An Investigation of the Median-Median Method of Linear Regression

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation of the Median-Median Method of Linear Regression 2003 Joint Statistical Meetings - Section on Statistical Education AN INVESTIGATION OF THE MEDIAN-MEDIAN METHOD OF LINEAR REGRESSION Elizabeth J. Walters, Christopher H. Morrell, and Richard E Auer Mathematical Sciences Department, Loyola College in Maryland 4501 North Charles Street, Baltimore, MD 21210-2699 [email protected] Keywords: Linear regression; Median-median line; Least squares line 1. Introduction what is called the median-median line, on the other hand, is not so well known or understood. Statistics education has been impacted greatly by This paper considers the performance of these two two trends. One trend is the continual advancement in line-fitting techniques as an aide to budding statisticians and computer technology that has systematically increased the their teachers as they encounter exploratory data analysis. power and refinement of statistical data analysis. In the We intend to illuminate the behavior of the relatively 1960's, main frame computers revolutionized statistical unknown median-median line with several data sets and methodology. During the 1970's, personal computers placed through a small simulation study. Readers may also computing capability right on the desks of individual compare how the median-median line reacts in various data researchers. This evolution has continued to progress and settings to the performance of the least squares line. now grammar school students learn data skills literally in the palm of their hands using graphing calculators. 2. Historical Evolution of the Median-Median Line The second trend is the extension of statistics courses earlier in students’ education. Younger students are The Median-Median Line traces back to a line- being exposed to the question of what truths lurk beneath fitting approach proposed by Wald (1940). He suggested a the surface of data. These students are now being trained to very simple method where the points on a scatterplot are use statistics as the primary tool for researching any topic separated into a left half and a right half based on the within any field. median of the x-scores in a sample of bivariate data. The Evidence of both trends are seen when elementary means of the x-scores and the y-scores are calculated using and secondary school students use graphing calculators to the data from only the left half of the scatterplot and then perform data analysis on exams and homework assignments. calculated using only the data on the right half. Much of the early statistical training is being accomplished Concentrating on the two points, (), yx RR and ( ,,yx LL ) by teaching the basics of what has been termed exploratory Wald proposed finding a line connecting these points that is data analysis. then adjusted up or down to better fit the full array of points As the first pioneer in exploratory data analysis, on the scatterplot. (The subscripts R and L denote which Tukey (1971, p. v.) effectively defined it as looking at data half of the data is used and no subscript implies the means to see what it seems to say. It concentrates on simple are taken over the entire sample.) His line of fit has slope arithmetic and easy-to-draw pictures. It regards whatever = ( − ) ( − xxyyb ) and y-intercept = − xbya . appearances we have recognized as partial descriptions, and LRLR tries to look beneath them for new insights. In his A similar procedure suggested by Nair and recommendations for what type of activity belongs in Shrivastava (1942) breaks up the points on a scatterplot into introductory statistics coursework, Hahn (1988, p. 27) said: three regions with each region containing about the same “When we get to data analysis, we should stress graphical number of points. The x and y means of the points in the methods or exploratory data analysis, over formal statistical left and right regions are then used to find the slope of the procedures.” Cobb and Moore (1997, p. 815) echoed the line of fit much as Wald suggested. sentiments of Hahn saying: “Students like exploratory Brown and Mood (1951) used the two-region analysis and find that they can do it, a substantial bonus approach but found the slope of the line of fit using medians when teaching a subject feared by many. Engaging them in place of means. The primary advantage of using this early on in the interpretation of results, before the harder measure of center comes from the median’s inherent ability ideas come to their attention, can help establish good habits to resist the strong effect of outliers. Most students of when you get to inference.” statistics know that the mean is greatly impacted by outlier Often, one major goal of young statisticians as they cases since they are included