House Approps Agreement Report 12-31-2020.Xlsx

Total Page:16

File Type:pdf, Size:1020Kb

House Approps Agreement Report 12-31-2020.Xlsx Active International Agreements by Signature Date (as of December 31, 2020) No. Responsible NASA Installation Partner Name Title/Purpose Type of Activity Description Execution Expiration Agreement (Signature Date Date) 1 Kennedy Space Center (KSC) Government of Spain Agreement on Space Cooperation Between Umbrella/Frame Authorization for, in case of an emergency, manned space vehicles of the United 11‐Jul‐91 31‐Dec‐00 the United States of America and the Kingdom work Agreement States to overfly, enter, and depart Spanish air space and use the runways, of Spain (UM/FW) taxiways, and other installations at the Moron de la Frontera, Rota, and Zaragoza bases; also, agreement to negotiate agreements in promising areas for joint efforts to strengthen cooperation in space science and technology. Dip notes entering the agreement into force were exchange on Sept 3, 1991, and May 12, 1994. The science and technology portion of this agreement was implemented by agreement SP0027 of 12/02/1991 with INTA and agreement SP0028 of 07/03/1992 with CDTI. 2 All NASA Centers National Institute for Agreement on Cooperative Activities Between Umbrella/Frame Broad agreement between NASA and the National Institute for Aerospace 2‐Dec‐91 31‐Dec‐00 Aerospace Technology NASA and the National Institute For Aerospace work Agreement Technology of Spain (INTA) to consider cooperation in a variety of fields in Space (INTA) Technology of Spain (UM/FW) Science, Earth Science, Aeronautics Research, and Exploration Systems. The agreement also establishes a group to discuss potential cooperative projects in the identified areas. The agreement is automatically extended each year. The expiration date of 2100 was picked because it was far in the future. 3 All NASA Centers Center for Technological Agreement on Cooperative Activities Between Umbrella/Frame Umbrella/Framework Agreement (UM/FW): 3‐Jul‐92 31‐Dec‐00 Industrial Development NASA and the Center for Technological work Agreement (CDTI) Industrial Development of Spain (UM/FW) NASA Center: Mentioned different NASA Installations. Broad agreement between NASA and the Center for Technological Industrial Development of Spain (CDTI) that anticipates the negotiation of future agreements between NASA and Spanish agencies in a variety of fields in Space Operations, Space Science, Earth Science, Aeronautics Research, and Exploration Systems. The agreement specifically mentions space vehicle landing facilities and science and technology development programs. It also calls to the establishment of a group to discuss potential cooperative projects. The agreement is automatically extended each year. The expiration date of 2100 was picked because it was far in the future. The CDTI is known presently (August 2008) as the Centre for the Development of Industrial Technology (CDTI). 4 Jet Propulsion Laboratory (JPL) United Kingdom Space Aqua/Earth Observing System (EOS PM‐1): Project‐Specific Participation by Dr. Rolando Rizzi of the European Centre for Medium Range 11‐Sep‐92 31‐Dec‐20 Agency (UKSA) AIRS/AMSU/MHS Agreement (PSA) Weather Forecasting on the Instrument Team for the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit‐A/Microwave Humidity Sounder(AIRS/AMSU/MHS), a facility instrument of NASA's EOS. No UK letter. 5 Goddard Space Flight Center (GSFC) United Kingdom Space Aqua/Terra/Earth Observing System (EOS AM‐ Project‐Specific Participation by Dr. Jan‐Peter Muller of University College‐London in the 11‐Sep‐92 31‐Dec‐20 Agency (UKSA) 1 and PM‐1): Moderate Resolution Imaging Agreement (PSA) Instrument Team for MODIS, a facility instrument designed to measure both Spectrometer (MODIS) biological and physical processes on a global basis. Missing the UK letter. 