Arganicare Ingredients Disclaimer: We Do Our Best to Ensure That Product

Total Page:16

File Type:pdf, Size:1020Kb

Arganicare Ingredients Disclaimer: We Do Our Best to Ensure That Product Arganicare Ingredients Ingredients: Aqua (Water), Sodium Cocoyl Isethionate, Glycerin, Decyl Glucoside, Sodium C14-16 Olefin Sulfonate, Cocamide Mea, Hamamelis Virginiana (Witch Hazel) Water, Peg-120 Methyl Glucose Dioleate, Amodimethicone, Shampoo for dry Polyquaternium-22, Fragrance, Argania Spinosa (Argan) 4605-7290104364464 & damaged hair Kernel Oil, Phenoxyethanol & Ethylhexylglycerin, Dmdm 400ml Hydantoin, Niacinamide, Guar Hydroxypropyltrimonium Chloride, Panthenol (Pro-Vit. B5), Butyrospermum Parkii (Shea Butter) Oil, Anthemis Nobilis (Camomile) Flower Extract, Tocopherol (Vit.E), Lactic Acid, Disodium Edta Ingredients: Purifed Water, C12-15 Alkyl Benzoate, Cetearyl Alcohol, Behentrimonium Chloride & Isopropyl Alcohol, Butyrospermum Parkii (Shea) Butter, Argania Spinosa (Argan) Nut Oil, Dimethicone, Amodimethicone & Cetrimonium Conditioner for Chloride & Trideceth-12, Dipentaerythrityl 4606-7290104364471 dry & damaged Pentaisononanoate, Fragrance (Perfume), Guar hair 400ml Hydroxypropyltrimonium Chloride, Hydrolized Silk, Lactic Acid, Panthenol (Pro-Vitamin B5), Simmondsia Chinensis (Jojoba) Seed Oil, Triticum Vulgare (Wheat Germ) Oil, Tocopherol (Vitamin E) Ingredients: Purifed Water, C12-15 Alkyl Benzoate, Behentrimonium Chloride & Isopropyl Alcohol, Sorbitol, Cetyl Alcohol, Argania Spinosa (Argan) Kernel Oil, Amodimethicone & Cetrimonium Chloride & Trideceth-12, Glyceryl Stearate & Peg-100 Stearate, Butyrospermum Parkii (Shea) Butter, Hair masque for Quaternium-95 & Propanediol, Silicone Quaternium-22, coloured and 4604-7290104364457 Stearamidopropyl Dimethylamine Lactate, Dipentaerythrityl highlighted hair Pentaisononanoate, Dimethicone, Fragrance (Perfume), Guar 500ml Hydroxypropyltrimonium Chloride, Prunus Amygdalus Dulcis (Sweet Almond) Oil, Hydrolized Silk Protein, Dehydroacetic Acid & Benzoic Acid & Phenoxyethanol, Dmdm Hydantoin, Panthenol (Pro-Vitamin B5), Lactic Acid, Tocopheryl Acetate, Citric Acid Ingredients: Purifed Water, C12-15 Alkyl Benzoate, Behentrimonium Chloride & Isopropyl Alcohol, Sorbitol, Cetyl Alcohol, Argania Spinosa (Argan) Kernel Oil, Amodimethicone & Cetrimonium Chloride & Trideceth-12, Glyceryl Stearate & Peg-100 Stearate, Butyrospermum Parkii (Shea) Butter, Hair masque for Silicone Quaternium-22, Stearamidopropyl Dimethylamine 4603-7290104364440 dry & damaged Lactate, Dipentaerythrityl Pentaisononanoate, Dimethicone, hair 500ml Fragrance (Perfume), Guar Hydroxypropyltrimonium Chloride, Dehydroacetic Acid & Benzoic Acid & Phenoxyethanol, Dmdm Hydantoin, Prunus Amygdalus Dulcis (Sweet Almond) Oil, Hydrolized Silk Protein, Panthenol (Pro-Vitamin B5), Lactic Acid, Tocopheryl Acetate Disclaimer: We do our best to ensure that product information is accurate, however manufacturers may alter their ingredient lists. Actual product packaging and goods may contain more and/or different information than that shown on our Web site. It is recommended that you do not exclusively rely on the information presented and that you always read labels, warnings, and directions before using or consuming a product. For additional information about a product, please contact the manufacturer. Arganicare Ingredients Ingredients: Cyclopentasiloxane & Dimethiconol, Cyclomethicone, Argania Spinosa (Argan) Kernel Oil, C12-15 Hair Serum for dry Alkyl Benzoate, Phenyl Trimethicone, Simmondsia Chinensis 4602-7290104364433 & damaged hair (Jojoba) Seed Oil, Prunus Amygdalus Dulcis (Sweet Almond) 100ml Oil, Tocopheryl Acetate, Fragrance, Butyrospermum Parkii (Shea Butter) Oil Ingredients: Purifed Water, C12-15 Alkyl Benzoate, Isopropyl Myristate, Polyquaternium-72, Glycerin, Cyclopentasiloxane, Dimethicone, Cetearyl Alcohol, Cetearyl Alcohol & Ceteareth- 33, Argania Spinosa (Argan) Oil, Behentrimonium Chloride, Leave in Butyrospermum Parkii (Shea) Butter, Cetrimonium Chloride, 4600-7290104364419 Conditioner for Dipentaerythrityl Pentaisononanoate, Fragrance, Panthenol curly hair 400ml (Pro-Vitamin B5), Hydrolyzed Keratin, Dehydroxyacetice Acid & Benzoic Acid & Phenoxyethanol, Dmdm Hydantoin, Guar Hydroxypropyltrimonium Chloride, Citrus Aurantium Dulcis (Orange) Fruit Extract, Tocopherol (Vitamin E) Ingredients: Purifed Water, C12-15 Alkyl Benzoate, Isopropyl Myristate, Glycerin, Cyclopentasiloxane, Dimethicone, Argania Spinosa (Argan) Oil ,Cetearyl Alcohol, Cetearyl Leave in Alcohol & Ceteareth-33, Butyrospermum Parkii (Shea) Butter, Conditioner for Behentrimonium Chloride, Cetrimonium Chloride, 4601-7290104364426 dry & damaged Dipentaerythrityl Pentaisononanoate, Fragrance, Panthenol hair 400ml (Pro-Vitamin B5), Hydrolyzed Keratin, Dehydroxyacetice Acid & Benzoic Acid & Phenoxyethanol, Dmdm Hydantoin, Cocos Nucifera (Coconut) Oil, Guar Hydroxypropyltrimonium Chloride, Tocopherol (Vitamin E) Ingredients: Aqua, Cyclomethicone, Phenyl Trimethicone, Argania Spinosa Kernel Oil, Hexylen Glycol, Hydrolyzed Silk, Arganicare Express Panthenol, Polyquaternium-11, Hydrolyzed Keratin, 4607-7290104364488 hair repair Polyquaternium-22, Dimethiconol, Cetyl Peg/Ppg-10/1 conditioner 250ml Dimethicone, Stearamidopropyl Dimethylamine Lactate, Lactic Acid, Cetrimonium Chloride, Fragrance, Hydrolyzed Silk, Phenoxyethanol Ingredients: Aqua (Water), Quaternium-91, Behentrimonium Chloride, Myristyl Myristate, Cetearyl Alcohol, Phenyl Trimethicone, Argania Spinosa (Argan) Kernel Oil, Hexylen Glycol, Hydrolyzed Keratin, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Dimethiconol, Quaternium-80, 10-in-1 Hair Repair 4660-7290104367427 Stearamidopropyl Dimethylamine, Hydrolyzed Silk, Panthenol, 150ml Potassium Sorbate, Sodium Benzoate, Lactic Acid, Butyrospermum Parkii (Shea) Oil, Hydroxypropyl Starch Phosphate, Hydroxypropyltrimonium Chloride, Acrylamidopropyltrimonium Chloride/Acrylamide Copolymer, Parfum (Fragrance), Dmdm Hydantoin, Disodium Edta Disclaimer: We do our best to ensure that product information is accurate, however manufacturers may alter their ingredient lists. Actual product packaging and goods may contain more and/or different information than that shown on our Web site. It is recommended that you do not exclusively rely on the information presented and that you always read labels, warnings, and directions before using or consuming a product. For additional information about a product, please contact the manufacturer. Arganicare Ingredients Ingredients: Water (Aqua), Sodium C14-16 Olefin Sulfonate, Ammonium Cocoyl Isethionate, Glycerin, Decyl Glucoside, C12-15 Alkyl Lactate, Cocoamide Mea, Macadamia Ternifolia Seed Oil, Hamamelis Virginiana (Witch Hazel) Water, Peg-120 Macadamia Methyl Glucose Dioleate, Amodimethicone, Polyquaternium- Shampoo