Traduction Des Huiles Anglais/Français (Huiles De "The Sage" Et "Soap Calc") by Tanit

Total Page:16

File Type:pdf, Size:1020Kb

Traduction Des Huiles Anglais/Français (Huiles De Traduction des huiles anglais/français (huiles de "the sage" et "soap calc") by Tanit Français Anglais Français Anglais Français Anglais açai (beurre) Acai butter kukui (hv) Kukui oil abeille (cire Beewax aloe (beurre) Aloe verra butter mangue (hv) Mango oil lanoline Lanolin aloe (extrait) Aloe extract mangue (beurre) mango butter graisse d'oie goose fat amande douce (beurre) Almond butter sweet macadamia (hv) Macadamia butter matieres grasses du beurre Butter fat amande douce (hv) Almond oil sweet macadamia (hv) Macadamia nut oil matiere grasses du lait milk fat andiroba(hv) Andiroba oil baies de laurier (hv) laurel fruit oil suif de chevre tallow goat argan (hv) Argan oil ecume des pres (hv) Meadowfoam oil graisse de chevre Goat fat avocat (beurre) Avocado butter neem (hv) Neem oil graisse de chevreuil tallow deer avocat (hv) Avocado oil avoine (hv) Oat oil beurre clarifié ghee babassu (hv) Babassu oil olive (beurre) Olive butter graisse de poulet chiken fat baobab (hv) Baobab oil acide laurique lauric acid huile d'emeu Emu oil bourrache (hv) Borage oil noyaux de palme (hv) Palm kernel oil graisse de lapin rabbit fat cacao (beurre) Cocoa butter pépins de framboise (hv) Red raspberry seed oil huile de vison Mink oil café (beurre) Coffee butter carthame (hv) Safflower oil huile de pieds de bœuf Neats foot oil camelia (hv) Camelia oil arachide (hv) Peanut oil graisse d'ours Tallow bear cameline (hv) Camelina oil palme (hv) Palm oil saindoux Lard pig tallow candelilla (cire) Candelilla wax fruits de la passion (hv) Passion fruit seed oil suif de bœuf tallow beef carnauba (cire) Carnoba wax graines de pavot(hv) Poppy seed oil graisse de canard duck fat carotte (hv) Carrot oil pistache (hv) Pistachio nut oil suif de mouton tallow sheep chanvre (beurre) Hemp butter tamanu (hv) Tamanu oil chanvre (hv) Hemp oil noix (hv) Walnut oil cheval (hv) horse oil graines de moutarde (hv) mustard oil coco (hv) Coconut oil son de riz (hv) Rice bran oil coco fractionné (hv) coconut oil fraction rosier muscat (hv) Rose hip oil cohune (hv) cohune oil moringa (hv) moringa oil colza (hv) Canola oil noix de pécan (hv) Pecan oil colza (hv) rapeseed oil noyau de peche (hv) peach kernel oil cumin noir (hv) Black cumin seed oil lin (hv) linseed oil cupuacu (beurre) cupuacu butter murumuru (hv) murumuru butter graines de cameline (hv) camelina seed oil graines de loofa (hv) loofa seed oil graines de coton (hv) Cottonseed oil sesame (hv) Sesame oil grains de café (hv) coffee bean oil monoï de tahiti monoï of tahiti grenade (hv) pomegranate seed oil graines de papaye (hv) papaya seed oil huile de cumin noir Black seed oil olive (hv) Olive oil ilipe (beurre) Illipe butter germe de blé (hv) Wheat germ oil jatropha (hv) jatropha oil acide myristique myristic acid jojoba (hv) Jojoba oil nigelle (hv) black seed oil karanja (hv) karanja oil acide oleique oleic acid kokum (beurre) Kokum butter autruche (hv) ostrich oil kpangnan (beurre) kpangnan butter stearine de palme palm stearin lin (hv) Flax seed oil soja (cire) Soy wax maïs (hv) Corn oil sal (beurre) Sal butter myrtille (beurre) Blueberry butter orange (beurre) Orange butter noisette (hv) Hazelnut oil tournesol (hv) Sunflower oil noyaux d'abricot (hv) Apricot kernel oil mowrah (beurre) Mowrah butter noyaux de cerise (hv) cherry kern oil vison (hv) mink oil noyaux de prune (hv) plum kernel oil acide palmitique palmitic acid onagre (hv) Evening primrose oil karité (hv) Shea oil palme rouge (hv) red palm butter graines de perilla (hv) perilla seed oil palmier nain (extrait) saw palmetto extract argousier (hv) sea buckthorn oil palmier nain (hv) saw palmetto oil karité fractionnée (hv) shea oil fractioned pepins de canneberge (hv) Cranberry seed oil karité (beurre) Shea butter pépins de raisin (hv) Grapeseed oil soja (hv) Soybean oil ricin (hv) Castor oil graines de citrouille (hv) Pumpkin seed oil sacha inci (hv) sacha inci oil ? pine tar sapote (hv) zapote seed oil yangu (hv) yangu cape chestnut soja (hv) soybean oil tucuma (beurre) tucuma seed butter thé vert (beurre) green tea butter acide stearique Stearic acid ucuuba (beurre) ucuuba butter.