with equal weight with the rest learn exploratory data analysis is studying the relationship of the data in the sum of the scores. But the median takes on between variables. When the data is bivariate in two the same value whether the largest score in a data set is just numerical variables, this usually involves fitting a straight somewhat larger than the rest of the data or is much larger line through points on a scatterplot. The graphing calculator than the second biggest score. In the context of fitting is programmed with two methods of line-fitting for bivariate points on a scatterplot, this implies that a single point far data. One method, fitting the least squares line, is a from the general sloping trend of the rest of the points would procedure well-studied and routinely applied. But finding not apply such a large “tug” on the location of the line of fit if the median is used to find the line. 4419 2003 Joint Statistical Meetings - Section on Statistical Education 80 Readers may recall that the least squares line is 70 found by minimizing the sum of the squared distances that 60 each point lies from the line. Since these distances are 50 squared, Hartwig and Dearing (1979, p. 34) noted that 40 “cases lying farther and farther from the regression line 30 increase the sum of the squared residuals at an increasing rate....[and the line] will have to come reasonably close to manatees killed 20 them to satisfy the least squares criterion and, therefore, the 10 least squares regression line will lack resistance to the 0 excessive influence of a few atypical cases.” This means 45 55 65 75 85 that Brown and Mood’s method is not only simple to apply, boat registrations (in 10,000s) but also has the advantage of not allowing outlying cases to have undue impact on determining the line of fit. Figure 1. Scatterplot of manatees killed by powerboats Like Brown and Mood, Tukey (1971) utilized the versus number of boat registrations. medians in finding his line of fit, but he did so borrowing ───── Median-Median the three region approach of Nair and Shrivastava. His line ── ── ── Least Squares of fit, called the resistant line, is considered a basic methodology of exploratory data analysis. And it is Tukey’s resistant line that serves as the basis for the graphing II. A scatterplot of scores on a test of mental aptitude calculator’s median-median line. (Gesell Adaptive Test) versus age at first word, for 21 For young statisticians who wish to learn more children (Moore & McCabe, 1999, p 149), shows a about the broad methodology of exploratory data analysis, moderate negative correlation (r = -0.640, p=0.002). Three Velleman and Hoaglin (1981) offer a gentle review of the points in this scatterplot are notable. Two children (*) entire subject. To learn more about the median-median line began speaking at a much later age than the rest of the at a more sophisticated mathematical level, readers are children. Another child (°) scored much higher than we encouraged to consider Emerson and Hoaglin (1983) and would expect, given his age at first word. The scatterplot in Johnstone and Velleman (1985). Figure 2 compares the median-median line to two least- We now offer the reader a relatively simple study squares lines: one for the entire set of data, and the other of the comparative performance of the median-median line without the data for the latest-speaking child. Omitting the and the least squares line. data for the unusually high-scoring child increases the strength of the sample correlation but does not noticeably 3. Examples change the equation of the least-squares line; thus, that line is not included in the scatterplot. I. An investigation of the relationship between the number of manatees killed by boats in Florida and the number of powerboat registrations in that state, from 1977 to 2000 110 (Moore, 1997, p 347; Triola, 2004, p 495), shows a strong 100 positive correlation with no obvious outliers or influential points (r = 0.945, p<0.001). The median-median and least- 90 squares lines have similar equations, as is evident from the 80 scatterplot below (Figure 1). Gesell score 70 60 50 0 10 20 30 40 50 age (months) Figure 2. Scatterplot of Gesell Adaptive Score versus Age at Which Child Began Speaking. ───── Median-Median, ── ── ── Least Squares, ── ─ ── ─ Least Squares w/o influential observation. 4420 2003 Joint Statistical Meetings - Section on Statistical Education III. A paper titled “The Relation Between Freely Chosen Outlier Generation Description Meals and Body Habits” (Amer. J. Clinical Nutrition a) No outliers No outliers (1983): 32-40) reports on the relationship between diet and b) Y = 0 + 1X + 5|ε | One high outlier in the body build. In particular, the researchers were interested in 13 13 13 middle of the middle determining how the energy intake in one’s diet is related to group.
