The “Crustacean Seas” — an Evolutionary Perspective on the Ponto–Caspian Peracarids

Total Page:16

File Type:pdf, Size:1020Kb

The “Crustacean Seas” — an Evolutionary Perspective on the Ponto–Caspian Peracarids 505 The “Crustacean Seas” — an evolutionary perspective on the Ponto–Caspian peracarids Melania E.A. Cristescu and Paul D.N. Hebert Abstract: A spectacular adaptive radiation of crustaceans has occurred in the Black, Caspian, and Aral seas. This study tests several evolutionary scenarios based on the extent of genetic differentiation and the phylogenetic relation- ships among endemic mysids and gammarid amphipods from the Black and Caspian seas. Molecular phylogenies for these taxa were based on two mitochondrial genes: cytochrome c oxidase subunit I and the large ribosomal RNA sub- unit (16S), and one nuclear gene, the large ribosomal RNA subunit (28S). The results support the monophyly of the Ponto–Caspian gammarids (genera Dikerogammarus, Echinogammarus, Obesogammarus, and Pontogammarus), suggest- ing their origin from one colonization event. By contrast, several colonization events preceded the radiation of the Ponto–Caspian mysids (genera Limnomysis and Paramysis). Levels of intraspecific divergence were variable, with mysids showing either no geographic structure or deep genetic splits reflecting a long history of reproductive isolation between populations in marine settings and those in fresh waters. These findings suggest that the diversity of the Ponto–Caspian crustaceans has been underestimated and that species regarded as euryhaline are often composed of dis- tinct evolutionary groups whose taxonomic status should be reevaluated. Résumé : Il s’est produit une extraordinaire radiation des crustacés dans la mer Noire, la mer Caspienne et la mer d’Aral. Nous évaluons plusieurs scénarios évolutifs basés sur l’étendue de la différentiation génétique et les relations phylogénétiques chez les mysidés et les amphipodes gammaridés endémiques des mers Noire et Caspienne. Les phylo- génies moléculaires de ces taxons se basent sur deux gènes mitochondriaux, la sous-unité I de la cytochrome c oxydase et la grande sous-unité d’ARN ribosomique (16S), ainsi qu’un gène nucléaire, la grande sous-unité d’ARN ribosomique (28S). Nos résultats appuient l’hypothèse de la monophylie des gammaridés Ponto–Caspiens (genres Dikerogammarus, Echinogammarus, Obesogammarus et Pontogammarus), ce qui laisse croire qu’ils sont issus d’un même épisode de colonisation. En revanche, plusieurs épisodes de colonisation ont précédé la radiation des mysidés Ponto–Caspiens (genres Limnomysis et Paramysis). Les niveaux de divergence interspécifique sont variables : chez les mysidés, ou bien il n’y a pas de structure géographique, ou alors il y a d’importantes divergences génétiques qui reflètent une longue période d’isolement génétique entre les populations des milieux marins et celles d’eau douce. Ces résultats indiquent que la diversité des crustacés ponto-caspiens a été sous-estimée et que les espèces considérées comme euryhalines sont souvent composées de groupes évolutifs distincts dont le statut taxonomique a besoin d’être réévalué. [Traduit par la Rédaction] Cristescu and Hebert 517 Introduction endemics are confined to the Caspian Sea, this region has been considered the center for their radiation (Zenkevitch Many groups of organisms including fishes, mollusks, tur- 1963). As a result of this diversity, the Caspian Sea has been bellarians, and crustaceans have radiated in the Ponto– nicknamed the “Crustacean Sea”. However, its sibling seas, Caspian biogeographic region, which includes the Black, the Black and Azov seas, also support a substantial number Azov, Caspian, and Aral seas. However, the endemism in of endemics in their less saline estuaries, peripheral lakes, varied crustacean lineages (e.g., cladocerans, copepods, and rivers. In fact, almost 50% of Ponto–Caspian taxa are cumaceans, decapods, amphipods, and mysids) is signifi- shared between these basins and their evolutionary origin is cantly higher than in most other animal groups. For exam- particularly ambiguous. ple, more than 70 endemic amphipods and approximately 28 The four basins in the Ponto–Caspian region formed some mysid species have been described from the Ponto–Caspian 6 million years (Mys) ago following disintegration of the region (C|r|uÕu 