The Odyssey Collection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Geologic Mappers Annual Meeting
Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Separate and Consolidated Interim Financial Statements As at 30 June 2020
Separate and Consolidated Interim Financial Statements as at 30 June 2020 Separate and Consolidated Interim Financial Statements as at 30 June 2020 Contents 7 Introduction 17 Report on Operations 171 Interim Separate Financial Statements as at 30 June 2020 239 Interim Consolidated Financial Statements as at 30 June 2020 303 Corporate Directory 4 Contents Introduction 7 Corporate Officers 8 Organisational Structure 9 Introduction from the Chairman of the Board of Directors 11 Financial Highlights 12 Report on Operations 17 Mission 18 Market scenario 18 The Rai Group 24 Television 41 Radio 97 RaiPlay and Digital 107 Public broadcasting service function 116 TV production 119 Technological activities 120 Transmission and distribution activities 129 Sales activities 130 Other activities 135 Changes in the regulatory framework 143 Corporate governance 148 Corporate Governance Report - the Rai Control Governance Model and the Internal Control and Risk Management System (SCIGR) 150 Other information 155 Human Resources and Organisation 155 Safety & Security 159 Intercompany Relations 161 Significant events occurring after 30 June 2020 168 Outlook of operations 168 5 Interim Separate Financial Statements as at 30 June 2020 171 Analysis of the results and performance of operating results, financial position and cash flows for the first half of 2020 172 Financial Statements of Rai SpA 186 Notes to the Interim Separate Financial Statements as at 30 June 2020 191 Certification pursuant to article 154-bis of Italian Legislative Decree 58/98 235 Independent -
2017 Chicxulub Revealed
THE UNIVERSITY TEXAS OF AUSTIN AT JACKSON• SCHOOL GEOSCIENCES OF 2017 NEWSLETTER• Newsletter2 017 Chicxulub Revealed A first look at rocks from the crater left by the asteroid that wiped out non-avian dinosaurs WELCOME Dear Alumni and Friends he devastation that Hurricane Harvey brought to Texas communities in August was a tragic reminder of how vital it is to understand our planet and T its processes. Shortly after the hurricane struck, our scientists, through our Rapid Response program, began to conduct research to understand how Harvey has impacted the coast and offshore Gulf of Mexico. This research will help determine the best ways to deal with many coastal issues in the aftermath of the storm, and how we might better prepare for such events in the future. You can read more about the mission on page 18. Rapid response efforts on the effects of abrupt, catastrophic geoscience events COVER: GRANITE FROM THE PEAK RING OF provide critical science that can benefit society. This is what we strive to do here at the THE CHICXULUB CRATER FORMED BY THE Jackson School of Geosciences. This year’s Newsletter holds some tremendous examples. ASTEROID STRIKE THAT WIPED OUT ALL NON- AVIAN DINOSAURS I’d like to draw your attention to the story on page 58 about the scientific coring mission led by Peter Flemings to bring back samples of methane hydrate from ABOVE: MEMBERS OF THE JACKSON beneath the Gulf of Mexico. This is a cutting-edge research project on a potential SCHOOL-LED TEAM CORING FOR SAMPLES OF METHANE HYDRATE IN THE GULF OF MEXICO future energy source that very few schools in the world would be able to mount. -
Journal of Italian Translation Editor Luigi Bonaffini
Journal of Italian Translation Editor Luigi Bonaffini Associate Editors: Gaetano Cipolla Michael Palma Joseph Perricone Editorial Board Adria Bernardi Geoffrey Brock Franco Buffoni Barbara Carle Peter Carravetta John Du Val Anna Maria Farabbi Rina Ferrarelli Luigi Fontanella Irene Marchegiani Sebastiano Martelli Adeodato Piazza Nicolai Stephen Sartarelli Achille Serrao Cosma Siani Joseph Tusiani Lawrence Venuti Pasquale Verdicchio Justin Vitiello Journal of Italian Translation is an international journal devoted to the transla- tion of literary works from and into Italian-English-Italian dialects. All transla- tions are published with the original text. It also publishes essays and reviews dealing with Italian translation. It is published twice a year: in April and in No- vember. Submissions should be both printed and in electronic form and they