Recommended publications
  • Simple Linear Regression with Least Square Estimation: an Overview
    Aditya N More et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2394-2396 Simple Linear Regression with Least Square Estimation: An Overview Aditya N More#1, Puneet S Kohli*2, Kshitija H Kulkarni#3 #1-2Information Technology Department,#3 Electronics and Communication Department College of Engineering Pune Shivajinagar, Pune – 411005, Maharashtra, India Abstract— Linear Regression involves modelling a relationship amongst dependent and independent variables in the form of a (2.1) linear equation. Least Square Estimation is a method to determine the constants in a Linear model in the most accurate way without much complexity of solving. Metrics where such as Coefficient of Determination and Mean Square Error is the ith value of the sample data point determine how good the estimation is. Statistical Packages is the ith value of y on the predicted regression such as R and Microsoft Excel have built in tools to perform Least Square Estimation over a given data set. line The above equation can be geometrically depicted by Keywords— Linear Regression, Machine Learning, Least Squares Estimation, R programming figure 2.1. If we draw a square at each point whose length is equal to the absolute difference between the sample data point and the predicted value as shown, each of the square would then represent the residual error in placing the I. INTRODUCTION regression line. The aim of the least square method would Linear Regression involves establishing linear be to place the regression line so as to minimize the sum of relationships between dependent and independent variables.
    [Show full text]
  • Generalized Linear Models
    Generalized Linear Models Advanced Methods for Data Analysis (36-402/36-608) Spring 2014 1 Generalized linear models 1.1 Introduction: two regressions • So far we've seen two canonical settings for regression. Let X 2 Rp be a vector of predictors. In linear regression, we observe Y 2 R, and assume a linear model: T E(Y jX) = β X; for some coefficients β 2 Rp. In logistic regression, we observe Y 2 f0; 1g, and we assume a logistic model (Y = 1jX) log P = βT X: 1 − P(Y = 1jX) • What's the similarity here? Note that in the logistic regression setting, P(Y = 1jX) = E(Y jX). Therefore, in both settings, we are assuming that a transformation of the conditional expec- tation E(Y jX) is a linear function of X, i.e., T g E(Y jX) = β X; for some function g. In linear regression, this transformation was the identity transformation g(u) = u; in logistic regression, it was the logit transformation g(u) = log(u=(1 − u)) • Different transformations might be appropriate for different types of data. E.g., the identity transformation g(u) = u is not really appropriate for logistic regression (why?), and the logit transformation g(u) = log(u=(1 − u)) not appropriate for linear regression (why?), but each is appropriate in their own intended domain • For a third data type, it is entirely possible that transformation neither is really appropriate. What to do then? We think of another transformation g that is in fact appropriate, and this is the basic idea behind a generalized linear model 1.2 Generalized linear models • Given predictors X 2 Rp and an outcome Y , a generalized linear model is defined by three components: a random component, that specifies a distribution for Y jX; a systematic compo- nent, that relates a parameter η to the predictors X; and a link function, that connects the random and systematic components • The random component specifies a distribution for the outcome variable (conditional on X).
    [Show full text]
  • Lecture 18: Regression in Practice
    Regression in Practice Regression in Practice ● Regression Errors ● Regression Diagnostics ● Data Transformations Regression Errors Ice Cream Sales vs. Temperature Image source Linear Regression in R > summary(lm(sales ~ temp)) Call: lm(formula = sales ~ temp) Residuals: Min 1Q Median 3Q Max -74.467 -17.359 3.085 23.180 42.040 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -122.988 54.761 -2.246 0.0513 . temp 28.427 2.816 10.096 3.31e-06 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 35.07 on 9 degrees of freedom Multiple R-squared: 0.9189, Adjusted R-squared: 0.9098 F-statistic: 101.9 on 1 and 9 DF, p-value: 3.306e-06 Some Goodness-of-fit Statistics ● Residual standard error ● R2 and adjusted R2 ● F statistic Anatomy of Regression Errors Image Source Residual Standard Error ● A residual is a difference between a fitted value and an observed value. ● The total residual error (RSS) is the sum of the squared residuals. ○ Intuitively, RSS is the error that the model does not explain. ● It is a measure of how far the data are from the regression line (i.e., the model), on average, expressed in the units of the dependent variable. ● The standard error of the residuals is roughly the square root of the average residual error (RSS / n). ○ Technically, it’s not √(RSS / n), it’s √(RSS / (n - 2)); it’s adjusted by degrees of freedom. R2: Coefficient of Determination ● R2 = ESS / TSS ● Interpretations: ○ The proportion of the variance in the dependent variable that the model explains.