Recommended publications
  • Essential Wholesale & Labs Carrier Oils Chart
    Essential Wholesale & Labs Carrier Oils Chart This chart is based off of the virgin, unrefined versions of each carrier where applicable, depending on our website catalog. The information provided may vary depending on the carrier's source and processing and is meant for educational purposes only. Viscosity Absorbtion Comparible Subsitutions Carrier Oil/Butter Color (at room Odor Details/Attributes Rate (Based on Viscosity & Absorbotion Rate) temperature) Description: Stable vegetable butter with a neutral odor. High content of monounsaturated oleic acid and relatively high content of natural antioxidants. Offers good oxidative stability, excellent Almond Butter White to pale yellow Soft Solid Fat Neutral Odor Average cold weather stability, contains occlusive properties, and can act as a moistening agent. Aloe Butter, Illipe Butter Fatty Acid Compositon: Palmitic, Stearic, Oleic, and Linoleic Description: Made from Aloe Vera and Coconut Oil. Can be used as an emollient and contains antioxidant properties. It's high fluidiy gives it good spreadability, and it can quickly hydrate while Aloe Butter White Soft Semi-Solid Fat Neutral Odor Average being both cooling and soothing. Fatty Acid Almond Butter, Illipe Butter Compostion: Linoleic, Oleic, Palmitic, Stearic Description: Made from by combinging Aloe Vera Powder with quality soybean oil to create a Apricot Kernel Oil, Broccoli Seed Oil, Camellia Seed Oil, Evening Aloe Vera Oil Clear, off-white to yellow Free Flowing Liquid Oil Mild musky odor Fast soothing and nourishing carrier oil. Fatty Acid Primrose Oil, Grapeseed Oil, Meadowfoam Seed Oil, Safflower Compostion: Linoleic, Oleic, Palmitic, Stearic Oil, Strawberry Seed Oil Description: This oil is similar in weight to human sebum, making it extremely nouirshing to the skin.
    [Show full text]
  • (Yellow Oleander) Seed Oil and Sus Domesticus (Pig) Lard
    PREPARATION AND STUDIES OF BIODIESELS FROM THEVETIA PERUVIANA (YELLOW OLEANDER) SEED OIL AND SUS DOMESTICUS (PIG) LARD BY YAKUBU ALI DALLATU DEPARTMENT OF CHEMISTRY AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA. DECEMBER, 2015 PREPARATION AND STUDIES OF BIODIESELS FROM THEVETIA PERUVIANA (YELLOW OLEANDER) SEED OIL AND SUS DOMESTICUS (PIG) LARD BY Yakubu Ali DALLATU, B.Sc (Hons) CHEMISTRY(BUK) 1984; POSTGRADUATE DIPLOMA IN EDUCATION (ABU) 1988 ; M.Sc ANALYTICAL CHEMISTRY (ABU) 2000 Ph.D/SCIE/05687/2009-2010 A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY IN ANALYTICAL CHEMISTRY DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA. DECEMBER, 2015 ii Declaration I declare that the work in this Thesis entitled “Preparation and Studies of Biodiesels from Thevetia peruviana (Yellow Oleander) Seed Oil and Sus domesticus (Pig) Lard”, has been carried out by me in the Department of Chemistry. The information derived from the literature has been duly acknowledged in the text and a list of references provided. No part of this thesis was previously presented for another degree or diploma at this or any other Institution. Yakubu Ali DALLATU _____________________ _______________________ __________________ Name of Student Signature Date iii Dedication This research work is dedicated to my wife, Mrs. Rhoda Y. Dallatu and our children, Unomliyi, Alionom and Apemu for their patience, support and encouragement. iv Certification This thesis, entitled ―PREPARATION AND STUDIES OF BIODIESELS FROM THEVETIA PERUVIANA (YELLOW OLEANDER) SEED OIL AND SUS DOMESTICUS (PIG) LARD‖ by Yakubu Ali DALLATU meets the regulations governing the award of the degree of Doctor of Philosophy (Ph.D.) Analytical Chemistry of the Ahmadu Bello University, and is approved for its contribution to knowledge and literary presentation.
