Elasticity: Thermodynamic Treatment André Zaoui, Claude Stolz
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential Energyenergy Isis Storedstored Energyenergy Duedue Toto Anan Objectobject Location.Location
TypesTypes ofof EnergyEnergy && EnergyEnergy TransferTransfer HeatHeat (Thermal)(Thermal) EnergyEnergy HeatHeat (Thermal)(Thermal) EnergyEnergy . HeatHeat energyenergy isis thethe transfertransfer ofof thermalthermal energy.energy. AsAs heatheat energyenergy isis addedadded toto aa substances,substances, thethe temperaturetemperature goesgoes up.up. MaterialMaterial thatthat isis burning,burning, thethe Sun,Sun, andand electricityelectricity areare sourcessources ofof heatheat energy.energy. HeatHeat (Thermal)(Thermal) EnergyEnergy Thermal Energy Explained - Study.com SolarSolar EnergyEnergy SolarSolar EnergyEnergy . SolarSolar energyenergy isis thethe energyenergy fromfrom thethe Sun,Sun, whichwhich providesprovides heatheat andand lightlight energyenergy forfor Earth.Earth. SolarSolar cellscells cancan bebe usedused toto convertconvert solarsolar energyenergy toto electricalelectrical energy.energy. GreenGreen plantsplants useuse solarsolar energyenergy duringduring photosynthesis.photosynthesis. MostMost ofof thethe energyenergy onon thethe EarthEarth camecame fromfrom thethe Sun.Sun. SolarSolar EnergyEnergy Solar Energy - Defined and Explained - Study.com ChemicalChemical (Potential)(Potential) EnergyEnergy ChemicalChemical (Potential)(Potential) EnergyEnergy . ChemicalChemical energyenergy isis energyenergy storedstored inin mattermatter inin chemicalchemical bonds.bonds. ChemicalChemical energyenergy cancan bebe released,released, forfor example,example, inin batteriesbatteries oror food.food. ChemicalChemical (Potential)(Potential) -
An Overview on Principles for Energy Efficient Robot Locomotion
REVIEW published: 11 December 2018 doi: 10.3389/frobt.2018.00129 An Overview on Principles for Energy Efficient Robot Locomotion Navvab Kashiri 1*, Andy Abate 2, Sabrina J. Abram 3, Alin Albu-Schaffer 4, Patrick J. Clary 2, Monica Daley 5, Salman Faraji 6, Raphael Furnemont 7, Manolo Garabini 8, Hartmut Geyer 9, Alena M. Grabowski 10, Jonathan Hurst 2, Jorn Malzahn 1, Glenn Mathijssen 7, David Remy 11, Wesley Roozing 1, Mohammad Shahbazi 1, Surabhi N. Simha 3, Jae-Bok Song 12, Nils Smit-Anseeuw 11, Stefano Stramigioli 13, Bram Vanderborght 7, Yevgeniy Yesilevskiy 11 and Nikos Tsagarakis 1 1 Humanoids and Human Centred Mechatronics Lab, Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy, 2 Dynamic Robotics Laboratory, School of MIME, Oregon State University, Corvallis, OR, United States, 3 Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, 4 Robotics and Mechatronics Center, German Aerospace Center, Oberpfaffenhofen, Germany, 5 Structure and Motion Laboratory, Royal Veterinary College, Hertfordshire, United Kingdom, 6 Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 7 Robotics and Multibody Mechanics Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium, 8 Centro di Ricerca “Enrico Piaggio”, University of Pisa, Pisa, Italy, 9 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States, 10 Applied Biomechanics Lab, Department of Integrative Physiology, -
UNIVERSITY of CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION of MICROSCALE THERMOELECTRIC EFFECTS a Dissert
UNIVERSITY OF CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION OF MICROSCALE THERMOELECTRIC EFFECTS A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL ENGINEERING by Tela Favaloro September 2014 The Dissertation of Tela Favaloro is approved: Professor Ali Shakouri, Chair Professor Joel Kubby Professor Nobuhiko Kobayashi Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Tela Favaloro 2014 This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License Table of Contents List of Figures ............................................................................................................................ vi List of Tables ........................................................................................................................... xiv Nomenclature .......................................................................................................................... xv Abstract ................................................................................................................................. xviii Acknowledgements and Collaborations ................................................................................. xxi Chapter 1 Introduction .......................................................................................................... 1 1.1 Applications of thermoelectric devices for energy conversion ................................... 1 -
Engineering Viscoelasticity
