Biostratigraphy of the Early Middle Pleistocene of the Southern Fore-Urals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Quaternary Reptilian Fauna of Bashkortostan (South Urals, Russia)
©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA 19 (3/4): 99 - 110 99 Wien, 30. Jänner 2007 On the Quaternary reptilian fauna of Bashkortostan (South Urals, Russia) Zur Quartären Reptilienfauna von Baschkortostan (Südural, Rußland) VlNER KHABIBULLIN KURZFASSUNG Die Geschichte der quartären Reptilienfauna von Baschkortostan (Südural, Rußland) wird im Zusammen- hang mit einem kurzen Überblick zur Entwicklung des Klimas, der Landschaften und der Vegetation dargestellt. Fünf Reptilienarten {Lacerta agilis, Anguis fragilis, Lacerta vivipara, Natrix natrix, Vipera berus) sind für das Spätquartär des Untersuchungsgebietes anhand von Fossilbelegen nachgewiesen. Die neuzeitliche Herpetofauna des Urals begann sich im späteren Pliozän herauszubilden. Die gegenwärtige Reptilfauna entwickelte sich im mitt- leren Holozän, mit der Rückkehr der Reptilien aus den eiszeitlichen Refugialräumen. Die Gebirgsketten des Urals sowie die Tätigkeit des Menschen hatten auf die Ausbildung der gegenwärtigen Kriechtierfauna der Region keinen bedeutenden Einfluß. ABSTRACT The history of the Quaternary reptilian fauna of Bashkortostan (South Urals, Russia) is described and the development of climate, landscapes and vegetation are briefly reviewed. Five late Quaternary fossil reptile species {Lacerta agilis, Anguis fragilis, Lacerta vivipara, Natrix natrix, Vipera berus) had been identified for the region. The modern herpetofauna of the Urals started to form approximately in the Late Pliocene. In the -
A New Euselachian Shark from the Early Permian of the Middle Urals, Russia
A new euselachian shark from the early Permian of the Middle Urals, Russia ALEXANDER O. IVANOV, CHRISTOPHER J. DUFFIN, and SERGE V. NAUGOLNYKH Ivanov , A.O., Duffin, C.J., and Naugolnykh, S.V. 2017. A new euselachian shark from the early Permian of the Middle Urals, Russia. Acta Palaeontologica Polonica 62 (2): 289–298. The isolated teeth of a new euselachian shark Artiodus prominens Ivanov and Duffin gen. et sp. nov. have been found in the Artinskian Stage (Early Permian) of Krasnoufimskie Klyuchiki quarry (Sverdlovsk Region, Middle Urals, Russia). The teeth of Artiodus possess a multicuspid orthodont crown with from four to nine triangular cusps; prominent labial projection terminating in a large round tubercle; distinct ornamentation from straight or recurved cristae; oval or semilu- nar, elongate, considerably vascularized base; dense vascular network formed of transverse horizontal, ascending, short secondary and semicircular canals. The teeth of the new taxon otherwise most closely resemble the teeth of some prot- acrodontid and sphenacanthid euselachians possessing a protacrodont-type crown, but differ from the teeth of all other known euselachians in the unique structure of the labial projection. The studied teeth vary in crown and base morphol- ogy, and three tooth morphotypes can be distinguished in the collection reflecting a moderate degree of linear gradient monognathic heterodonty. The range of morphologies otherwise displayed by the collection of teeth shows the greatest similarity to that described for the dentitions of relatively high-crowned hybodontids from the Mesozoic. The internal structure of the teeth, including their vascularization system is reconstructed using microtomography. The highest chon- drichthyan taxonomic diversity is found in the Artinskian, especially from the localities of the Middle and South Urals. -
Official Application Dossier for the Accession to the Global Geoparks Network
OFFICIAL APPLICATION DOSSIER FOR THE ACCESSION TO THE GLOBAL GEOPARKS NETWORK YANGAN-TAU GEOPARK (Yangantau, Republic of Bashkortostan, Russian Federation) November 2017 CONTENTS CONTENTS .................................................................................................................................... 2 А. IDENTIFICATION OF THE AREA ........................................................................................ 4 А.1. NAME OF THE PROPOSED GEOPARK .......................................................................... 4 А.2. LOCATION OF THE PROPOSED GEOPARK ................................................................. 4 A.3. SURFACE AREA, PHYSICAL AND HUMAN GEOGRAPHY CHARACTERISTICS OF THE PROPOSED GEOPARK .............................................................................................. 5 А.3.1. Geopark square area ...................................................................................................... 5 А.3.2. Physical geography ....................................................................................................... 5 А.3.3. Social-economic geography .......................................................................................... 6 А.4. ORGANIZATION IN CHARGE AND MANAGEMENT STRUCTURE OF THE PROPOSED GEOPARK ............................................................................................................. 7 А.4.1. Governing board ............................................................................................................ 7 A. -
Contribution to the Knowledge of the Fauna of Bombyces, Sphinges And