6 Goddard Space Flight Center (GSFC) United Kingdom Space Terra/Earth Observing System (EOS AM‐1): Project‐Specific Participation by Dr. Jan‐Peter Muller on the Multi‐Angle Imaging Spectro‐ 11‐Sep‐92 30‐Sep‐25 Agency (UKSA) Multi‐Angle Imaging Spectro‐Radiometer Agreement (PSA) Radiometer (MISR) Instrument Team, which is to design, develop, and verify the (MISR) MISR instrument and MISR data exploitation. Missing UK letter. 7 Goddard Space Flight Center (GSFC) National Centre for Space Instrument Team for CERES Instrument of Project‐Specific Service by Dr. Robert S. Kandel of Ecole Polytechnique on the Instrument Team 16‐Feb‐93 31‐Dec‐20 Studies (CNES) Earth Observing System (EOS AM‐1 and PM‐ Agreement (PSA) for the Clouds and Earth's Radiant Energy System (CERES) instrument of the EOS. 1)/Aqua/Terra Active International Agreements by Signature Date (as of December 31, 2020) No. Responsible NASA Installation Partner Name Title/Purpose Type of Activity Description Execution Expiration Agreement (Signature Date Date) 8 Goddard Space Flight Center (GSFC) National Centre for Space Instrument Team for MODIS Instrument of Project‐Specific Service by Dr. Didier Tanre of the Laboratoire d'Optique Atmospherique on the 16‐Feb‐93 31‐Dec‐20 Studies (CNES) Earth Observing System (EOS AM‐1 and PM‐ Agreement (PSA) Instrument Team for the Moderate‐Resolution Imaging Spectrometer (MODIS) 1)/Aqua/Terra instrument of the EOS. 9 Jet Propulsion Laboratory (JPL) National Centre for Space Instrument Team for Atmospheric Infrared Project‐Specific Service by Dr. Alain Chedin of Ecole Polytechnique on the Instrument Team for 16‐Feb‐93 31‐Dec‐20 Studies (CNES) Sounder (AIRS)/Advanced Microwave Agreement (PSA) the Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit‐A Sounding Unit‐A (AMSU)/Microwave Humidity (AMSU), and Microwave Humidity Sounder (MHS) instruments of the EOS. Sounder (MHS) Instruments of Earth Observing System (EOS PM‐1)/Aqua 10 Goddard Space Flight Center (GSFC) Russian Federal Space WIND Mission/Cooperation in the Konus‐ Project‐Specific Flight on the U.S. WIND mission of the Russian Konus gamma‐ray burst detector 28‐Oct‐94 31‐Dec‐23 Agency (Roskosmos) WIND Experiment Agreement (PSA) to enhance the scientific return to the international science community in the area of gamma‐ray astronomy. 11 Goddard Space Flight Center (GSFC) Canadian Space Agency Flight of the Measurements of Pollution in the Project‐Specific This MOU establishes the scientific and technical cooperation for the flight of the 15‐Nov‐94 31‐Dec‐25 (CSA) Troposphere (MOPITT) Instrument on Earth Agreement (PSA) MOPITT instrument on the NASA EOS‐AM1 polar orbiting platform of MOPITT to Observing System (EOS AM)/Terra further cooperation in global change research by enabling the multidisciplinary study and long‐term systematic monitoring of Earth, including research involving data from all Earth observing platforms in the International Earth Observing System. 12 Headquarters (HQ) Russian Federal Space Global Learning and Observations to Benefit Project‐Specific The GLOBE program is an international environmental science and education 16‐Dec‐94 31‐Dec‐00 Agency (Roskosmos) the Environment (GLOBE) Agreement (PSA) program that will bring students, teachers, and scientists together to study the global environment. 13 Headquarters (HQ) Ministry of Education and Global Learning and Observations to Benefit Project‐Specific The GLOBE program is an international environmental science and education 30‐Jan‐95 31‐Dec‐00 the Department of the Environment (GLOBE) Agreement (PSA) program that will bring students, teachers, and scientists together to study the Environmental Protection global environment. 