1943; B|cescu 1954; Barnard and Barnard Paratethys Sea, an arm of the more extensive Tethys Sea 1983). In fact, the Ponto–Capian mysid fauna is the most di- (Dumont 1998). The shared occurrence of species in the verse fresh–brackish water mysid fauna in the world Black and Caspian seas could be explained by either these (B|cescu 1954; Mauchline 1980). Since most of these late Miocene – early Pliocene vicariance events that sepa- Received 19 April 2004. Accepted 25 October 2004. Published on the NRC Research Press Web site at http://cjfas.nrc.ca on 31 March 2005. J18075 M.E.A. Cristescu1,2 and P.D.N. Hebert. Department of Zoology, University of Guelph, Guelph, ON N1G 2W1, Canada. 1Corresponding author (e-mail: [email protected]). 2Present address: Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA. Can. J. Fish. Aquat. Sci. 62: 505–517 (2005) doi: 10.1139/F04-210 © 2005 NRC Canada 506 Can. J. Fish. Aquat. Sci. Vol. 62, 2005 rated the basins or more recent (late Pleistocene) dispersal arose through the recurrent colonization of each basin. Simi- from the Caspian Sea into the Black Sea. This matter is un- larly, the timing of speciation events is poorly understood. resolved. Several authors have suggested that most Ponto– The present study examines the extent of genetic differen- Caspian lineages originated long before the present basin tiation and phylogenetic relationship among six species of configuration, possibly during the late Miocene (B|cescu mysids and eight species of gammarid amphipods from the 1940; Barnard and Barnard 1983; Dumont 2000), while oth- Black and Caspian seas. Additionally, taking these crusta- ers argued for a more recent Pliocene or Pleistocene origin ceans as an example, this study explores the tempo and the (Mordukhai-Boltovskoi 1964; Grigorovich et al. 2003). mode of speciation responsible for the high species richness The Ponto–Caspian mysids have been partitioned into nine in the Ponto–Caspian area. genera: Acanthomysis, Caspiomysis, Diamysis, Hemimysis, Katamysis, Limnomysis, Mysis, Paramysis, and Schistomysis Materials and methods (B|cescu 1940, 1954). Väinölä (1995) showed that the pe- lagic flock of Caspian Mysis (Mysis microphthalma, Mysis am- Taxon sampling blyops, and Mysis caspia) reflects a recent intralacustrine Fourteen Ponto–Caspian crustacean species, including six radiation, but their relationships with the other endemic mysid mysids and eight amphipods, were analyzed in this study genera have not been investigated. The present study ad- (Table 1). Samples were collected in 1999–2001 from brack- dresses this gap in knowledge by examining the genera ish lagoons and estuaries, brackish inland seas, and fresh- Paramysis and Limnomysis. Not only is Paramysis the most water ponds and lakes along the northwestern Black Sea speciose of the nine Ponto–Caspian mysid genera, but it also coast and in the Caspian Sea (Fig. 1). The samples were contains species such as Paramysis kroyeri, which occurs in sorted and preserved in 90% ethanol shortly after collection. salinities ranging from fresh–brackish coastal lakes (salinity < The amphipod Gammarus lacustris and the mysids Tena- 4‰) to the intertidal and subtidal zones of the Black Sea gomysis australis and Mysis relicta were used as outgroups (salinity = 18‰). in the first phase of phylogenetic analyses. To test the mono- The Ponto–Caspian amphipods belong largely to the fami- phyly of the Ponto–Caspian gammaroids, we included 16 lies Gammaridae, Pontogammaridae, and Corophiidae, which additional taxa belonging to four gammaridean families are each represented by several speciose genera (C|r|uÕu (Acanthogammaridae, Gammaridae, Hyalellidae, and Cran- 1943; Barnard and Barnard 1983; Martin and Davis 2001). gonyctidae). These more inclusive phylogenies were rooted The morphological radiation of Ponto–Caspian amphipods using the isopod Glyptidotea lichtensteini. Most amphipod has been linked to their fossorial adaptations because most taxa were represented by several populations in the phylo- species are burrowers. Although a general evolutionary trend genetic analyses of the cytochrome c oxidase subunit I towards increased specialization for burrowing is evident, (COI) gene, with samples from both the Black and Caspian the phylogenetic affinities among Ponto–Caspian gammarids seas. A phylogeographic survey was