for dry 22, Argania Spinosa (Argan) Kernel Oil, Fragrance (Parfum), 4634-7290104367298 & damaged hair Potassium Sorbate & Sodium Benzoate, Dmdm Hydantoin, 400ml Guar Hydroxypropyltrimonium Chloride & Acrylamidopropyltrimonium Chloride/Acrylamide Copolymer, Polysorbate-20, Panthenol (Pro-Vitamin B5), Butyrospermum Parkii (Shea Butter) Oil, Anthemis Nobilis (Chamomile) Flower Extract, Tocopherol (Vit. E), Lactic Acid Ingredients: Water (Aqua), Macadamia Ternifolia Seed Oil, Cetearyl Alcohol, Behentrimonium Chloride & Isopropyl Alcohol, Butyrospermum Parkii (Shea) Butter, Argania Spinosa (Argan) Kernel Oil, Dimethicone, Amodimethicone & Macadamia Cetrimonium Chloride & Trideceth-12, Stearamidopropyl Conditioner for 4635-7290104367304 Dimethylamine, Fragrance (Perfume), Potassium Sorbate & dry & damaged Sodium Benzoate, Dmdm Hydantoin, Guar hair 400ml Hydroxypropyltrimonium Chloride & Acrylamidopropyltrimonium Chloride/Acrylamide Copolymer, Hydrolized Silk, Lactic Acid, Panthenol (Pro-Vitamin B5), Triticum Vulgare (Wheat Germ) Oil, Tocopherol (Vitamin E) Ingredients: Water (Aqua), Macadamia Ternifolia Seed Oil, Behentrimonium Chloride & Isopropyl Alcohol, Sorbitol, Cetyl Alcohol, Argania Spinosa (Argan) Kernel Oil, Amodimethicone & Cetrimonium Chloride & Trideceth-12, Glyceryl Stearate & Peg-100 Stearate, Butyrospermum Parkii (Shea) Butter, Macadamia Hair Silicone Quaternium-22, Quaternium-18, Stearamidopropyl Masque for dry & Dimethylamine, Dipentaerythrityl Pentaisononanoate, 4639-7290104367281 damaged hair Dimethicone, Fragrance (Perfume), Hydroxypropyl Starch 500ml Phosphate, Potassium Sorbate & Sodium Benzoate, Dmdm Hydantoin, Guar Hydroxypropyltrimonium Chloride & Acrylamidopropyltrimonium Chloride/Acrylamide Copolymer, Prunus Amygdalus Dulcis (Sweet Almond) Oil, Hydrolized Silk Protein, Panthenol (Pro-Vitamin B5), Lactic Acid, Tocopheryl Acetate Ingredients: Cyclopentasilocane & Dimethiconol, Macadamia Hair Cyclomethicone, Macadamia Ternifolia Seed Oil, C12-15 Alkyl Serum for dry & 4636-7290104367335 Benzoate, Phenyl Trimethicone, Argania Spinosa (Argan) damaged hair Kernel Oil, Simmondsia Chinensis (Jojoba) Seed Oil, 100ml Tocopheryl Acetate, Fragrance Disclaimer: We do our best to ensure that product information is accurate, however manufacturers may alter their ingredient lists. Actual product packaging and goods may contain more and/or different information than that shown on our Web site. It is recommended that you do not exclusively rely on the information presented and that you always read labels, warnings, and directions before using or consuming a product. For additional information about a product, please contact the manufacturer. Arganicare Ingredients Ingredients: Water (Aqua), C12-15 Alkyl Benzoate, Macadamia Ternifolia Seed Oil, Glycerin, Cyclopentasiloxane, Dimethicone, Behentrimonium Methosulfate & Cetearyl Macadamia Leave- Alcohol, Ceteareth-33, Argania Spinosa
Recommended publications
  • Factors Affecting Invasive Species Abundance: the Barbary Ground Squirrel on Fuerteventura Island, Spain Marta López-Darias1,* and Jorge M