14 Headquarters (HQ) Government of the Global Learning and Observations to Benefit Project‐Specific The GLOBE program is an international environmental science and education 28‐Feb‐95 31‐Dec‐00 Kingdom of the the Environment (GLOBE) Agreement (PSA) program that will bring students, teachers, and scientists together to study the Netherlands global environment. 15 Headquarters (HQ) Government of the Global Learning and Observations to Benefit Project‐Specific The GLOBE program is an international environmental science and education 17‐Mar‐95 31‐Dec‐00 Republic of Senegal the Environment (GLOBE) Agreement (PSA) program that will bring students, teachers, and scientists together to study the global environment. 16 Headquarters (HQ) Ministry of Education Global Learning and Observations to Benefit Project‐Specific The GLOBE program is an international environmental science and education 20‐Mar‐95 31‐Dec‐00 the Environment (GLOBE) Agreement (PSA) program that will bring students, teachers, and scientists together to study the global environment. 17 Headquarters (HQ) National Board of Global Learning and Observations to Benefit Project‐Specific The GLOBE program is an international environmental science and education 23‐Mar‐95 31‐Dec‐00 Education the Environment (GLOBE) Agreement (PSA) program that will bring students, teachers, and scientists together to study the global environment. 18 Headquarters (HQ) Ministry of the Global Learning and Observations to Benefit Project‐Specific The GLOBE program is an international environmental science and education 24‐Mar‐95 31‐Dec‐00 Environment the Environment (GLOBE) Agreement (PSA) program that will bring students, teachers, and scientists together to study the global environment. 19 Headquarters (HQ) Ministry of Education Global Learning and Observations to Benefit Project‐Specific The GLOBE program is an international environmental science and education 24‐Mar‐95 31‐Dec‐00 the Environment (GLOBE) Agreement (PSA) program that will bring students, teachers, and scientists together to study the global environment. 20 Headquarters (HQ) Ministry of Ecology and
Recommended publications
  • A Quantitative Human Spacecraft Design Evaluation Model For
    A QUANTITATIVE HUMAN SPACECRAFT DESIGN EVALUATION MODEL FOR ASSESSING CREW ACCOMMODATION AND UTILIZATION by CHRISTINE FANCHIANG B.S., Massachusetts Institute of Technology, 2007 M.S., University of Colorado Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2017 i This thesis entitled: A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization written by Christine Fanchiang has been approved for the Department of Aerospace Engineering Sciences Dr. David M. Klaus Dr. Jessica J. Marquez Dr. Nisar R. Ahmed Dr. Daniel J. Szafir Dr. Jennifer A. Mindock Dr. James A. Nabity Date: 13 March 2017 The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Fanchiang, Christine (Ph.D., Aerospace Engineering Sciences) A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization Thesis directed by Professor David M. Klaus Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps.
    [Show full text]
  • Global Exploration Roadmap
    The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System.
    [Show full text]
  • List of Missions Using SPICE (PDF)