also conducted for the are unclear. It has been suggested that the nonfossorial genus mysids Limnomysis benedeni and Paramysis kroyeri at sites Echinogammarus is primitive because its gnathopods resem- within the Black Sea region. ble those of the Gammarus group (Barnard and Barnard 1983). Dikerogammarus is thought to be derived from the DNA extraction, amplification, and sequencing Ponto–Caspian Echinogammarus lineage, since its first Phylogenies were constructed using two mitochondrial gnathopod lacks the palmar spination typical of Echinogam- genes: COI and 16S ribosomal RNA (rRNA), and one nuclear marus while retaining the Gammarus type of first antenna gene, 28S rRNA. The primer pairs LCOI490 (5′-GGT- (Barnard and Barnard 1983). Other genera such as Obeso- CAACAAATCATAAAGATATTGG-3′) and HCO2198 (5′- gammarus and Pontogammarus share additional derived TAAACTTCAGGGTGACCAAAAAATCA-3′) (Folmer et al. characters such as setae on the bases of periopods 5–7 and 1994), 16Sar (5′-CGCCTGTTTATCAAAAACAT-3′)
Recommended publications
  • Trends of Aquatic Alien Species Invasions in Ukraine
    Aquatic Invasions (2007) Volume 2, Issue 3: 215-242 doi: http://dx.doi.org/10.3391/ai.2007.2.3.8 Open Access © 2007 The Author(s) Journal compilation © 2007 REABIC Research Article Trends of aquatic alien species invasions in Ukraine Boris Alexandrov1*, Alexandr Boltachev2, Taras Kharchenko3, Artiom Lyashenko3, Mikhail Son1, Piotr Tsarenko4 and Valeriy Zhukinsky3 1Odessa Branch, Institute of Biology of the Southern Seas, National Academy of Sciences of Ukraine (NASU); 37, Pushkinska St, 65125 Odessa, Ukraine 2Institute of Biology of the Southern Seas NASU; 2, Nakhimova avenue, 99011 Sevastopol, Ukraine 3Institute of Hydrobiology NASU; 12, Geroyiv Stalingrada avenue, 04210 Kiyv, Ukraine 4Institute of Botany NASU; 2, Tereschenkivska St, 01601 Kiyv, Ukraine E-mail: [email protected] (BA), [email protected] (AB), [email protected] (TK, AL), [email protected] (PT) *Corresponding author Received: 13 November 2006 / Accepted: 2 August 2007 Abstract This review is a first attempt to summarize data on the records and distribution of 240 alien species in fresh water, brackish water and marine water areas of Ukraine, from unicellular algae up to fish. A checklist of alien species with their taxonomy, synonymy and with a complete bibliography of their first records is presented. Analysis of the main trends of alien species introduction, present ecological status, origin and pathways is considered. Key words: alien species, ballast water, Black Sea, distribution, invasion, Sea of Azov introduction of plants and animals to new areas Introduction increased over the ages. From the beginning of the 19th century, due to The range of organisms of different taxonomic rising technical progress, the influence of man groups varies with time, which can be attributed on nature has increased in geometrical to general processes of phylogenesis, to changes progression, gradually becoming comparable in in the contours of land and sea, forest and dimensions to climate impact.
    [Show full text]
  • Appendix 3: Lancashire Key Species Search Results and Definition
    Appendix 3: Lancashire Key Species Search Results and Definition 'Lancashire Key Species' (LKS) is used by LERN as a collective term to refer to species which have a recognised status, either nationally or locally. Specifically, it includes species identified in one or more of the following sources: The Conservation of Habitats and Species Regulations 2010 (usually referred to as the 2010 Habitats Regulations) implement Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora (the Habitats Directive) into national legislation. Articles 12 and 13 of the Habitats Directive contains a range of prohibitions seeking to protect species listed on Annex IV (animal and plant species in need of strict protection). European Protected Species are animals and plants that receive protection under The Conservation of Habitats and Species Regulations 2010. LKS includes species listed on Annexes II, IV and V of the Habitats Directive. These species, together with the birds protected under the Birds Directive, are called species of 'Community interest'. The Wildlife and Countryside Act 1981 (as amended) (WCA) implements parts of the Birds Directive 2009 [2] and the Berne Convention (1979) [3] into national legislation. It includes a number of Schedules which are reviewed (usually every five years) on which details of the protected species, and their level of protection, are shown. A detailed summary of the relevant sections of the Wildlife and Countryside Act, along with the protection afforded under them can be found within Paragraphs 118-122 of ODPM Circular_06/2005 . Species listed on Schedules 1, 5 and 8 are included on the list of LKS: Schedule 1 refers to Birds and their young, for which it is an offence to intentionally or recklessly disturb at, on or near an ‘active’ nest.