ENGINEERING VISCOELASTICITY David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 October 24, 2001 1 Introduction This document is intended to outline an important aspect of the mechanical response of polymers and polymer-matrix composites: the field of linear viscoelasticity. The topics included here are aimed at providing an instructional introduction to this large and elegant subject, and should not be taken as a thorough or comprehensive treatment. The references appearing either as footnotes to the text or listed separately at the end of the notes should be consulted for more thorough coverage. Viscoelastic response is often used as a probe in polymer science, since it is sensitive to the material’s chemistry and microstructure. The concepts and techniques presented here are important for this purpose, but the principal objective of this document is to demonstrate how linear viscoelasticity can be incorporated into the general theory of mechanics of materials, so that structures containing viscoelastic components can be designed and analyzed. While not all polymers are viscoelastic to any important practical extent, and even fewer are linearly viscoelastic1, this theory provides a usable engineering approximation for many applications in polymer and composites engineering. Even in instances requiring more elaborate treatments, the linear viscoelastic theory is a useful starting point. 2 Molecular Mechanisms When subjected to an applied stress, polymers may deform by either or both of two fundamen- tally different atomistic mechanisms. The lengths and angles of the chemical bonds connecting the atoms may distort, moving the atoms to new positions of greater internal energy. -
Viscoelasticity of Filled Elastomers: Determination of Surface-Immobilized Components and Their Role in the Reinforcement of SBR-Silica Nanocomposites
Viscoelasticity of Filled Elastomers: Determination of Surface-Immobilized Components and their Role in the Reinforcement of SBR-Silica Nanocomposites Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) genehmigt durch die Naturwissenschaftliche Fakultät II Institut für Physik der Martin-Luther-Universität Halle-Wittenberg vorgelegt von M. Sc. Anas Mujtaba geboren am 03.04.1980 in Lahore, Pakistan Halle (Saale), January 15th, 2014 Gutachter: 1. Prof. Dr. Thomas Thurn-Albrecht 2. Prof. Dr. Manfred Klüppel 3. Prof. Dr. Rene Androsch Öffentliche Verteidigung: July 3rd, 2014 In loving memory of my beloved Sister Rabbia “She will be in my Heart ξ by my Side for the Rest of my Life” Contents 1 Introduction 1 2 Theoretical Background 5 2.1 Elastomers . .5 2.1.1 Fundamental Theories on Rubber Elasticity . .7 2.2 Fillers . 10 2.2.1 Carbon Black . 12 2.2.2 Silica . 12 2.3 Filled Rubber Reinforcement . 15 2.3.1 Occluded Rubber . 16 2.3.2 Payne Effect . 17 2.3.3 The Kraus Model for the Strain-Softening Effect . 18 2.3.4 Filler Network Reinforcement . 20 3 Experimental Methods 29 3.1 Dynamic Mechanical Analysis . 29 3.1.1 Temperature-dependent Measurement (Temperature Sweeps) . 31 3.1.2 Time-Temperature Superposition (Master Curves) . 31 3.1.3 Strain-dependent Measurement (Payne Effect) . 33 3.2 Low-field NMR . 34 3.2.1 Theoretical Concept . 34 3.2.2 Experimental Details . 39 4 Optimizing the Tire Tread 43 4.1 Relation Between Friction and the Mechanical Properties of Tire Rubbers 46 4.2 Usage of tan δ As Loss Parameter . -
Elasticity and Viscoelasticity
CHAPTER 2 Elasticity and Viscoelasticity CHAPTER 2.1 Introduction to Elasticity and Viscoelasticity JEAN LEMAITRE Universite! Paris 6, LMT-Cachan, 61 avenue du President! Wilson, 94235 Cachan Cedex, France For all solid materials there is a domain in stress space in which strains are reversible due to small relative movements of atoms. For many materials like metals, ceramics, concrete, wood and polymers, in a small range of strains, the hypotheses of isotropy and linearity are good enough for many engineering purposes. Then the classical Hooke’s law of elasticity applies. It can be de- rived from a quadratic form of the state potential, depending on two parameters characteristics of each material: the Young’s modulus E and the Poisson’s ratio n. 1 c * ¼ A s s ð1Þ 2r ijklðE;nÞ ij kl @c * 1 þ n n eij ¼ r ¼ sij À skkdij ð2Þ @sij E E Eandn are identified from tensile tests either in statics or dynamics. A great deal of accuracy is needed in the measurement of the longitudinal and transverse strains (de Æ10À6 in absolute value). When structural calculations are performed under the approximation of plane stress (thin sheets) or plane strain (thick sheets), it is convenient to write these conditions in the constitutive equation. Plane stress ðs33 ¼ s13 ¼ s23 ¼ 0Þ: 2 3 1 n 6 À 0 7 2 3 6 E E 72 3 6 7 e11 6 7 s11 6 7 6 1 76 7 4 e22 5 ¼ 6 0 74 s22 5 ð3Þ 6 E 7 6 7 e12 4 5 s12 1 þ n Sym E Handbook of Materials Behavior Models Copyright # 2001 by Academic Press. -
Benefits and Challenges of Mechanical Spring Systems for Energy Storage Applications