    1/7/20 Data Restorations Selected Past Users Current/Pending Users Examples of Possible Future Users Apollo 15, 16 [L] Magellan [L] Cassini Orbiter NASA Discovery Program Mariner 2 [L] Clementine (NRL) Mars Odyssey NASA New Frontiers Program Mariner 9 [L] Mars 96 (RSA) Mars Exploration Rover Lunar IceCube (Moorehead State) Mariner 10 [L] Mars Pathfinder Mars Reconnaissance Orbiter LunaH-Map (Arizona State) Viking Orbiters [L] NEAR Mars Science Laboratory Luna-Glob (RSA) Viking Landers [L] Deep Space 1 Juno Aditya-L1 (ISRO) Pioneer 10/11/12 [L] Galileo MAVEN Examples of Users not Requesting NAIF Help Haley armada [L] Genesis SMAP (Earth Science) GOLD (LASP, UCF) (Earth Science) [L] Phobos 2 [L] (RSA) Deep Impact OSIRIS REx Hera (ESA) Ulysses [L] Huygens Probe (ESA) [L] InSight ExoMars RSP (ESA, RSA) Voyagers [L] Stardust/NExT Mars 2020 Emmirates Mars Mission (UAE via LASP) Lunar Orbiter [L] Mars Global Surveyor Europa Clipper Hayabusa-2 (JAXA) Helios 1,2 [L] Phoenix NISAR (NASA and ISRO) Proba-3 (ESA) EPOXI Psyche Parker Solar Probe GRAIL Lucy EUMETSAT GEO satellites [L] DAWN Lunar Reconnaissance Orbiter MOM (ISRO) Messenger Mars Express (ESA) Chandrayan-2 (ISRO) Phobos Sample Return (RSA) ExoMars 2016 (ESA, RSA) Solar Orbiter (ESA) Venus Express (ESA) Akatsuki (JAXA) STEREO [L] Rosetta (ESA) Korean Pathfinder Lunar Orbiter (KARI) Spitzer Space Telescope [L] [L] = limited use Chandrayaan-1 (ISRO) New Horizons Kepler [L] [S] = special services Hayabusa (JAXA) JUICE (ESA) Hubble Space Telescope [S][L] Kaguya (JAXA) Bepicolombo (ESA, JAXA) James Webb Space Telescope [S][L] LADEE Altius (Belgian earth science satellite) ISO [S] (ESA) Armadillo (CubeSat, by UT at Austin) Last updated: 1/7/20 Smart-1 (ESA) Deep Space Network Spectrum-RG (RSA) NAIF has or had project-supplied funding to support mission operations, consultation for flight team members, and SPICE data archive preparation.
    [Show full text]
  • The NISAR Mission – Sensors & Mission Perspective Paul a Rosen Jet Propulsion Laboratory, California Institute of Technology
    The NISAR Mission – Sensors & Mission Perspective Paul A Rosen Jet Propulsion Laboratory, California Institute of Technology ISPRS TC V Mid Term Symposium Indian Institute of Remote Sensing, Dehradun, India November 20th, 2018 Copyright 2018 California Institute of Technology. Government sponsorship acknowledged. NISAR – NASA Science Focus Capturing the Earth in Motion NISAR will image Earth’s dynamic surface over time, providing information on changes in ice sheets and glaciers, the evolution of natural and managed ecosystems, earthquake and volcano deformation, subsidence from groundwater and oil pumping, and the human impact of these and many other phenomena. 2 Versatility of SAR for Studying Earth Change Polarimetric SAR Use of polarization to determine surface properties Applications: • Flood extent (w/ & w/o vegetation) • Land loss/gain • Coastal bathymetry • Biomass • Vegetation type, status • Pollution & pollution impact (water, coastal land) • Water flow in some deltaic islands Interferometric SAR Use of phase change to determine surface displacement Applications: • Geophysical modeling • Subsidence due to fluid withdrawal • Inundation (w/vegetation) • Change in flood extent • Water flow through wetlands 3 Earth’s Dynamic Subsurface ”Secular” motion ”Seasonal” motion • Data 18-year time series (881 igrams) + GPS + Hydraulic head from observation wells + geologic structure model • Spatial pattern of seasonal ground deformation near the center of the basin corresponds to a diffusion process with peak deformation occurring at locations with highest groundwater production. • Seasonal ground deformation associated with shallow aquifers used for the majority of groundwater production Quantifying Ground Deformation in the Los Angeles and Santa Ana • Long -term ground deformation over broader areas - Coastal Basins Due to Groundwater Withdrawal, B. Riel et al., Water correlated with delayed compaction of deeper aquifers and Resources Res., 54, doi:10.1029/2017WR021978, 2018.
    [Show full text]
  • India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years.
    [Show full text]
  • We Need Your Colouring Skills!