    [Show full text]
  • Petition to the Administrative Council of the European Patent Organization
    August 10, 2019 BY EMAIL Petition to the Administrative Council of the European Patent Organization Cc: Antonio Campinos, President of the EPO Emmanuel Macron, President, French Republic Christoph Ernst, VP Legal/ International Affairs Angela Merkel, Chancellor, Germany Karin Seegert, COO, Healthcare & Chemistry Mark Rutte, Prime Minister, The Netherlands Piotr Wierzejewski, Quality Management Boris Johnson, Prime Minister, United Kingdom Stoyan Radkov - Applicant’s Representative Cornelia Rudloff-Schäffer, President, German PTO Tim Moss, CEO, Intellectual Property Office of Cadre Philippe, Director, French National Institute the United Kingdom of Industrial Property Vincentia Rosen-Sandiford, Director, Netherlands Patent Office Re: European patent application 09735962.4; and European divisional application 17182663.9; Applicant: Asha Nutrition Sciences, Inc. Dear Delegates in the Administrative Council, We have been prosecuting the referenced patent applications directed to critical innovations for public health at EPO for last 10 years. However, rather than advancing the innovations EPO has been obstructing them. EPO statements in the prosecution history evidence that rejections have been applied to oblige us to reduce the claimed scope, even though as per provisions of European Patent Convention, the subject claims are perfectly patentable. A narrow patent is not synonymous with a quality patent. The metric of quality disregarded by EPO is genuine innovation, measured by betterment of life achieved, though that is the very purpose of patents and is built into the law. For example, solutions to critical unmet needs are inventive even if claims are otherwise obvious (GL1, G-VII, 10.3). Narrow patents in the nutrition arts have already caused great harm to public health and created patent-practice- made humanitarian crises by creating misinformation and taken us farther away from solving nutritional problems, preventative solutions, and sustainability.
    [Show full text]
  • Nutraceutical Potentialities of Tunisian Argan Oil Based on Its
    Hanana et al. Lipids in Health and Disease (2018) 17:138 https://doi.org/10.1186/s12944-018-0782-9 RESEARCH Open Access Nutraceutical potentialities of Tunisian Argan oil based on its physicochemical properties and fatty acid content as assessed through Bayesian network analyses Mohsen Hanana1, Hajer Mezghenni2, Rayda Ben Ayed3*, Ali Ben Dhiab4, Slim Jarradi5, Bassem Jamoussi6 and Lamia Hamrouni2 Abstract Background: Argan oil is traditionally produced by cold pressing in South-western Morocco where rural population uses it as edible oil as well as for its therapeutic properties which give them in counterpart valuable income. Given the economical interest of this oil, several attempts of fraudulency have been registered in the world global market leading to loss of authenticity. Our purpose is to launch a program of Tunisian Argan oil valorization since trees from this species have been introduced sixty years ago in Tunisia. The first step was thus to characterize the physicochemical properties and determine the chemical composition of Tunisian Argan oil in order to assess its quality. Methods: Physicochemical parameters of oil quality were determined according to the international standard protocols. Fatty acid content analysis of Argan oils was performed by gas chromatography coupled to mass spectrophotometry. A comparative study was realized among Tunisian, Moroccan and Algerian samples differing also by their extraction procedure. The impact of geographical localisation on the fatty acids composition was studied by statistical and modeling Bayesian analyses. Results: Physicochemical parameters analysis showed interestingly that Tunisian Argan oil could be classified as extra virgin oil. Argan oil is mainly composed by unsaturated fatty acids (80%), mainly oleic and linoleic acid (linoleic acid was positively influenced by the geographical localization (r =0.899,p = 0.038) and the P/S index (r =0.987,p =0.002)) followed by saturated fatty acids (20%) with other beneficial compounds from the unsaponifiable fraction like polyphenols and carotenoids.