Available online at www.sciencedirect.com ScienceDirect Energy Procedia 82 ( 2015 ) 805 – 810 ATI 2015 - 70th Conference of the ATI Engineering Association Benefits and challenges of mechanical spring systems for energy storage applications Federico Rossia, Beatrice Castellania*, Andrea Nicolinia aUniversity of Perugia, Department of Engineering, CIRIAF, Via G. Duranti 67, Perugia Abstract Storing the excess mechanical or electrical energy to use it at high demand time has great importance for applications at every scale because of irregularities of demand and supply. Energy storage in elastic deformations in the mechanical domain offers an alternative to the electrical, electrochemical, chemical, and thermal energy storage approaches studied in the recent years. The present paper aims at giving an overview of mechanical spring systems’ potential for energy storage applications. Part of the appeal of elastic energy storage is its ability to discharge quickly, enabling high power densities. This available amount of stored energy may be delivered not only to mechanical loads, but also to systems that convert it to drive an electrical load. Mechanical spring systems’ benefits and limits for storing macroscopic amounts of energy will be assessed and their integration with mechanical and electrical power devices will be discussed. ©© 2015 2015 The The Authors. Authors. Published Published by Elsevier by Elsevier Ltd. This Ltd. is an open access article under the CC BY-NC-ND license (Selectionhttp://creativecommons.org/licenses/by-nc-nd/4.0/ and/or peer-review under responsibility). of ATI Peer-review under responsibility of the Scientific Committee of ATI 2015 Keywords:energy storage; mechanical springs; energy storage density. 1. -
A Bayesian Surrogate Constitutive Model to Estimate Failure Probability of Rubber-Like Materials
A Bayesian Surrogate Constitutive Model to Estimate Failure Probability of Rubber-Like Materials Aref Ghaderia,b, Vahid Morovatia,c, Roozbeh Dargazany1a,d aDepartment of Civil and Environmental Engineering, Michigan State University [email protected] [email protected] [email protected] Abstract In this study, a stochastic constitutive modeling approach for elastomeric materials is developed to consider uncer- tainty in material behavior and its prediction. This effort leads to a demonstration of the deterministic approaches error compared to probabilistic approaches in order to calculate the probability of failure. First, the Bayesian lin- ear regression model calibration approach is employed for the Carroll model representing a hyperelastic constitutive model. The developed model is calibrated based on the Maximum Likelihood Estimation (MLE) and Maximum a Priori (MAP) estimation. Next, a Gaussian process (GP) as a non-parametric approach is utilized to estimate the probabilistic behavior of elastomeric materials. In this approach, hyper-parameters of the radial basis kernel in GP are calculated using L-BFGS method. To demonstrate model calibration and uncertainty propagation, these approaches are conducted on two experimental data sets for silicon-based and polyurethane-based adhesives, with four samples from each material. These uncertainties stem from model, measurement, to name but a few. Finally, failure proba- bility calculation analysis is conducted with First Order Reliability Method (FORM) analysis and Crude Monte Carlo (CMC) simulation for these data sets by creating a limit state function based on the stochastic constitutive model at failure stretch. Furthermore, sensitivity analysis is used to show the importance of each parameter of the probability of failure. -
Mechanical Energy
Chapter 2 Mechanical Energy Mechanics is the branch of physics that deals with the motion of objects and the forces that affect that motion. Mechanical energy is similarly any form of energy that’s directly associated with motion or with a force. Kinetic energy is one form of mechanical energy. In this course we’ll also deal with two other types of mechanical energy: gravitational energy,associated with the force of gravity,and elastic energy, associated with the force exerted by a spring or some other object that is stretched or compressed. In this chapter I’ll introduce the formulas for all three types of mechanical energy,starting with gravitational energy. Gravitational Energy An object’s gravitational energy depends on how high it is,and also on its weight. Specifically,the gravitational energy is the product of weight times height: Gravitational energy = (weight) × (height). (2.1) For example,if you lift a brick two feet off the ground,you’ve given it twice as much gravitational energy as if you lift it only one foot,because of the greater height. On the other hand,a brick has more gravitational energy than a marble lifted to the same height,because of the brick’s greater weight. Weight,in the scientific sense of the word,is a measure of the force that gravity exerts on an object,pulling it downward. Equivalently,the weight of an object is the amount of force that you must exert to hold the object up,balancing the downward force of gravity. Weight is not the same thing as mass,which is a measure of the amount of “stuff” in an object. -
The Thermodynamic Properties of Elastomers: Equation of State and Molecular Structure
