui, Claude Stolz. Elasticity: Thermodynamic Treatment. Encyclopedia of Materials: Sci- ence and Technology, Elsevier Science, pp.2445-2449, 2000, 10.1016/B0-08-043152-6/00436-8. hal- 00112293 HAL Id: hal-00112293 https://hal.archives-ouvertes.fr/hal-00112293 Submitted on 31 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Elasticity: Thermodynamic Treatment A similar treatment can be applied to the second principle that relates to the existence of an absolute The elastic behavior of materials is usually described temperature, T, and of a thermodynamic function, the by direct stress–strain relationships which use the fact entropy, obeying a constitutive inequality ensuring that there is a one-to-one connection between the the positivity of the dissipated energy. This leads to the strain and stress tensors ε and σ; some mechanical following local inequality: elastic potentials can then be defined so as to express E G ! the stress tensor as the derivative of the strain potential q r with respect to the strain tensor, or conversely the ρscjdiv k & 0 (2) T T latter as the derivative of the complementary (stress) F H potential with respect to the former.
    [Show full text]
  • Lecture 11: Rubber Elasticity 1 Suggested Reading 2 Thermodynamics of Rubber
    Prof. Tibbitt Lecture 11 Networks & Gels Lecture 11: Rubber elasticity Prof. Mark W. Tibbitt { ETH Z¨urich { 02 April 2019 1 Suggested reading • Polymer Physics { Rubinstein and Colby: Chapter 7 2 Thermodynamics of rubber In the last section, we considered cross-linking and gelation reactions that formed polymer networks and gels. As reaction proceeds sufficiently far beyond the gel point, pc, most of the polymer content will be included in the gel as a single macroscopic network polymer (Pgel ≈ 1). These soft solids are a broadly useful class of materials and as engineers we are interested in understanding their mechanical properties. A class of soft, polymer networks that have been studied in detail are rubbers, which comprise many commodity products such as rubber bands, car tires, gaskets, and adhesives. These materials can undergo large elastic deformations without breaking; here, we explore the physics that enable these extremely useful properties. As we will see, entropic elasticity of polymer chains is the origin of these fascinating mechanical properties. Let us consider a polymer network. Thermodynamics describes the change in internal energy of this system as the sum of all changes in energy. This includes the heat added to the system T dS, the work done to change the volume of the polymer network −pdV , and work done to deform the polymer network fdL, where f is the force of deformation and L is the deformation length. dU = T dS − pdV + fdL: (1) This differential form describes the change in internal energy of the polymer network with a corresponding entropy change dS, volume change dV , or change in network length dL and is a thermodynamic state function of S, V , and L.
    [Show full text]
  • Mechanics of Elastomeric Molecular Composites
    Mechanics of elastomeric molecular composites Pierre Millereaua, Etienne Ducrota,1, Jess M. Cloughb,c, Meredith E. Wisemand, Hugh R. Browne, Rint P. Sijbesmab,c, and Costantino Cretona,f,2 aLaboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France; bLaboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; cInstitute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; dDSM Ahead, Royal DSM, 6167 RD Geleen, The Netherlands; eAustralian Institute of Innovative Materials, University of Wollongong Innovation Campus, North Wollongong, NSW 2522, Australia; and fGlobal Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved July 30, 2018 (received for review May 5, 2018) A classic paradigm of soft and extensible polymer materials is the classical laminated or fabric composites made by imbibing stiff difficulty of combining reversible elasticity with high fracture carbon or aramid fiber fabrics with a polymerizable epoxy resin toughness, in particular for moduli above 1 MPa. Our recent (20). In the macroscopic composite, elastic properties are mainly discovery of multiple network acrylic elastomers opened a pathway controlled by the fibers, whereas in the multiple network elas- to obtain precisely such a combination.
    [Show full text]