will not be returned. Translations must be accompanied by the original texts, a brief profile of the translator, and a brief profile of the author. All submissions and inquiries should be addressed to Journal of Italian Translation, Dept. of Modern Languages and Literatures, 2900 Bedford Ave. Brooklyn, NY 11210 or [email protected] Book reviews should be sent to Joseph Perricone, Dept. of Modern Lan- guage and Literature, Fordham University, Columbus Ave & 60th Street, New York, NY 10023 or [email protected] Subscription rates: U.S. and Canada. Individuals $25.00 a year, $45 for 2 years. Institutions: $30.00 a year. Single copies $15.00. For all mailing overseas, please add $10 per issue. Payments in U.S. dollars. Make checks payable to Journal of Italian Translation Journal of Italian Translation is grateful to the Sonia Raiziss Giop Charitable Foundation for its generous support. -
VV D C-A- R 78-03 National Space Science Data Center/ World Data Center a for Rockets and Satellites
VV D C-A- R 78-03 National Space Science Data Center/ World Data Center A For Rockets and Satellites {NASA-TM-79399) LHNAS TRANSI]_INT PHENOMENA N78-301 _7 CATAI_CG (NASA) 109 p HC AO6/MF A01 CSCl 22_ Unc.las G3 5 29842 NSSDC/WDC-A-R&S 78-03 Lunar Transient Phenomena Catalog Winifred Sawtell Cameron July 1978 National Space Science Data Center (NSSDC)/ World Data Center A for Rockets and Satellites (WDC-A-R&S) National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt) Maryland 20771 CONTENTS Page INTRODUCTION ................................................... 1 SOURCES AND REFERENCES ......................................... 7 APPENDIX REFERENCES ............................................ 9 LUNAR TRANSIENT PHENOMENA .. .................................... 21 iii INTRODUCTION This catalog, which has been in preparation for publishing for many years is being offered as a preliminary one. It was intended to be automated and printed out but this form was going to be delayed for a year or more so the catalog part has been typed instead. Lunar transient phenomena have been observed for almost 1 1/2 millenia, both by the naked eye and telescopic aid. The author has been collecting these reports from the literature and personal communications for the past 17 years. It has resulted in a listing of 1468 reports representing only slight searching of the literature and probably only a fraction of the number of anomalies actually seen. The phenomena are unusual instances of temporary changes seen by observers that they reported in journals, books, and other literature. Therefore, although it seems we may be able to suggest possible aberrations as the causes of some or many of the phenomena it is presumptuous of us to think that these observers, long time students of the moon, were not aware of most of them. -
Cassini-Huygens
High Ambitions for an Outstanding Planetary Mission: Cassini-Huygens Composite image of Titan in ultraviolet and infrared wavelengths taken by Cassini’s imaging science subsystem on 26 October. Red and green colours show areas where atmospheric methane absorbs light and reveal a brighter (redder) northern hemisphere. Blue colours show the high atmosphere and detached hazes (Courtesy of JPL /Univ. of Arizona) Cassini-Huygens Jean-Pierre Lebreton1, Claudio Sollazzo2, Thierry Blancquaert13, Olivier Witasse1 and the Huygens Mission Team 1 ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands 2 ESA Directorate of Operations and Infrastructure, ESOC, Darmstadt, Germany 3 ESA Directorate of Technical and Quality Management, ESTEC, Noordwijk, The Netherlands Earl Maize, Dennis Matson, Robert Mitchell, Linda Spilker Jet Propulsion Laboratory (NASA/JPL), Pasadena, California Enrico Flamini Italian Space Agency (ASI), Rome, Italy Monica Talevi Science Programme Communication Service, ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands assini-Huygens, named after the two celebrated scientists, is the joint NASA/ESA/ASI mission to Saturn Cand its giant moon Titan. It is designed to shed light on many of the unsolved mysteries arising from previous observations and to pursue the detailed exploration of the gas giants after Galileo’s successful mission at Jupiter. The exploration of the Saturnian planetary system, the most complex in our Solar System, will help us to make significant progress in our understanding -