    We need your colouring skills! What do you think the colours of Mercury are? DID YOU KNOW? ercury • Mercury is the smallest planet in our solar system. • It is only slightly larger than the Earth’s Moon. • One day on Mercury is as long as 59 days on Earth. • A year on Mercury is as long as 88 Earth days • Temperatures on Mercury are extreme, reaching 430°C during the day, and -180°C at night. DID YOU KNOW? The Erth Depending on where you are on the globe, you could be spinning through space at just over 1,000 miles per hour. Water covers 70 percent of Earth's surface. 1 million Earths could fit in the Sun. Earth's atmosphere is composed of about 78 percent nitrogen, 21 percent oxygen, 0.9 percent argon, and 0.1 percent other gases. Earth is the only planet not named after a god. We need your colouring skills! What colours will you choose? We need your colouring skills! What do you think the colours of Jupiter are? DID YOU KNOW? Jupiter • Jupiter is the largest planet in the solar system. • Jupiter is as large as 1,300 Earths. • It's the 3rd brightest object in the night sky. • There's a big red spot on Jupiter, which is in fact a storm that has been raging for more than 350 years. DID YOU KNOW? Saturn • Saturn is the 2nd largest planet in the Solar System. • 764 Earths could fit inside Saturn. • Saturn's rings are made of ice and rock. They span 175,000 miles We need your and yet they’re only 20 metres thick.
    [Show full text]
  • NASA, Israel Ink Space Cooperation Agreement 13 October 2015
    NASA, Israel ink space cooperation agreement 13 October 2015 The agreement will enable NASA and ISA to conduct joint missions, exchange personnel and scientific data and share facilities, said the joint statement. NASA has recently made a series of groundbreaking announcements, including that its Reconnaissance Orbiter found the "strongest evidence yet" of water on Mars. © 2015 AFP The agreement will enable NASA and ISA to conduct joint missions, exchange personnel and scientific data and share facilities, said the joint statement NASA and the Israel Space Agency signed an agreement Tuesday to expand cooperation in civil space activities, the Israeli government said. The deal was signed by NASA administrator Charles Bolden and ISA director Menachem Kidron on the sidelines of the International Astronautical Congress in Jerusalem. Bolden said the agreement would enable the US space agency to tap Israeli innovation and technology in cooperation "Our two countries have had a long history of cooperation in space exploration, scientific discovery and research, and we look forward to the opportunities this new agreement provides us to build upon this partnership," he said in a statement. The Israel Space Agency expressed hope that the Jewish state's technology would play a key role in future missions to Mars. 1 / 2 APA citation: NASA, Israel ink space cooperation agreement (2015, October 13) retrieved 30 September 2021 from https://phys.org/news/2015-10-nasa-israel-ink-space-cooperation.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission.
    [Show full text]
  • The Role of Italian Industry in Space Exploration
    THE ROLE OF ITALIAN INDUSTRY IN SPACE EXPLORATION Maria Cristina Falvella ASI, Italian Space Agency Head of Strategies and Industrial Policy 53rd Session UN COPUOS Vienna, 17 February 2016 THE ITALIAN SPACE AGENCY (ASI) ASI has been founded in 1988 with the purpose to promote, develop and disseminate the scientific research and technology applied in the Space field. • Specific attention to the competitiveness of the Italian Space Industry, including SMEs • ASI operates in “integrated teams” => industry and research teams under the supervision of ASI ITALY AND EXPLORATION • Since 1964 Italy acts as a pioneer in space • Exploration is a flagship program for Italy, enhancing the competitiveness of the national industrial and scientific community • Participation in successful ESA and NASA programs, with challenging roles for national industries ISS and Mars : the top priorities Italy considers ISS and Mars destinations as part of a single exploration process and works to maximize the technology and system synergies among these destinations as well as to exploit the respective benefits of robotic and human exploration. • Economic and intellectual return out of the investments • Worldwide international relations • Competitiveness of the whole supply chain, from Large System Integrators (LSIs) to Small and Medium Companies (SMEs) • Leader position in international supply chains • Upgrade of technology capabilities and IPR • Benefits in non-space related systems and applications THE ITALIAN SUPPLY CHAIN The strategic effort to encourage the development
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 1 January–April 2019 CONTENTS SPACE POLICY AND PROGRAMMES .................................................................................... 1 Focus .................................................................................................................... 1 Europe ................................................................................................................... 4 11TH European Space Policy Conference ......................................................................... 4 EU programmatic roadmap: towards a comprehensive Regulation of the European Space Programme 4 EDA GOVSATCOM GSC demo project ............................................................................. 5 Programme Advancements: Copernicus, Galileo, ExoMars ................................................... 5 European Space Agency: partnerships continue to flourish................................................... 6 Renewed support for European space SMEs and training ..................................................... 7 UK Space Agency leverages COMPASS project for international cooperation .............................. 7 France multiplies international cooperation .................................................................... 7 Italy’s PRISMA pride ................................................................................................ 8 Establishment of the Portuguese Space Agency: Data is King ................................................ 8 Belgium and Luxembourg
    [Show full text]
  • International Space Station Basics Components of The
    National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles.