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Crustacea-Arthropoda) Fauna of Sinop and Samsun and Their Ecology
    J. Black Sea/Mediterranean Environment Vol. 15: 47- 60 (2009) Freshwater and brackish water Malacostraca (Crustacea-Arthropoda) fauna of Sinop and Samsun and their ecology Sinop ve Samsun illeri tatlısu ve acısu Malacostraca (Crustacea-Arthropoda) faunası ve ekolojileri Mehmet Akbulut1*, M. Ruşen Ustaoğlu2, Ekrem Şanver Çelik1 1 Çanakkale Onsekiz Mart University, Fisheries Faculty, Çanakkale-Turkey 2 Ege University, Fisheries Faculty, Izmir-Turkey Abstract Malacostraca fauna collected from freshwater and brackishwater in Sinop and Samsun were studied from 181 stations between February 1999 and September 2000. 19 species and 4 subspecies belonging to 15 genuses were found in 134 stations. In total, 23 taxon were found: 11 Amphipoda, 6 Decapoda, 4 Isopoda, and 2 Mysidacea. Limnomysis benedeni is the first time in Turkish Mysidacea fauna. In this work at the first time recorded group are Gammarus pulex pulex, Gammarus aequicauda, Gammarus uludagi, Gammarus komareki, Gammarus longipedis, Gammarus balcanicus, Echinogammarus ischnus, Orchestia stephenseni Paramysis kosswigi, Idotea baltica basteri, Idotea hectica, Sphaeroma serratum, Palaemon adspersus, Crangon crangon, Potamon ibericum tauricum and Carcinus aestuarii in the studied area. Potamon ibericum tauricum is the most encountered and widespread species. Key words: Freshwater, brackish water, Malacostraca, Sinop, Samsun, Turkey Introduction The Malacostraca is the largest subgroup of crustaceans and includes the decapods such as crabs, mole crabs, lobsters, true shrimps and the stomatopods or mantis shrimps. There are more than 22,000 taxa in this group representing two third of all crustacean species and contains all the larger forms. *Corresponding author: [email protected] 47 Malacostracans play an important role in aquatic ecosystems and therefore their conservation is important.
    [Show full text]
  • A Dissertation Entitled Evolution, Systematics
    A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could
    [Show full text]
  • Mysida and Lophogastrida of Greece: a Preliminary Checklist
    Biodiversity Data Journal 4: e9288 doi: 10.3897/BDJ.4.e9288 Taxonomic Paper Mysida and Lophogastrida of Greece: a preliminary checklist Panayota Koulouri‡, Vasilis Gerovasileiou‡‡, Nicolas Bailly ‡ Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Panayota Koulouri ([email protected]) Academic editor: Christos Arvanitidis Received: 20 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Koulouri P, Gerovasileiou V, Bailly N (2016) Mysida and Lophogastrida of Greece: a preliminary checklist. Biodiversity Data Journal 4: e9288. https://doi.org/10.3897/BDJ.4.e9288 Abstract Background The checklist of Mysida and Lophogastrida of Greece was created within the framework of the Greek Taxon Information System (GTIS), which is one of the applications of the LifeWatchGreece Research Infrastructure (ESFRI) resuming efforts to develop a complete checklist of species recorded and reported from Greek waters. The objectives of the present study were to update and cross-check taxonomically all records of Mysida and Lophogastrida species known to occur in Greek waters in order to search for inaccuracies and omissions. New information The up-to-date checklist of Mysida and Lophogastrida of Greece comprises 49 species, classified to 25 genera. © Koulouri P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Koulouri P et al. Keywords Mysida, Lophogastrida, Greece, Aegean Sea, Sea of Crete, Ionian Sea, Eastern Mediterranean, checklist Introduction The peracarid crustaceans Lophogastrida, Stygiomysida and Mysida were formerly grouped under the order "Mysidacea".