    Zoological Studies 47(3): 268-281 (2008) Factors Affecting Invasive Species Abundance: the Barbary Ground Squirrel on Fuerteventura Island, Spain Marta López-Darias1,* and Jorge M. Lobo2 1Departamento de Biología Aplicada, Estación Biológica de Doñana (CSIC), Pabellón del Perú, Avenida María Luisa s/n, Sevilla, E-41013, Spain 2Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, Madrid, E-28006, Spain. E-mail:[email protected] (Accepted November 14, 2007) Marta López-Darias and Jorge M. Lobo (2008) Factors affecting invasive species abundance: the Barbary ground squirrel on Fuerteventura Island, Spain. Zoological Studies 47(3): 268-281. We assessed the determinants of habitat selection by the Barbary ground squirrel (Atlantoxerus getulus) at Fuerteventura (Canary Is., Spain). We implemented general linear model (GLM) procedures to analyze the relationships between squirrel abundances and 4 kinds of variables related to the biological requirements of the species (environment, food resources, biotic interactions, and refuge/shelter). We performed a variance partitioning analysis between the most explicative categories to explore correlation patterns. The time of year and weather conditions of the census clearly influenced the number of individuals observed. Shelter variables were the best correlates of both the abundance of squirrels and the number of their scat. Although food resources were less important, the presence of certain plant species was correlated with squirrel abundance, while general environmental variables and interactions with other mammals did not affect its distribution. These results improve our understanding of the ecology and the establishment of this highly successful introduced species, providing basic knowledge for use with future management strategies in the Canarian Archipelago.
    [Show full text]
  • Essential Wholesale & Labs Carrier Oils Chart
    Essential Wholesale & Labs Carrier Oils Chart This chart is based off of the virgin, unrefined versions of each carrier where applicable, depending on our website catalog. The information provided may vary depending on the carrier's source and processing and is meant for educational purposes only. Viscosity Absorbtion Comparible Subsitutions Carrier Oil/Butter Color (at room Odor Details/Attributes Rate (Based on Viscosity & Absorbotion Rate) temperature) Description: Stable vegetable butter with a neutral odor. High content of monounsaturated oleic acid and relatively high content of natural antioxidants. Offers good oxidative stability, excellent Almond Butter White to pale yellow Soft Solid Fat Neutral Odor Average cold weather stability, contains occlusive properties, and can act as a moistening agent. Aloe Butter, Illipe Butter Fatty Acid Compositon: Palmitic, Stearic, Oleic, and Linoleic Description: Made from Aloe Vera and Coconut Oil. Can be used as an emollient and contains antioxidant properties. It's high fluidiy gives it good spreadability, and it can quickly hydrate while Aloe Butter White Soft Semi-Solid Fat Neutral Odor Average being both cooling and soothing. Fatty Acid Almond Butter, Illipe Butter Compostion: Linoleic, Oleic, Palmitic, Stearic Description: Made from by combinging Aloe Vera Powder with quality soybean oil to create a Apricot Kernel Oil, Broccoli Seed Oil, Camellia Seed Oil, Evening Aloe Vera Oil Clear, off-white to yellow Free Flowing Liquid Oil Mild musky odor Fast soothing and nourishing carrier oil. Fatty Acid Primrose Oil, Grapeseed Oil, Meadowfoam Seed Oil, Safflower Compostion: Linoleic, Oleic, Palmitic, Stearic Oil, Strawberry Seed Oil Description: This oil is similar in weight to human sebum, making it extremely nouirshing to the skin.