    [Show full text]
  • Rejuveniqe Oil Intensive Vs Moroccan Oil
    Rejuveniqe Oil Intensive vs Moroccan Oil Blend of rare, pure oils from around the world Silicone polymers, synthetic fragrances, argan oil, food coloring, and preservative 1. Meadow foam Oil 2. Abyssinian Oil 1. Cyclopentasiloxane, 3. Camellia Oleifera Oil 2. Dimethicone 4. Tomato Seed Oil 3. Cyclomethicone 5. Carrot Seed Oil 4. Butylphenyl Methylpropional 6. Lemon Peel Oil 5. Argan Oil 7. Lime Oil 6. Linum Usitatissimum (Linseed ) Extract 8. Bergamot Fruit Oil 7. Parfum (Fragrance) 9. Adansonia Digitata Oil 8. D&C Yellow-11 10. Mauritia Flexuosa Fruit Oil 9. D&C Red-17 11. Coconut Oil 10. Benzyl Benzoate 12. Gardenia Tahitensis Flower Extract 11. Alpha-Isomethyl Ionone 13. Moringa Oleifera Seed Oil 14. Caryocar Brasiliense Fruit Oil 15. Sunflower Seed Unique molecular structure – small molecules Large, synthetic, silicon polymer molecules Small molecules that can penetrate and absorb “The molecules in argan oil are too large to penetrate deep in to hair follicle and skin, making it your hair cuticle. Since it can't penetrate, it actually just weightless. sits on top of your hair. This can be a problem if you're using it when your hair is wet, or if you're using too So compatible that it mimics the body’s own much. Applying the oil to damp strands before drying natural oils. will leave your hair feeling smooth for a while, but over time it will actually dry out your hair. The argan oil Can be added to color, bleach, and perms for winds up creating a barrier on top of your hair, which incredibly healthy, shiny results! blocks out any moisturizer trying to get in.” Mark Townsend, Celebrity hair stylist MONAT sources our oils from around the world, The first 3 ingredients of Moroccan Oil carefully vetting each supplier to ensure that what we (Cyclopentasiloxane, Dimethicone and put into our product line meets the strictest standards Cyclomethicone) are large, synthetic, silicon polymer of potency, purity, sustainability and worker molecules built from repeating chemical units.
    [Show full text]
  • Nutraceutical Profile of Selected Oils, Distillates and Butters
    Asian J. Exp. Sci., Vol. 28, No. 2, 2014; 37-41 Nutraceutical Profile Of Selected Oils, Distillates And Butters RIPAL R. KHAMAR & Y. T. JASRAI Department of Botany, University School of Sciences, Gujarat University, Ahmedabad - 380009, Gujarat, India E-mail: [email protected] Abstract : The mixed tocopherol , phytosterol and sqalene were estimated in the oils and their deodorized distillate (remove of flavor) available in the India market and to know about the nutraceuticals value in respect with tocopherol (vitamin E), Phytosterol and squalene.The oils taken in the investigation were Amaranth oil, Avocado oil, Cashew nut shell oil, Castor oil, Coconut oil, Corn/Maize oil, Cottonseed oil, Cumin oil, Fish oil, Groundnut oil, Linseed oil, Mustard oil, Neem oil, Olive oil, Palm oil, Pomegranate seed oil, Psyllium seed oil, Rice bran oil, Safflower oil, Sesame oil, Soybean oil, Sunflower oil and Wheat germ oil. Avacado oil contains highest quantity of mixed tocopherol while the lowest % is found in coconut, cumin, flaxed seed , neem and pomegranate oils. Phytosterol was highest in Pumpkin seed oil and lowest in Sesame seed oil. Sqalene (precursor to cholesterol) was highest in Amaranth seed oil and Mango butter oils and lowest in Shea butter. In deodorised distillate, phytosterol was highest in Soya bean oil but lowest in Olive oil. However, Sqalene was highest in distillate of Olive oil and lowest in distillate of Groundnut oil.Punicic acid (polysaturated fatty acid) and sesamin (a lignin) were present in Palm oil, Pomegranate seed oil and Sesame oil raw and in distillates. KEYWORDS: Edible oil, Distillate, Butter, Nutraceutical profile, Tocopherol, Vitamin E INTRODUCTION: The present study has been deodorization (to remove off flavors), often abbreviated as undertaken to know the nutritional value of fatty acids in RBD.