    [Show full text]
  • Chapter 2 Simple Linear Regression Analysis the Simple
    Chapter 2 Simple Linear Regression Analysis The simple linear regression model We consider the modelling between the dependent and one independent variable. When there is only one independent variable in the linear regression model, the model is generally termed as a simple linear regression model. When there are more than one independent variables in the model, then the linear model is termed as the multiple linear regression model. The linear model Consider a simple linear regression model yX01 where y is termed as the dependent or study variable and X is termed as the independent or explanatory variable. The terms 0 and 1 are the parameters of the model. The parameter 0 is termed as an intercept term, and the parameter 1 is termed as the slope parameter. These parameters are usually called as regression coefficients. The unobservable error component accounts for the failure of data to lie on the straight line and represents the difference between the true and observed realization of y . There can be several reasons for such difference, e.g., the effect of all deleted variables in the model, variables may be qualitative, inherent randomness in the observations etc. We assume that is observed as independent and identically distributed random variable with mean zero and constant variance 2 . Later, we will additionally assume that is normally distributed. The independent variables are viewed as controlled by the experimenter, so it is considered as non-stochastic whereas y is viewed as a random variable with Ey()01 X and Var() y 2 . Sometimes X can also be a random variable.
    [Show full text]
  • 1 Simple Linear Regression I – Least Squares Estimation
    1 Simple Linear Regression I – Least Squares Estimation Textbook Sections: 18.1–18.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and variance σ2. We have seen that we can write x in terms of µ and a random error component ε, that is, x = µ + ε. For the time being, we are going to change our notation for our random variable from x to y. So, we now write y = µ + ε. We will now find it useful to call the random variable y a dependent or response variable. Many times, the response variable of interest may be related to the value(s) of one or more known or controllable independent or predictor variables. Consider the following situations: LR1 A college recruiter would like to be able to predict a potential incoming student’s first–year GPA (y) based on known information concerning high school GPA (x1) and college entrance examination score (x2). She feels that the student’s first–year GPA will be related to the values of these two known variables. LR2 A marketer is interested in the effect of changing shelf height (x1) and shelf width (x2)on the weekly sales (y) of her brand of laundry detergent in a grocery store. LR3 A psychologist is interested in testing whether the amount of time to become proficient in a foreign language (y) is related to the child’s age (x). In each case we have at least one variable that is known (in some cases it is controllable), and a response variable that is a random variable.
    [Show full text]
  • Linear Regression Using Stata (V.6.3)
    Linear Regression using Stata (v.6.3) Oscar Torres-Reyna [email protected] December 2007 http://dss.princeton.edu/training/ Regression: a practical approach (overview) We use regression to estimate the unknown effect of changing one variable over another (Stock and Watson, 2003, ch. 4) When running a regression we are making two assumptions, 1) there is a linear relationship between two variables (i.e. X and Y) and 2) this relationship is additive (i.e. Y= x1 + x2 + …+xN). Technically, linear regression estimates how much Y changes when X changes one unit. In Stata use the command regress, type: regress [dependent variable] [independent variable(s)] regress y x In a multivariate setting we type: regress y x1 x2 x3 … Before running a regression it is recommended to have a clear idea of what you are trying to estimate (i.e. which are your outcome and predictor variables). A regression makes sense only if there is a sound theory behind it. 2 PU/DSS/OTR Regression: a practical approach (setting) Example: Are SAT scores higher in states that spend more money on education controlling by other factors?* – Outcome (Y) variable – SAT scores, variable csat in dataset – Predictor (X) variables • Per pupil expenditures primary & secondary (expense) • % HS graduates taking SAT (percent) • Median household income (income) • % adults with HS diploma (high) • % adults with college degree (college) • Region (region) *Source: Data and examples come from the book Statistics with Stata (updated for version 9) by Lawrence C. Hamilton (chapter 6). Click here to download the data or search for it at http://www.duxbury.com/highered/.