    [Show full text]
  • Nutraceutical Potentialities of Tunisian Argan Oil Based on Its
    Hanana et al. Lipids in Health and Disease (2018) 17:138 https://doi.org/10.1186/s12944-018-0782-9 RESEARCH Open Access Nutraceutical potentialities of Tunisian Argan oil based on its physicochemical properties and fatty acid content as assessed through Bayesian network analyses Mohsen Hanana1, Hajer Mezghenni2, Rayda Ben Ayed3*, Ali Ben Dhiab4, Slim Jarradi5, Bassem Jamoussi6 and Lamia Hamrouni2 Abstract Background: Argan oil is traditionally produced by cold pressing in South-western Morocco where rural population uses it as edible oil as well as for its therapeutic properties which give them in counterpart valuable income. Given the economical interest of this oil, several attempts of fraudulency have been registered in the world global market leading to loss of authenticity. Our purpose is to launch a program of Tunisian Argan oil valorization since trees from this species have been introduced sixty years ago in Tunisia. The first step was thus to characterize the physicochemical properties and determine the chemical composition of Tunisian Argan oil in order to assess its quality. Methods: Physicochemical parameters of oil quality were determined according to the international standard protocols. Fatty acid content analysis of Argan oils was performed by gas chromatography coupled to mass spectrophotometry. A comparative study was realized among Tunisian, Moroccan and Algerian samples differing also by their extraction procedure. The impact of geographical localisation on the fatty acids composition was studied by statistical and modeling Bayesian analyses. Results: Physicochemical parameters analysis showed interestingly that Tunisian Argan oil could be classified as extra virgin oil. Argan oil is mainly composed by unsaturated fatty acids (80%), mainly oleic and linoleic acid (linoleic acid was positively influenced by the geographical localization (r =0.899,p = 0.038) and the P/S index (r =0.987,p =0.002)) followed by saturated fatty acids (20%) with other beneficial compounds from the unsaponifiable fraction like polyphenols and carotenoids.
    [Show full text]
  • Rejuveniqe Oil Intensive Vs Moroccan Oil
    Rejuveniqe Oil Intensive vs Moroccan Oil Blend of rare, pure oils from around the world Silicone polymers, synthetic fragrances, argan oil, food coloring, and preservative 1. Meadow foam Oil 2. Abyssinian Oil 1. Cyclopentasiloxane, 3. Camellia Oleifera Oil 2. Dimethicone 4. Tomato Seed Oil 3. Cyclomethicone 5. Carrot Seed Oil 4. Butylphenyl Methylpropional 6. Lemon Peel Oil 5. Argan Oil 7. Lime Oil 6. Linum Usitatissimum (Linseed ) Extract 8. Bergamot Fruit Oil 7. Parfum (Fragrance) 9. Adansonia Digitata Oil 8. D&C Yellow-11 10. Mauritia Flexuosa Fruit Oil 9. D&C Red-17 11. Coconut Oil 10. Benzyl Benzoate 12. Gardenia Tahitensis Flower Extract 11. Alpha-Isomethyl Ionone 13. Moringa Oleifera Seed Oil 14. Caryocar Brasiliense Fruit Oil 15. Sunflower Seed Unique molecular structure – small molecules Large, synthetic, silicon polymer molecules Small molecules that can penetrate and absorb “The molecules in argan oil are too large to penetrate deep in to hair follicle and skin, making it your hair cuticle. Since it can't penetrate, it actually just weightless. sits on top of your hair. This can be a problem if you're using it when your hair is wet, or if you're using too So compatible that it mimics the body’s own much. Applying the oil to damp strands before drying natural oils. will leave your hair feeling smooth for a while, but over time it will actually dry out your hair. The argan oil Can be added to color, bleach, and perms for winds up creating a barrier on top of your hair, which incredibly healthy, shiny results! blocks out any moisturizer trying to get in.” Mark Townsend, Celebrity hair stylist MONAT sources our oils from around the world, The first 3 ingredients of Moroccan Oil carefully vetting each supplier to ensure that what we (Cyclopentasiloxane, Dimethicone and put into our product line meets the strictest standards Cyclomethicone) are large, synthetic, silicon polymer of potency, purity, sustainability and worker molecules built from repeating chemical units.