Program Lists the Abstracts for All Submissions for GREAT Day(S) 2021
the 15th annual virtual monday april 26, 2021 - friday april 30, 2021 geneseo recognizing excellence, achievement, and talent th 2021 Geneseo Recognizing Excellence Achievement and Talent Day • 15 Annual Welcome to SUNY Geneseo’s Fifteenth Annual GREAT Day(s)! Geneseo Recognizing Excellence, Achievement & Talent Day is a college-wide symposium celebrating the creative and scholarly endeavors of our students. In addition to recognizing the achievements of our students, the purpose of GREAT Day is to help foster academic excellence, encourage professional development, and build connections within the community. http://www.geneseo.edu/great_day This program lists the abstracts for all submissions for GREAT Day(s) 2021. Due to the COVID-19 pandemic, GREAT Day(s) 2021 is happening virtually and will be held during the week of April 26th – April 30th. The keynote address by Dr. Adam Frank will be held synchronously on Wednesday, April 28th at 2:30 PM. Scholarly and creative projects in a variety of formats will be available for viewing beginning April 26th. To view presentations, check the Virtual Program on the GREAT Day webpage at: http://www.geneseo.edu/great_day GREAT Day often falls on or near Earth Day, which is held on April 22nd each year. In recognition of this, presentations that have been self- identified by students as promoting sustainability are designated by a leaf symbol - - in this program. Throughout the day, when you post about GREAT Day(s) on social media use #WeAreGREAT to be featured on GREAT Day social media! GreatDayGeneseo @GeneseoGREATDay geneseo.edu/great_day 2 2021 Geneseo Recognizing Excellence Achievement and Talent Day • 15th Annual Honors TABLE OF CONTENTS Program reflects updates as of April 25, 2021 GREAT Day Honors ................................................................................................................... -
Pplanetary Materials Research At
N. L. CHABOT ET AL . Planetary Materials Research at APL Nancy L. Chabot, Catherine M. Corrigan, Charles A. Hibbitts, and Jeffrey B. Plescia lanetary materials research offers a unique approach to understanding our solar system, one that enables numerous studies and provides insights that are not pos- sible from remote observations alone. APL scientists are actively involved in many aspects of planetary materials research, from the study of Martian meteorites, to field work on hot springs and craters on Earth, to examining compositional analogs for asteroids. Planetary materials research at APL also involves understanding the icy moons of the outer solar system using analog materials, conducting experiments to mimic the conditions of planetary evolution, and testing instruments for future space missions. The diversity of these research projects clearly illustrates the abundant and valuable scientific contributions that the study of planetary materials can make to Pspace science. INTRODUCTION In most space science and astronomy fields, one is When people think of planetary materials, they com- limited to remote observations, either from telescopes monly think of samples returned by space missions. Plan- or spacecraft, to gather data about celestial objects and etary materials available for study do include samples unravel their origins. However, for studying our solar returned by space missions, such as samples of the Moon system, we are less limited. We have samples of plan- returned by the Apollo and Luna missions, comet dust etary materials from multiple bodies in our solar system. collected by the Stardust mission, and implanted solar We can inspect these samples, examine them in detail wind ions collected by the Genesis mission. -
James B. Pollack NASA Ames Hall of Fame