    [Show full text]
  • Influence of Free Fatty Acid Content in Biodiesel Production on Non-Edible Oils
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Universidade do Minho: RepositoriUM WASTES: Solutions, Treatments and Opportunities 1St International Conference September 12th – 14th 2011 INFLUENCE OF FREE FATTY ACID CONTENT IN BIODIESEL PRODUCTION ON NON-EDIBLE OILS A. Ribeiro1, F. Castro2 and J. Carvalho3 1 CVR – Centre for Waste Valorization, [email protected]. 2 University of Minho/CT2M, fcastro@ dem.uminho.pt. 3 CVR – Centre for Waste Valorization/CT2M, [email protected] ABSTRACT The use of alternative feedstock as waste cooking oils (WCO) and bovine tallow for biodiesel production has some advantages. It is cheaper than edible vegetable oils and it is a way to valorize a sub-product. Nevertheless, these oils possess some contaminants, specially free fatty acid (FFA) content, which can reduce the quality and yield of biodiesel production. This problem was solved by testing different operating conditions and different transesterification procedure and equipments for each stage of processing. Technological assessment of process was carried out to evaluate their technical benefits, limitations and quality of final product. In this work biodiesel was produced by an alkali- catalyzed transesterification and by a two step esterification/alkali-catalysed transesterification in cases which FFA content has above 3%. Evaluation of quality from raw materials and final biodiesel was performed according to standard EN 14214. Results show that all parameters analyzed meet the standard and legislation requirements. This evidence proves that in those operational conditions the biodiesel produced from WCO and bovine tallow can substitute petroleum-based diesel. Keywords: Biodiesel; Free Fatty acid (FFA); Waste Cooking Oil (WCO); Bovine tallow INTRODUCTION Energy is the most fundamental requirement for human existence and activities.
    [Show full text]
  • Comparative Study of Argan and Olive Fruits and Oils
    435 Comparative study of argan and olive fruits and oils Dalila Demnati1, Sebastián Sánchez2, Rafael Pacheco2, Mohamed Zahar1 & Leopoldo Martínez2 1- Institut Agronomique et Vétérinaire Hassan. BP 6202, 10101, Rabat, Morocco. Email: [email protected] 2- Universidad de Jaén, Campus Las Lagunillas 23071 Jaén, Spain. Email: [email protected] Abstract This study was conducted to compare argan and olive fruits and virgin oils. Dry argan fruits, traditional and semiautomatic extracted argan oils, from roasted and unroasted seeds, from Essaouira’s area, were studied. Morphological characteristics of argan fruit were determined and compared with the ‘Picual’ olive’s ones. The results showed certain similarities between the two fruits. The quality parameters analyzed were acidity and peroxide value, K270, K232 and ΔK, total phenols and oil stability, comparing them with those of ‘Picual’ virgin olive oil. Quality parameters corresponded to the Moroccan Standard for edible virgin argan oil. Traditional argan oil showed the lowest stability whereas semiautomatic edible oil presented the highest one. However, virgin olive oil showed higher phenol content and better oxidative stability than the virgin argan oils. Keywords: Argan, Olive, Fruit, Quality Parameters, Phenols, Oil Stability. Etude comparative des caractéristiques des fruits et des huiles d’argan et d’olive Résumé Cette étude a pour but de comparer le fruit et l’huile d’argan et d’olive vierges. Les fruits secs d’arganier, les huiles d’argan obtenues par un procédé traditionnel ou semi-automatique, à partir d’amandons torréfiés ou non, de la région d’Essaouira, ont été étudiés. Les caractéristiques morphologiques du fruit de l’arganier ont été déterminées et comparées à ceux de l’olive, variété ‘Picual’.