    [Show full text]
  • Linear Regression in Matrix Form
    Statistics 512: Applied Linear Models Topic 3 Topic Overview This topic will cover • thinking in terms of matrices • regression on multiple predictor variables • case study: CS majors • Text Example (KNNL 236) Chapter 5: Linear Regression in Matrix Form The SLR Model in Scalar Form iid 2 Yi = β0 + β1Xi + i where i ∼ N(0,σ ) Consider now writing an equation for each observation: Y1 = β0 + β1X1 + 1 Y2 = β0 + β1X2 + 2 . Yn = β0 + β1Xn + n TheSLRModelinMatrixForm Y1 β0 + β1X1 1 Y2 β0 + β1X2 2 . = . + . . . . Yn β0 + β1Xn n Y X 1 1 1 1 Y X 2 1 2 β0 2 . = . + . . . β1 . Yn 1 Xn n (I will try to use bold symbols for matrices. At first, I will also indicate the dimensions as a subscript to the symbol.) 1 • X is called the design matrix. • β is the vector of parameters • is the error vector • Y is the response vector The Design Matrix 1 X1 1 X2 Xn×2 = . . 1 Xn Vector of Parameters β0 β2×1 = β1 Vector of Error Terms 1 2 n×1 = . . n Vector of Responses Y1 Y2 Yn×1 = . . Yn Thus, Y = Xβ + Yn×1 = Xn×2β2×1 + n×1 2 Variance-Covariance Matrix In general, for any set of variables U1,U2,... ,Un,theirvariance-covariance matrix is defined to be 2 σ {U1} σ{U1,U2} ··· σ{U1,Un} . σ{U ,U } σ2{U } ... σ2{ } 2 1 2 . U = . . .. .. σ{Un−1,Un} 2 σ{Un,U1} ··· σ{Un,Un−1} σ {Un} 2 where σ {Ui} is the variance of Ui,andσ{Ui,Uj} is the covariance of Ui and Uj.
    [Show full text]
  • Reading 25: Linear Regression
    Linear regression Class 25, 18.05 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Be able to use the method of least squares to fit a line to bivariate data. 2. Be able to give a formula for the total squared error when fitting any type of curve to data. 3. Be able to say the words homoscedasticity and heteroscedasticity. 2 Introduction Suppose we have collected bivariate data (xi; yi), i = 1; : : : ; n. The goal of linear regression is to model the relationship between x and y by finding a function y = f(x) that is a close fit to the data. The modeling assumptions we will use are that xi is not random and that yi is a function of xi plus some random noise. With these assumptions x is called the independent or predictor variable and y is called the dependent or response variable. Example 1. The cost of a first class stamp in cents over time is given in the following list. .05 (1963) .06 (1968) .08 (1971) .10 (1974) .13 (1975) .15 (1978) .20 (1981) .22 (1985) .25 (1988) .29 (1991) .32 (1995) .33 (1999) .34 (2001) .37 (2002) .39 (2006) .41 (2007) .42 (2008) .44 (2009) .45 (2012) .46 (2013) .49 (2014) Using the R function lm we found the ‘least squares fit’ for a line to this data is y = −0:06558 + 0:87574x; where x is the number of years since 1960 and y is in cents. Using this result we ‘predict’ that in 2016 (x = 56) the cost of a stamp will be 49 cents (since −0:06558 + 0:87574x · 56 = 48:98).
    [Show full text]
  • Lecture 2: Linear Regression
    Lecture 2: Linear regression Roger Grosse 1 Introduction Let's jump right in and look at our first machine learning algorithm, linear regression. In regression, we are interested in predicting a scalar-valued target, such as the price of a stock. By linear, we mean that the target must be predicted as a linear function of the inputs. This is a kind of supervised learning algorithm; recall that, in supervised learning, we have a collection of training examples labeled with the correct outputs. Regression is an important problem in its own right. But today's dis- cussion will also highlight a number of themes which will recur throughout the course: • Formulating a machine learning task mathematically as an optimiza- tion problem. • Thinking about the data points and the model parameters as vectors. • Solving the optimization problem using two different strategies: deriv- ing a closed-form solution, and applying gradient descent. These two strategies are how we will derive nearly all of the learning algorithms in this course. • Writing the algorithm in terms of linear algebra, so that we can think about it more easily and implement it efficiently in a high-level pro- gramming language. • Making a linear algorithm more powerful using basis functions, or features. • Analyzing the generalization performance of an algorithm, and in par- ticular the problems of overfitting and underfitting. 1.1 Learning goals • Know what objective function is used in linear regression, and how it is motivated. • Derive both the closed-form solution and the gradient descent updates for linear regression. • Write both solutions in terms of matrix and vector operations.