    [Show full text]
  • Ethnoeconomical, Ethnomedical, and Phytochemical Study of Argania Spinosa (L.) Skeels: a Review
    ELSEVIER - Journal of Ethnopharmacology Review Article Ethnoeconomical, Ethnomedical, and Phytochemical Study of Argania spinosa (L.) Skeels: A Review. Zoubida Charrouf Dominique Guillaume ABSTRACT. Populations of Morocco South-western part traditionally use the fruits of Argania spinosa (L.) Skeels to prepare an edible oil whose obtention also furnishes, as side product, a cake used to feed the cattle and complements the forage furnished by the leaves of this same plant. Unfortunately, the wood of Argania spinosa is also used for fuel and deforestation is subsequently accelerated since populations are generally eager to replace argan groves by cultures of higher and immediate benefit. However, argan tree, that is particularly well adapted to grow in arid lands, has been proposed by several agencies to slow down the desert progress in northern Africa. In order to incite the South-western Morocco dwellers to reintroduce argan trees, a program aimed to increase the industrial value of Argania spinosa, and beginning by its phytochemical study, is currently carried out in Morocco. The results of these recent studies together with previous knowledge are summarised in this review. KEYWORDS. Morocco, Argania spinosa, argan tree, argan oil, ethnopharmacology, phytochemistry, saponins INTRODUCTION Argan tree (Argania spinosa (L.) Skeels), of the family sapotaceae, is endemic in South- western Morocco where it grows over about 320,000 square miles. For centuries, this slow growing and spiny tree, that may be either shrubby or up to seven or ten meters has played an essential ecological function in this part of Morocco. Indeed, it effectively protects the soil against heavy rain or wind-induced erosion and, furthermore, by shading all kind of cultures, maintains soil fertility.
    [Show full text]
  • Comparative Study of Argan and Olive Fruits and Oils
    435 Comparative study of argan and olive fruits and oils Dalila Demnati1, Sebastián Sánchez2, Rafael Pacheco2, Mohamed Zahar1 & Leopoldo Martínez2 1- Institut Agronomique et Vétérinaire Hassan. BP 6202, 10101, Rabat, Morocco. Email: [email protected] 2- Universidad de Jaén, Campus Las Lagunillas 23071 Jaén, Spain. Email: [email protected] Abstract This study was conducted to compare argan and olive fruits and virgin oils. Dry argan fruits, traditional and semiautomatic extracted argan oils, from roasted and unroasted seeds, from Essaouira’s area, were studied. Morphological characteristics of argan fruit were determined and compared with the ‘Picual’ olive’s ones. The results showed certain similarities between the two fruits. The quality parameters analyzed were acidity and peroxide value, K270, K232 and ΔK, total phenols and oil stability, comparing them with those of ‘Picual’ virgin olive oil. Quality parameters corresponded to the Moroccan Standard for edible virgin argan oil. Traditional argan oil showed the lowest stability whereas semiautomatic edible oil presented the highest one. However, virgin olive oil showed higher phenol content and better oxidative stability than the virgin argan oils. Keywords: Argan, Olive, Fruit, Quality Parameters, Phenols, Oil Stability. Etude comparative des caractéristiques des fruits et des huiles d’argan et d’olive Résumé Cette étude a pour but de comparer le fruit et l’huile d’argan et d’olive vierges. Les fruits secs d’arganier, les huiles d’argan obtenues par un procédé traditionnel ou semi-automatique, à partir d’amandons torréfiés ou non, de la région d’Essaouira, ont été étudiés. Les caractéristiques morphologiques du fruit de l’arganier ont été déterminées et comparées à ceux de l’olive, variété ‘Picual’.