    [Show full text]
  • Crustacea: Amphipoda), Mainly Its Echinogammarus Clade in SW Europe
    ACTA BIOLOGICA SLOVENICA LJUBLJANA 2018 Vol. 61, Št. 1: 93–102 Family Gammaridae (Crustacea: Amphipoda), mainly its Echinogammarus clade in SW Europe. Further elucidation of its phylogeny and taxonomy Družina Gammaridae (Crustacea: Amphipoda), posebej njena veja Echinogammarus v JZ Evropi. Nadaljnja razjasnitev filogenetskih in taksonomskih odnosov Boris Sketa*, Zhonge Houb a Biology department, Biotechnical faculty, University of Ljubljana, p.p. 2995, 1001 Ljubljana, Slovenia b Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China *correspondence: [email protected] Abstract: Most parts of the Echinogammarus clade of Gammaridae have been appropriately classified with the help of a molecular analysis, ultimately freed of the Echinogammarus-Chaetogammarus malediction. Among defining morphological cha- racters, the gnathopod interrelations are comparatively well congruent with molecular markers. Genus Homoeogammarus distribution area extended from Mediterranean to Atlantic islands. Chaetogammarus and Trichogammarus are firm members of the morphologically very diversified Ponto-Caspian group genera, not closely related to the morphologically similar Echinogammarus, Marinogammarus or Homoeogam- marus. Genus Pectenogammarus (along with Neogammarus and Laurogammarus) synonymized with Homoeogammarus. Parhomoeogammarus diagnose corrected, based on topotype samples of the type species. Freshwater species of the ‘European Eulimnogammarus’ in SW Europe defined as Iberogammarus gen. nov. Continental Homoeogammarus-like, but
    [Show full text]
  • Standard Operating Procedure for Mysid Analysis
    Standard Operating Procedure for Mysid Analysis LG408 Revision 01, February 2015 Table of Contents Section Number Subject Page 1.0……….SCOPE AND APPLICATION………………………………………………………………. 1 2.0……….SUMMARY OF METHOD…………………………………………………….……………. 1 3.0……….SAMPLE COLLECTION AND PRESERVATION………………………….……………. 1 4.0……….APPARATUS…………………………………………………………………………………. 1 5.0……….REAGENTS……………………………………………………………………..……………. 1 6.0……….ANALYTICAL PROCEDURE – MYSID SAMPLE ANALYSIS…………..…………….. 2 7.0……….CALCULATION OF MYSID BIOMASS…………………………………….…………….. 7 8.0……….CALCULATIONS AND REPORTING…………………………………………………….. 7 9.0……….QUALITY CONTROL AUDITS AND METHODS PRECISION………….…..………… 9 10.0……...SAFETY AND WASTE DISPOSAL………………………………………….…………….. 10 11.0……...REFERENCES……………………………………………………………………………….. 10 FIGURES…………………………………………………………………………………...…………….. 12 APPENDIX 1: FORMS………………………………………………………………………………….. 20 Disclaimer: Mention of trade names or commercial products does not constitute endorsement or recommendation of use. Standard Operating Procedure for Mysid Analysis 1.0 SCOPE AND APPLICATION 1.1 This standard operating procedure is used to identify, sex, enumerate, and measure the mysid populations from the Great Lakes. 2.0 SUMMARY OF METHOD 2.1 The method involves macroscopic and microscopic examination of mysid samples. The entire sample is examined for mysids by eye in a sorting tray. Up to 100 mysids are photographed for digital measurement. Marsupia of female mysids are examined under a stereoscopic microscope for number and stage of brood. Gravid females may have been separated
    [Show full text]
  • Exotic Species in the Aegean, Marmara, Black, Azov and Caspian Seas
    EXOTIC SPECIES IN THE AEGEAN, MARMARA, BLACK, AZOV AND CASPIAN SEAS Edited by Yuvenaly ZAITSEV and Bayram ÖZTÜRK EXOTIC SPECIES IN THE AEGEAN, MARMARA, BLACK, AZOV AND CASPIAN SEAS All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior permission from the Turkish Marine Research Foundation (TÜDAV) Copyright :Türk Deniz Araştırmaları Vakfı (Turkish Marine Research Foundation) ISBN :975-97132-2-5 This publication should be cited as follows: Zaitsev Yu. and Öztürk B.(Eds) Exotic Species in the Aegean, Marmara, Black, Azov and Caspian Seas. Published by Turkish Marine Research Foundation, Istanbul, TURKEY, 2001, 267 pp. Türk Deniz Araştırmaları Vakfı (TÜDAV) P.K 10 Beykoz-İSTANBUL-TURKEY Tel:0216 424 07 72 Fax:0216 424 07 71 E-mail :[email protected] http://www.tudav.org Printed by Ofis Grafik Matbaa A.