    [Show full text]
  • Gao-21-306, Nasa
    United States Government Accountability Office Report to Congressional Committees May 2021 NASA Assessments of Major Projects GAO-21-306 May 2021 NASA Assessments of Major Projects Highlights of GAO-21-306, a report to congressional committees Why GAO Did This Study What GAO Found This report provides a snapshot of how The National Aeronautics and Space Administration’s (NASA) portfolio of major well NASA is planning and executing projects in the development stage of the acquisition process continues to its major projects, which are those with experience cost increases and schedule delays. This marks the fifth year in a row costs of over $250 million. NASA plans that cumulative cost and schedule performance deteriorated (see figure). The to invest at least $69 billion in its major cumulative cost growth is currently $9.6 billion, driven by nine projects; however, projects to continue exploring Earth $7.1 billion of this cost growth stems from two projects—the James Webb Space and the solar system. Telescope and the Space Launch System. These two projects account for about Congressional conferees included a half of the cumulative schedule delays. The portfolio also continues to grow, with provision for GAO to prepare status more projects expected to reach development in the next year. reports on selected large-scale NASA programs, projects, and activities. This Cumulative Cost and Schedule Performance for NASA’s Major Projects in Development is GAO’s 13th annual assessment. This report assesses (1) the cost and schedule performance of NASA’s major projects, including the effects of COVID-19; and (2) the development and maturity of technologies and progress in achieving design stability.
    [Show full text]
  • PT-365-Science-And-Tech-2020.Pdf
    SCIENCE AND TECHNOLOGY Table of Contents 1. BIOTECHNOLOGY ___________________ 3 3.11. RFID ___________________________ 29 1.1. DNA Technology (Use & Application) 3.12. Miscellaneous ___________________ 29 Regulation Bill ________________________ 3 4. DEFENCE TECHNOLOGY _____________ 32 1.2. National Guidelines for Gene Therapy __ 3 4.1. Missiles _________________________ 32 1.3. MANAV: Human Atlas Initiative _______ 5 4.2. Submarine and Ships _______________ 33 1.4. Genome India Project _______________ 6 4.3. Aircrafts and Helicopters ____________ 34 1.5. GM Crops _________________________ 6 4.4. Other weapons system _____________ 35 1.5.1. Golden Rice ________________________ 7 4.5. Space Weaponisation ______________ 36 2. SPACE TECHNOLOGY ________________ 8 4.6. Drone Regulation __________________ 37 2.1. ISRO _____________________________ 8 2.1.1. Gaganyaan _________________________ 8 4.7. Other important news ______________ 38 2.1.2. Chandrayaan 2 _____________________ 9 2.1.3. Geotail ___________________________ 10 5. HEALTH _________________________ 39 2.1.4. NaVIC ____________________________ 11 5.1. Viral diseases _____________________ 39 2.1.5. GSAT-30 __________________________ 12 5.1.1. Polio _____________________________ 39 2.1.6. GEMINI __________________________ 12 5.1.2. New HIV Subtype Found by Genetic 2.1.7. Indian Data Relay Satellite System (IDRSS) Sequencing _____________________________ 40 ______________________________________ 13 5.1.3. Other viral Diseases _________________ 40 2.1.8. Cartosat-3 ________________________ 13 2.1.9. RISAT-2BR1 _______________________ 14 5.2. Bacterial Diseases _________________ 40 2.1.10. Newspace India ___________________ 14 5.2.1. Tuberculosis _______________________ 40 2.1.11. Other ISRO Missions _______________ 14 5.2.1.1. Global Fund for AIDS, TB and Malaria42 5.2.2.
    [Show full text]