    [Show full text]
  • Chapter 11 Autocorrelation
    Chapter 11 Autocorrelation One of the basic assumptions in the linear regression model is that the random error components or disturbances are identically and independently distributed. So in the model y Xu , it is assumed that 2 u ifs 0 Eu(,tts u ) 0 if0s i.e., the correlation between the successive disturbances is zero. 2 In this assumption, when Eu(,tts u ) u , s 0 is violated, i.e., the variance of disturbance term does not remain constant, then the problem of heteroskedasticity arises. When Eu(,tts u ) 0, s 0 is violated, i.e., the variance of disturbance term remains constant though the successive disturbance terms are correlated, then such problem is termed as the problem of autocorrelation. When autocorrelation is present, some or all off-diagonal elements in E(')uu are nonzero. Sometimes the study and explanatory variables have a natural sequence order over time, i.e., the data is collected with respect to time. Such data is termed as time-series data. The disturbance terms in time series data are serially correlated. The autocovariance at lag s is defined as sttsEu( , u ); s 0, 1, 2,... At zero lag, we have constant variance, i.e., 22 0 Eu()t . The autocorrelation coefficient at lag s is defined as Euu()tts s s ;s 0,1,2,... Var() utts Var ( u ) 0 Assume s and s are symmetrical in s , i.e., these coefficients are constant over time and depend only on the length of lag s . The autocorrelation between the successive terms (and)uu21, (and),....uu32 (and)uunn1 gives the autocorrelation of order one, i.e., 1 .
    [Show full text]
  • A Bayesian Treatment of Linear Gaussian Regression
    A Bayesian Treatment of Linear Gaussian Regression Frank Wood December 3, 2009 Bayesian Approach to Classical Linear Regression In classical linear regression we have the following model yjβ; σ2; X ∼ N(Xβ; σ2I) Unfortunately we often don't know the observation error σ2 and, as well, we don't know the vector of linear weights β that relates the input(s) to the output. In Bayesian regression, we are interested in several inference objectives. One is the posterior distribution of the model parameters, in particular the posterior distribution of the observation error variance given the inputs and the outputs. P(σ2jX; y) Posterior Distribution of the Error Variance Of course in order to derive P(σ2jX; y) We have to treat β as a nuisance parameter and integrate it out Z P(σ2jX; y) = P(σ2; βjX; y)dβ Z = P(σ2jβ; X; y)P(βjX; y)dβ Predicting a New Output for a (set of) new Input(s) Of particular interest is the ability to predict the distribution of output values for a new input P(ynew jX; y; Xnew ) Here we have to treat both σ2 and β as a nuisance parameters and integrate them out P(ynew jX; y; Xnew ) ZZ 2 2 2 = P(ynew jβ; σ )P(σ jβ; X; y)P(βjX; y)dβ; dσ Noninformative Prior for Classical Regression For both objectives, we need to place a prior on the model parameters σ2 and β. We will choose a noninformative prior to demonstrate the connection between the Bayesian approach to multiple regression and the classical approach.
    [Show full text]
  • Linear Regression and Correlation
    NCSS Statistical Software NCSS.com Chapter 300 Linear Regression and Correlation Introduction Linear Regression refers to a group of techniques for fitting and studying the straight-line relationship between two variables. Linear regression estimates the regression coefficients β0 and β1 in the equation Yj = β0 + β1 X j + ε j where X is the independent variable, Y is the dependent variable, β0 is the Y intercept, β1 is the slope, and ε is the error. In order to calculate confidence intervals and hypothesis tests, it is assumed that the errors are independent and normally distributed with mean zero and variance σ 2 . Given a sample of N observations on X and Y, the method of least squares estimates β0 and β1 as well as various other quantities that describe the precision of the estimates and the goodness-of-fit of the straight line to the data. Since the estimated line will seldom fit the data exactly, a term for the discrepancy between the actual and fitted data values must be added. The equation then becomes y j = b0 + b1x j + e j = y j + e j 300-1 © NCSS, LLC. All Rights Reserved. NCSS Statistical Software NCSS.com Linear Regression and Correlation where j is the observation (row) number, b0 estimates β0 , b1 estimates β1 , and e j is the discrepancy between the actual data value y j and the fitted value given by the regression equation, which is often referred to as y j . This discrepancy is usually referred to as the residual. Note that the linear regression equation is a mathematical model describing the relationship between X and Y.
    [Show full text]