James B. Pollack NASA Ames Hall of Fame If he held no other distinction, James Pollack has one enjoyed by few others: a crater on Mars was named after him by the International Astronomical Union in 1995. He probably could not have received a more fitting honor. In almost twenty- five years at Ames, Pollack was always at the cutting edge of planetary science, a man who contributed volumes to humanity’s understanding and appreciation of the Solar System and its family of amazing planets. A key scientist in every major planetary mission mounted by NASA since 1971, including Mariner 9, Viking, Voyager, Pioneer Venus, Galileo, Mars Observer, and Cassini, Pollack did seminal work on all of the planets visited by these craft. His numerical modeling of planetary formation physics provided new insight into the formation of the Jovian planets (Jupiter, Saturn, Uranus and Neptune). By examining the scattering of radar signals through the rings of Saturn, Pollack helped to prove that they are composed of a mass of ice particles. He used Voyager data to analyze particulate sizes in the atmosphere of Saturn’s moon, Titan, and to determine the internal heat budget of the giant planets. Pollack was recognized as the world's preeminent authority on planetary atmospheres. His modeling of greenhouse-heating scenarios not only proved the cause of the furnace-like temperatures on the surface of Venus, but also provided new information on the effects of volcanic debris and the consequences of an asteroid impact on our own planet’s ecosystem. Pollack’s Mars atmospheric circulation model has proven an invaluable resource for NASA's Mars exploration efforts, from the Viking Project to Pathfinder and Global Surveyor. -
Mars Express
sp1240cover 7/7/04 4:17 PM Page 1 SP-1240 SP-1240 M ARS E XPRESS The Scientific Payload MARS EXPRESS The Scientific Payload Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 AAsec1.qxd 7/8/04 3:52 PM Page 1 SP-1240 August 2004 MARS EXPRESS The Scientific Payload AAsec1.qxd 7/8/04 3:52 PM Page ii SP-1240 ‘Mars Express: A European Mission to the Red Planet’ ISBN 92-9092-556-6 ISSN 0379-6566 Edited by Andrew Wilson ESA Publications Division Scientific Agustin Chicarro Coordination ESA Research and Scientific Support Department, ESTEC Published by ESA Publications Division ESTEC, Noordwijk, The Netherlands Price €50 Copyright © 2004 European Space Agency ii AAsec1.qxd 7/8/04 3:52 PM Page iii Contents Foreword v Overview The Mars Express Mission: An Overview 3 A. Chicarro, P. Martin & R. Trautner Scientific Instruments HRSC: the High Resolution Stereo Camera of Mars Express 17 G. Neukum, R. Jaumann and the HRSC Co-Investigator and Experiment Team OMEGA: Observatoire pour la Minéralogie, l’Eau, 37 les Glaces et l’Activité J-P. Bibring, A. Soufflot, M. Berthé et al. MARSIS: Mars Advanced Radar for Subsurface 51 and Ionosphere Sounding G. Picardi, D. Biccari, R. Seu et al. PFS: the Planetary Fourier Spectrometer for Mars Express 71 V. Formisano, D. Grassi, R. Orfei et al. SPICAM: Studying the Global Structure and 95 Composition of the Martian Atmosphere J.-L. Bertaux, D. Fonteyn, O. Korablev et al. -
A Planetary Science Virtual Observatory Cornerstone
Erard, S, et al. 2020. Virtual European Solar & Planetary Access (VESPA): A Planetary Science Virtual Observatory Cornerstone. Data Science Journal, 19: 22, pp. 1–10. DOI: https://doi.org/10.5334/dsj-2020-022 PRACTICE PAPER Virtual European Solar & Planetary Access (VESPA): A Planetary Science Virtual Observatory Cornerstone S. Erard1, B. Cecconi1, P. Le Sidaner2, C. Chauvin2, A. P. Rossi3, M. Minin3, T. Capria4, S. Ivanovski4, B. Schmitt5, V. Génot6, N. André6, C. Marmo7, A. C. Vandaele8, L. Trompet8, M. Scherf9, R. Hueso10, A. Määttänen11, B. Carry12,13, N. Achilleos14, J. Soucek15, D. Pisa15, K. Benson14, P. Fernique16 and E. Millour17 1 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, FR 2 DIO-VO/UMS2201 Observatoire de Paris/Université PSL/CNRS, FR 3 Jacobs University, Bremen, DE 4 INAF/IAPS, Rome, IT 5 Université Grenoble Alpes, CNRS, IPAG, FR 6 IRAP/UPS/CNRS, Toulouse, FR 7 GEOPS, Univ. Paris-Sud, CNRS, U. Paris-Saclay, FR 8 BIRA-IASB, Brussels, BE 9 OeAW, Graz, AT 10 UPV/EHU, Bilbao, ES 11 LATMOS/IPSL, Sorbonne Université, UVSQ, U. Paris-Saclay, CNRS, Paris, FR 12 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, FR 13 IMCCE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Lille, FR 14 University College London, UK 15 Inst. of Atmospheric Physics/CAS, Prague, CZ 16 Observatoire de Strasbourg/UMR 7550, FR 17 LMD/IPSL, CNRS, Sorbonne Université, École Normale supérieure, Université PSL, École polytechnique, Paris, FR Corresponding author: S. Erard ([email protected]) The Europlanet-2020 programme, which ended on Aug 31st, 2019, included an activity called VESPA (Virtual European Solar and Planetary Access), which focused on adapting Virtual Observatory (VO) techniques to handle Planetary Science data.