CH 351L Wet Lab 4 / p. 1 The Thermodynamic Properties of Elastomers: Equation of State and Molecular Structure Objective To determine the macroscopic thermodynamic equation of state of an elastomer, and relate it to its microscopic molecular properties. Introduction We are all familiar with the very useful properties of such objects as rubber bands, solid rubber balls, and tires. Materials such as these, which are capable of undergoing large reversible extensions and compressions, are called elastomers. An example of such a material is natural rubber, obtained from the plant Hevea brasiliensis. An elastomer has rather unusual physical properties; for example, an ordinary elastic band can be stretched up to 15 times its original length and then be restored to its original size. Although we might initially consider elastomers to be a solids, many have isothermal compressibilities comparable with that of liquids (e.g. toluene), about 10-4 atm-1 (compared with solids such as polystyrene or aluminum which have values of ~10–6 atm–1). Certain evidence suggests that an elastomer is a disordered "solid," i.e., a glass, that cannot flow as a result of internal, structural restrictions. The reversible deformability of an elastomer is reminiscent of a gas. In fact the term elastic was first used by Robert Boyle (1660) in describing a gas, "There is a spring or elastical power in the air in which we live." In this experiment, you will encounter certain formal thermodynamic similarities between an elastomer and a gas. One of the rather dramatic and anomalous properties of an elastomer is that once brought to an extended form, it contracts upon heating. -
Cross-Linked Polymers and Rubber Elasticity Chapter 9 (Sperling)
Cross-linked Polymers and Rubber Elasticity Chapter 9 (Sperling) • Definition of Rubber Elasticity and Requirements • Cross-links, Networks, Classes of Elastomers (sections 1-3, 16) • Simple Theory of Rubber Elasticity (sections 4-8) – Entropic Origin of Elastic Retractive Forces – The Ideal Rubber Behavior • Departures from the Ideal Rubber Behavior (sections 9-11) – Non-zero Energy Contribution to the Elastic Retractive Forces – Stress-induced Crystallization and Limited Extensibility of Chains (How to make better elastomers: High Strength and High Modulus) – Network Defects (dangling chains, loops, trapped entanglements, etc..) – Semi-empirical Mooney-Rivlin Treatment (Affine vs Non-Affine Deformation) Definition of Rubber Elasticity and Requirements • Definition of Rubber Elasticity: Very large deformability with complete recoverability. • Molecular Requirements: – Material must consist of polymer chains. Need to change conformation and extension under stress. – Polymer chains must be highly flexible. Need to access conformational changes (not w/ glassy, crystalline, stiff mat.) – Polymer chains must be joined in a network structure. Need to avoid irreversible chain slippage (permanent strain). One out of 100 monomers must connect two different chains. Connections (covalent bond, crystallite, glassy domain in block copolymer) Cross-links, Networks and Classes of Elastomers • Chemical Cross-linking Process: Sol-Gel or Percolation Transition • Gel Characteristics: – Infinite Viscosity – Non-zero Modulus – One giant Molecule – Solid -
Elastomeric Materials
ELASTOMERIC MATERIALS TAMPERE UNIVERSITY OF TECHNOLOGY THE LABORATORY OF PLASTICS AND ELASTOMER TECHNOLOGY Kalle Hanhi, Minna Poikelispää, Hanna-Mari Tirilä Summary On this course the students will get the basic information on different grades of rubber and thermoelasts. The chapters focus on the following subjects: - Introduction - Rubber types - Rubber blends - Thermoplastic elastomers - Processing - Design of elastomeric products - Recycling and reuse of elastomeric materials The first chapter introduces shortly the history of rubbers. In addition, it cover definitions, manufacturing of rubbers and general properties of elastomers. In this chapter students get grounds to continue the studying. The second chapter focus on different grades of elastomers. It describes the structure, properties and application of the most common used rubbers. Some special rubbers are also covered. The most important rubber type is natural rubber; other generally used rubbers are polyisoprene rubber, which is synthetic version of NR, and styrene-butadiene rubber, which is the most important sort of synthetic rubber. Rubbers always contain some additives. The following chapter introduces the additives used in rubbers and some common receipts of rubber. The important chapter is Thermoplastic elastomers. Thermoplastic elastomers are a polymer group whose main properties are elasticity and easy processability. This chapter introduces the groups of thermoplastic elastomers and their properties. It also compares the properties of different thermoplastic elastomers. The chapter Processing give a short survey to a processing of rubbers and thermoplastic elastomers. The following chapter covers design of elastomeric products. It gives the most important criteria in choosing an elastomer. In addition, dimensioning and shaping of elastomeric product are discussed The last chapter Recycling and reuse of elastomeric materials introduces recycling methods.