    [Show full text]
  • Fatty Acid Composition of Cosmetic Argan Oil: Provenience and Authenticity Criteria
    molecules Article Fatty Acid Composition of Cosmetic Argan Oil: Provenience and Authenticity Criteria Milena BuˇcarMiklavˇciˇc 1, Fouad Taous 2, Vasilij Valenˇciˇc 1, Tibari Elghali 2 , Maja Podgornik 1, Lidija Strojnik 3 and Nives Ogrinc 3,* 1 Science and Research Centre Koper, Institute for Olive Culture, 6000 Koper, Slovenia; [email protected] (M.B.M.); [email protected] (V.V.); [email protected] (M.P.) 2 Centre National De L’énergie, Des Sciences Et Techniques Nucleaires, Rabat 10001, Morocco; [email protected] (F.T.); [email protected] (T.E.) 3 Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-1588-5387 Academic Editor: George Kokotos Received: 17 July 2020; Accepted: 3 September 2020; Published: 7 September 2020 Abstract: In this work, fatty-acid profiles, including trans fatty acids, in combination with chemometric tools, were applied as a determinant of purity (i.e., adulteration) and provenance (i.e., geographical origin) of cosmetic grade argan oil collected from different regions of Morocco in 2017. The fatty acid profiles obtained by gas chromatography (GC) showed that oleic acid (C18:1) is the most abundant fatty acid, followed by linoleic acid (C18:2) and palmitic acid (C16:0). The content of trans-oleic and trans-linoleic isomers was between 0.02% and 0.03%, while trans-linolenic isomers were between 0.06% and 0.09%. Discriminant analysis (DA) and orthogonal projection to latent structure—discriminant analysis (OPLS-DA) were performed to discriminate between argan oils from Essaouira, Taroudant, Tiznit, Chtouka-Aït Baha and Sidi Ifni.
    [Show full text]
  • A Technical Glance on Some Cosmetic Oils
    European Scientific Journal June 2014 /SPECIAL/ edition vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 A TECHNICAL GLANCE ON SOME COSMETİC OİLS Kenan Yildirim, PhD Department of Fiber and Polymer Engineering Faculty of Natural Sciences, Architecture and Engineering,Bursa Technical University Bursa, Turkiye A. Melek Kostem, MSc Tübitak-Butal Bursa Test and Analysis Laboratory, Bursa Turkiye Abstract The properties of molecular structure, thermal behavior and UVA protection of 10 types of healthy promoting oils which are argania, almond, apricot seed, and jojoba, wheat germ, and sesame seed, avocado, cocoa, carrot and grapes seed oils were studied. FT-IR analysis was used for molecular structure. DSC analysis was used for thermal behavior and UV analysis was used for UV, visible and IR light absorption. Molecular structure and thermal behavior of avocado and cocoa are different from the others. Contrary to the spectra of avocado and cocoa on which the peaks belongs to carboxylic acid very strong, the spectra of the others do not involve carboxylic acid strong peaks. Almond, wheat germ and apricot seed oil absorb all UVA before 350 nm wave length. The UV protection property of grapes seed and cocoa is very well. Protection of wheat germ, almond and apricot seed oils to UVA is well respectively. Absorption of IR rate change from 7% to 25% for carrot, apricot seed, wheat germ, argania, avocado and grapes seed respectively. Keywords: Cosmetic oils, thermal behavior, molecular structure, UV protection Practical applications Except avocado and cocoa oils the others may be used for production of inherently UV protection yarn. This type of yarn can be used for producing UV protection clothes.