    [Show full text]
  • Fatty Acid Composition of Cosmetic Argan Oil: Provenience and Authenticity Criteria
    molecules Article Fatty Acid Composition of Cosmetic Argan Oil: Provenience and Authenticity Criteria Milena BuˇcarMiklavˇciˇc 1, Fouad Taous 2, Vasilij Valenˇciˇc 1, Tibari Elghali 2 , Maja Podgornik 1, Lidija Strojnik 3 and Nives Ogrinc 3,* 1 Science and Research Centre Koper, Institute for Olive Culture, 6000 Koper, Slovenia; [email protected] (M.B.M.); [email protected] (V.V.); [email protected] (M.P.) 2 Centre National De L’énergie, Des Sciences Et Techniques Nucleaires, Rabat 10001, Morocco; [email protected] (F.T.); [email protected] (T.E.) 3 Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-1588-5387 Academic Editor: George Kokotos Received: 17 July 2020; Accepted: 3 September 2020; Published: 7 September 2020 Abstract: In this work, fatty-acid profiles, including trans fatty acids, in combination with chemometric tools, were applied as a determinant of purity (i.e., adulteration) and provenance (i.e., geographical origin) of cosmetic grade argan oil collected from different regions of Morocco in 2017. The fatty acid profiles obtained by gas chromatography (GC) showed that oleic acid (C18:1) is the most abundant fatty acid, followed by linoleic acid (C18:2) and palmitic acid (C16:0). The content of trans-oleic and trans-linoleic isomers was between 0.02% and 0.03%, while trans-linolenic isomers were between 0.06% and 0.09%. Discriminant analysis (DA) and orthogonal projection to latent structure—discriminant analysis (OPLS-DA) were performed to discriminate between argan oils from Essaouira, Taroudant, Tiznit, Chtouka-Aït Baha and Sidi Ifni.
    [Show full text]
  • A Technical Glance on Some Cosmetic Oils
    European Scientific Journal June 2014 /SPECIAL/ edition vol.2 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 A TECHNICAL GLANCE ON SOME COSMETİC OİLS Kenan Yildirim, PhD Department of Fiber and Polymer Engineering Faculty of Natural Sciences, Architecture and Engineering,Bursa Technical University Bursa, Turkiye A. Melek Kostem, MSc Tübitak-Butal Bursa Test and Analysis Laboratory, Bursa Turkiye Abstract The properties of molecular structure, thermal behavior and UVA protection of 10 types of healthy promoting oils which are argania, almond, apricot seed, and jojoba, wheat germ, and sesame seed, avocado, cocoa, carrot and grapes seed oils were studied. FT-IR analysis was used for molecular structure. DSC analysis was used for thermal behavior and UV analysis was used for UV, visible and IR light absorption. Molecular structure and thermal behavior of avocado and cocoa are different from the others. Contrary to the spectra of avocado and cocoa on which the peaks belongs to carboxylic acid very strong, the spectra of the others do not involve carboxylic acid strong peaks. Almond, wheat germ and apricot seed oil absorb all UVA before 350 nm wave length. The UV protection property of grapes seed and cocoa is very well. Protection of wheat germ, almond and apricot seed oils to UVA is well respectively. Absorption of IR rate change from 7% to 25% for carrot, apricot seed, wheat germ, argania, avocado and grapes seed respectively. Keywords: Cosmetic oils, thermal behavior, molecular structure, UV protection Practical applications Except avocado and cocoa oils the others may be used for production of inherently UV protection yarn. This type of yarn can be used for producing UV protection clothes.
    [Show full text]
  • ISTA List of Stabilised Plant Names 7Th Edition
    ISTA List of Stabilised Plant Names 7th Edition ISTA Nomenclature Committee Chair Dr. M. Schori Published by All rights reserved. No part of this publication may be The International Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted in Richtiarkade 18, CH- 8304 Wallisellen, Switzerland any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2021 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 Valid from: 16.06.2021 ISTA List of Stabilised Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 7th Edition 2 ISTA List of Stabilised Plant Names Table of Contents A .............................................................................................................................................................. 7 B ............................................................................................................................................................ 21 C ...........................................................................................................................................................
    [Show full text]
  • Argania Spinosa)
    plants Article Isolation and Functional Analysis of a PISTILLATA-like MADS-Box Gene from Argan Tree (Argania spinosa) Marwa Louati 1 , Blanca Salazar-Sarasua 2 , Edelín Roque 2, José Pío Beltrán 2, Amel Salhi Hannachi 1 and Concepción Gómez-Mena 2,* 1 Faculty of Sciences of Tunis, Campus Farhat Hached El Manar, University of Tunis El Manar, Tunis 2092, Tunisia; [email protected] (M.L.); [email protected] (A.S.H.) 2 Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] (B.S.-S.); [email protected] (E.R.); [email protected] (J.P.B.) * Correspondence: [email protected] Abstract: Argan trees (Argania spinosa) belong to a species native to southwestern Morocco, playing an important role in the environment and local economy. Argan oil extracted from kernels has a unique composition and properties. Argan trees were introduced in Tunisia, where hundreds of trees can be found nowadays. In this study, we examined reproductive development in Argan trees from four sites in Tunisia and carried out the functional characterization of a floral homeotic gene in this non-model species. Despite the importance of reproductive development, nothing is known about the genetic network controlling flower development in Argania spinosa. Results obtained in several plant species established that floral organ development is mostly controlled by MADS-box genes and, in particular, APETALA3 (AP3) and PISTILLATA (PI) homologs are required for proper petal and stamen identity. Here, we describe the isolation and functional characterization Citation: Louati, M.; Salazar-Sarasua, B.; Roque, E.; Beltrán, J.P.; Salhi of a MADS-box gene from Argania spinosa.