Ş. / İstanbul -Tel: 0212 266 54 56 Contributors Prof. Abdul Guseinali Kasymov, Caspian Biological Station, Institute of Zoology, Azerbaijan Academy of Sciences. Baku, Azerbaijan Dr. Ahmet Kıdeys, Middle East Technical University, Erdemli.İçel, Turkey Dr. Ahmet . N. Tarkan, University of Istanbul, Faculty of Fisheries. Istanbul, Turkey. Prof. Bayram Ozturk, University of Istanbul, Faculty of Fisheries and Turkish Marine Research Foundation, Istanbul, Turkey. Dr. Boris Alexandrov, Odessa Branch, Institute of Biology of Southern Seas, National Academy of Ukraine. Odessa, Ukraine. Dr. Firdauz Shakirova, National Institute of Deserts, Flora and Fauna, Ministry of Nature Use and Environmental Protection of Turkmenistan. Ashgabat, Turkmenistan. Dr. Galina Minicheva, Odessa Branch, Institute of Biology of Southern Seas, National Academy of Ukraine.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]
  • Current and Potential Aquatic Invasive Species in Ontario and the Great Lakes Region: a Compilation of Ecological Information
    Science and Research Information Report IR-16 Current and potential aquatic invasive species in Ontario and the Great Lakes region: A compilation of ecological information Science and Research Information Report IR-16 Current and potential aquatic invasive species in Ontario and the Great Lakes region: A compilation of ecological information Elizabeth C. Hatton1, Jeffrey D. Buckley1, Shannon A. Fera1,2, Samantha Henry1, Len M. Hunt3, D. Andrew R. Drake4 and Timothy B. Johnson1 1 Aquatic Research and Development Section, Ministry of Natural Resources and Forestry (MNRF), 41 Hatchery Lane, Picton, ON K0K 2T0 2 Current address: Fisheries Section, Species Conservation Policy Branch, MNRF, 300 Water Street, Peterborough, ON K9J 8M5 3 Centre for Northern Forest Ecosystem Research, MNRF, 103-421 James St S, Thunder Bay, ON P7E 2V6 4 Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1 2019 Science and Research Branch Ministry of Natural Resources and Forestry © 2019, Queen’s Printer for Ontario Copies of this publication are available from [email protected]. Cette publication hautement spécialisée, Current and Potential Aquatic Invasive Species in Ontario and the Great Lakes Region: A Compilation of Ecological Information, n’est disponible qu’en anglais conformément au Règlement 671/92, selon lequel il n’est pas obligatoire de la traduire en vertu de la Loi sur les services en français. Pour obtenir des renseignements en français, veuillez communiquer avec le ministère des Richesses naturelles et des Forêts au [email protected]. Some of the information in this document may not be compatible with assistive technologies.
    [Show full text]
  • General Keywords
    General keywords A Ballast, 6, 9–11, 29, 37, 38, 44, 46, 52 Ballast sediments, 339, 645, 653 Abiotic resistance, 647, 648, 654 Ballast water, 29, 37, 38, 44, 52–54, 56, Accidental introductions, 113, 131, 145, 59, 60 234, 645, 646, 700 Ballast water: treatment, 657–661, 664, Activity patterns, 166, 248, 354, 407, 445 665 Age, 240, 244, 246, 263, 264, 281, Basking, 148, 162, 163, 167, 170 291–295 Bern Convention, 516, 630, 633, 634 Age structure, 264 Bioaccumulation, 614 Aggression, 53, 167, 396, 447, 528, 585 Biocontrol, biological control, 95–97, 99, Aggressive behaviour, 279, 283, 495, 146, 153, 205, 383, 523 497, 585, 587 Biodiversity, 86, 96, 114, 123, 152, 186, Alarm odours, 514 187, 200, 202, 204 Alien invasive species, 194, 199, 204 Biofouling, 238 Allelopathy, 224 Biogeography, 123 Allometric growth, 264 Bioindicators, 112, 114 Altricial life history, 283 Biological flexibility, 307, 309, 311, 313, Amphibious plants, 218 315, 317, 319, 321, 323, 325, Anthropogenicdisturbances,426,427,454 327 Antioxidant response, 613, 617, 621 Biological invasions, 396, 430, 437, 627, Aquaculture, 37, 38, 60, 145, 146, 628, 633–635 340–343, 382 Biological plasticity, 11 Aquarium trade, 39, 49, 220, 234, 292, Biomonitoring, 613, 614 357, 383, 628 Biomonotony, 369–376 Artificial canals, 382, 463 Biotic homogenization, 147, 148, 369, 371, 376, 415 B Biotic resistance, 11, 18, 647, 648 Bioturbation, 527, 528, 531 Bait-bucket, 37 Booms and busts, 452 Bait-bucket introductions, 37 Bottlenecks, 10, 396, 517, 640 703 704 General keywords Botulism, 279
    [Show full text]