    [Show full text]
  • Niop Trading Rules
    NIOP TRADING RULES Effective July 2013 Minor changes and corrections (approved by the NIOP Technical Committee) have been included as of July 29, 2013 APPLICATION OF RULES INCORPORATION OF THESE RULES OR ANY PORTION THEREOF IS NOT MANDATORY BUT IS OPTIONAL BETWEEN PARTIES TO CONTRACTS. Published by the National Institute of Oilseed Products 750 National Press Building, 529 14th St NW Washington, D.C. 20045 TEL: (202) 591-2438 FAX: (202) 591-2445 e-mail: [email protected] Internet: www.niop.org ©2013 by the National Institute of Oilseed Products NIOP TRADING RULES TABLE OF CONTENTS CHAPTER 1 - TYPES OF SALES RULE 1.1 TRADE PRACTICE 1 -1 1.2 PLACE OF CONTRACT 1 -1 1.3 C.I.F. (COST, INSURANCE AND FREIGHT) 1 -1 LISTING OF DOCUMENTS 1 -2 1.4 C.& F. (COST AND FREIGHT) 1 -3 1.5 F.O.B. VESSEL (FREE ON BOARD VESSEL) 1 -3 1.6 F.A.S. VESSEL (FREE ALONGSIDE) -NAMED PORT OF SHIPMENT 1 -5 1.7 EX DOCK (NAMED PORT OF IMPORTATION) 1 -6 1.8 EX WAREHOUSE 1 -7 1.9 MISCELLANEOUS TYPES OF SALES 1 -7 1.10 VESSEL CLASSIFICATION 1 -7 1.11 PUBLIC HEALTH SECURITY AND BIOTERRORISM PREPAREDNESS 1 -7 CHAPTER 2 - SHIPMENT RULE 2.1 TIME 2 -1 2.2 DAYS OR HOURS 2 -1 2.3 NOTICE 2 -1 2.4 TENDERS 2 -1 2.5 EXTENSION OF SHIPMENT 2 -1 2.6 PROOF OF ORIGIN 2 -3 2.7 TRANSHIPMENT 2 -3 2.8 SHIPPING INSTRUCTIONS 2 -3 2.9 VESSEL NOMINATION AND DECLARATION OF DESTINATION 2 -3 2.10 BILL OF LADING-EVIDENCE OF DATE OF SHIPMENT 2 -3 CHAPTER 3 - TANK CARS, TRUCKS, BARGES AND CONTAINERS RULE 3.1 DATE OF SHIPMENT 3 -1 3.2 TIME OF SHIPMENT 3 -1 3.3 SPREAD (SCATTERED) DELIVERIES OF SHIPMENTS 3 -1 3.4 F.O.B.
    [Show full text]
  • Potential of Chrozophora Tinctoria Seed Oil As a Biodiesel Resource
    applied sciences Article Potential of Chrozophora tinctoria Seed Oil as a Biodiesel Resource Seyed Salar Hoseini 1, Gholamhassan Najafi 1,*, Armin Fattahpour Moazzez 1, Saeid Hazrati 2, Mohammad Taghi Ebadi 3 and Talal Yusaf 4,* 1 Department of Biosystems Engineering, Tarbiat Modares University, Tehran 14115-336, Iran; [email protected] (S.S.H.); [email protected] (A.F.M.) 2 Department of Agronomy and Medicinal Plants, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; [email protected] 3 Department of Horticultural Science, Tarbiat Modares University, Tehran 14115-336, Iran; [email protected] 4 Department of Development, Aviation Australia, Brisbane 4007, Australia * Correspondence: g.najafi@modares.ac.ir (G.N.); [email protected] (T.Y.) Received: 30 March 2020; Accepted: 15 May 2020; Published: 18 May 2020 Featured Application: Produced biodiesel through this research work can be used as a suitable fuel source instead of petroleum-derived fuels. Abstract: Biodiesel is a renewable fuel that has been widely used in recent years. There are various resources used as biodiesel feedstocks, including animal fats, waste oils, and vegetable oils. In the present study, Chrozophora tinctoria seed oil is introduced as a new biodiesel feedstock. C. tinctoria is a weed and non-edible plant. So, the primary cost of this resource is very low, and hence it can be considered as a biodiesel source. This plant can also grow in most weather conditions. In the present study, the research team tried to produce biodiesel from C. tinctoria seeds through a transesterification reaction. To intensify the transesterification reaction, an ultrasonic device was used.
    [Show full text]