    [Show full text]
  • Facts and Misconceptions on the Palaearctic Existence of the Striped
    Mammalia 2017; aop Boris Kryštufek, Cătălin Stanciu, Danijel Ivajnšič*, Sidi Imad Cherkaoui and Franc Janžekovič Facts and misconceptions on the Palaearctic existence of the striped ground squirrel https://doi.org/10.1515/mammalia-2017-0060 echo the exclusive ecological requirements of species Received May 26, 2017; accepted July 27, 2017 and their evolutionary history in response to past eco- logical and geological processes (Lomolino et al. 2006). Abstract: The striped ground squirrel has a wide distri- Species’ ranges can be studied at various temporal and bution in the Ethiopian region but is restricted to a small spatial scales provided they are already documented. isolated area in Palaearctic Africa. This fragment was first Before a distributional map can be produced, data on recorded in the late 1940s in the Souss Valley (Morocco), spatial occurrence must be collected in the field. Despite however, not a single new observation has been published its obvious simplicity, field work constitutes a crucial step in the following decades. In September 2016 we surveyed and affects the consistency of analyses which may depend the Souss Valley and found squirrels at 43 sites within upon sophisticated tools and concepts. Incomplete or the triangle between Agadir–Taroudant–Tiznit. Occupied misleading distributional data will unavoidably compro- sites were not distributed at random but occurred between mise subsequent analyses and assessments. an altitude of 45–254 m and on a substrate with coarse tex- In this study we have addressed the only Palaearctic ture containing >65% sand. The vast majority of the sites occurrence of the striped ground squirrel Euxerus with squirrels (69%) were classified as suburban, culti- erythropus (Geoffroy Saint-Hilaire 1803) (formerly Xerus vated or both.
    [Show full text]
  • CIRCULAR Issue No
    FDACS-P-01915 CIRCULAR Issue No. 40 | October 2018 Florida Department of Agriculture and Consumer Services Division of Plant Industry The Buckthorns (Genus Sideroxylon): An Underappreciated Group of Florida Native Plants Paul T. Corogin; Bureau of Entomology, Nematology and Plant Pathology [email protected] or 1-888-397-1517 INTRODUCTION Tucked away amongst the rich diversity of Florida plant life surrounding us, one plant group can easily escape our notice: the genus Sideroxylon, belonging to the pantropical family Sapotaceae (sapodilla family). This circular will introduce the Sideroxylon species native to North America, featuring in detail species adapted to the temperate zone that may be of interest to the southern United States (U.S.). Some are endangered in Florida, and some are Florida endemics. Certain species have landscaping potential, but have long been ignored, but a few species are occasionally available from native plant nurseries (Betrock’s Plant Search 2018; FNPS 2018). Species of Sideroxylon attract pollinators when blooming, and birds and wildlife when fruiting; thus, they can be desirable additions to any Florida landscape. Sapotaceae are recognized by the presence of milky sap, brownish T-shaped hairs, fasciculate inflorescences (flowers in a bundle) and seeds with a large scar at one end (Pennington 1990, 1991). This woody family makes a large contribution to tropical plant biodiversity, being a major floristic component of tropical lowland wet forests in the Americas, Asia, Africa and the Pacific Islands (Gentry 1988). Sapotaceous plants are also economically important to humans. “Sapote” comes from the Nahuatl word meaning sweet fruit; most species bear such a fruit (e.g., the sapodilla and mamey sapote) (Smith et al.
    [Show full text]