driemaandelijks tijdschrift van de VLAAMSE VERENIGING VOOR ENTOMOLOGIE Afgiftekantoor 2170 Merksem 1 ISSN 0771-5277 Periode: oktober – november – december 2002 Erkenningsnr. P209674 Redactie: Dr. J–P. Borie (Compiègne, France), Dr. L. De Bruyn (Antwerpen), T. C. Garrevoet (Antwerpen), B. Goater (Chandlers Ford, England), Dr. K. Maes (Gent), Dr. K. Martens (Brussel), H. van Oorschot (Amsterdam), D. van der Poorten (Antwerpen), W. O. De Prins (Antwerpen). Redactie-adres: W. O. De Prins, Nieuwe Donk 50, B-2100 Antwerpen (Belgium). e-mail: [email protected]. Jaargang 30, nummer 4 1 december 2002 Contribution to the knowledge of the fauna of Bombyces, Sphinges and Noctuidae of the Southern Ural Mountains, with description of a new Dichagyris (Lepidoptera: Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae, Arctiidae) Kari Nupponen & Michael Fibiger [In co-operation with Vladimir Olschwang, Timo Nupponen, Jari Junnilainen, Matti Ahola and Jari- Pekka Kaitila] Abstract. The list, comprising 624 species in the families Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae and Arctiidae from the Southern Ural Mountains is presented. The material was collected during 1996–2001 in 10 different expeditions. Dichagyris lux Fibiger & K. Nupponen sp. n. is described. 17 species are reported for the first time from Europe: Clostera albosigma (Fitch, 1855), Xylomoia retinax Mikkola, 1998, Ecbolemia misella (Püngeler, 1907), Pseudohadena stenoptera Boursin, 1970, Hadula nupponenorum Hacker & Fibiger, 2002, Saragossa uralica Hacker & Fibiger, 2002, Conisania arida (Lederer, 1855), Polia malchani (Draudt, 1934), Polia vespertilio (Draudt, 1934), Polia altaica (Lederer, 1853), Mythimna opaca (Staudinger, 1899), Chersotis stridula (Hampson, 1903), Xestia wockei (Möschler, 1862), Euxoa dsheiron Brandt, 1938, Agrotis murinoides Poole, 1989, Agrotis sp. -
River Runoff Variability at Watercourses of the Ural River Basin
E3S Web of Conferences 163, 05002 (2020) https://doi.org/10.1051/e3sconf/202016305002 IV Vinogradov Conference River runoff variability at watercourses of the Ural river basin Regina Fatkhutdinova*, Diana Gareeva Bashkir State University, Zaki Validi 32, 450076, Ufa, Russia Abstract. The article is devoted to spatial and temporal variabilities of the river runoff on the example of the river Ural within the territory of the Russian Federation. The author points out the necessity of investigating fluctuations in the water resources of a transboundary river for the purposes of long-term water management planning. Using the coefficient of variation and asymmetry, the annual runoff variability is analyzed. 1 Introduction The rational use of water resources requires reliable data on the long-term variability of the quantitative characteristics of the river runoff. In this respect, it becomes necessary to conduct research on studying the multiannual runoff dynamics of individual river systems. Given the increasing volumes of water consumption, special relevance is attributed to identifying the trends in river runoff variations. While determining long-term changes in the water content, special attention is paid to the annual and maximum discharges [1]. The annual average throughflow values are used for identifying the river runoff rate, which serves as the basis of long-term water management planning. The data related to the absolute values of the maximum throughflow is needed primarily for preventing negative implications – the formation of floods, the water-logging of settlements, and the damaging of hydrotechnic facilities. The subject of research comprises the selected segments of the upper and middle reaches of the river Ural, including the meridional section within the Republic of Bashkortostan and the Chelyabinsk Region (the upper reaches of the river Ural) and the latitudinal section of the river in the Orenburg Region (the middle reaches). -
Early Devonian Suprasubduction Ophiolites of the Southern Urals A
ISSN 00168521, Geotectonics, 2010, Vol. 44, No. 4, pp. 321–343. © Pleiades Publishing, Inc., 2010. Original Russian Text © A.A. Belova, A.V. Ryazantsev, A.A. Razumovsky, K.E. Degtyarev, 2010, published in Geotektonika, 2010, Vol. 44, No. 4, pp. 39–64. Early Devonian Suprasubduction Ophiolites of the Southern Urals A. A. Belovaa, b, A. V. Ryazantseva, A. A. Razumovskya, and K. E. Degtyareva a Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia b Faculty of Geology, Moscow State University, Moscow, 119991 Russia email: [email protected] Received January 25, 2010 Abstract—The composition of ophiolites widespread in the southern Urals shows that they were formed in a suprasubduction setting. LowTi and highMg sheeted dikes and volcanic rocks vary from basalt to andesite, and many varieties belong to boninite series. The rocks of this type extend as a 600km tract. The volcanic rocks contain chert interbeds with Emsian conodonts. Plagiogranites localized at the level of the sheeted dike complex and related to this complex genetically are dated at 400 Ma. The ophiolites make up a base of thick island arc volcanic sequence. The composition of the igneous rocks and the parameters of their metamorphism indicate that subduction and ascent of a mantle plume participated in their formation. The nonstationary subduction at the intraoceanic convergent plate boundary developed, at least, from the Middle Ordovician. DOI: 10.1134/S0016852110040035 INTRODUCTION differ from the Devonian counterpart in geochemistry. Subductionrelated ophiolites are widesperad in In some places, ophiolites differing in age and compo the Paleozoides of the southern Urals. Sheeted dikes sition converge and intercalate. -
2018 FIFA WORLD CUP RUSSIA'n' WATERWAYS
- The 2018 FIFA World Cup will be the 21st FIFA World Cup, a quadrennial international football tournament contested by the men's national teams of the member associations of FIFA. It is scheduled to take place in Russia from 14 June to 15 July 2018,[2] 2018 FIFA WORLD CUP RUSSIA’n’WATERWAYS after the country was awarded the hosting rights on 2 December 2010. This will be the rst World Cup held in Europe since 2006; all but one of the stadium venues are in European Russia, west of the Ural Mountains to keep travel time manageable. - The nal tournament will involve 32 national teams, which include 31 teams determined through qualifying competitions and Routes from the Five Seas 14 June - 15 July 2018 the automatically quali ed host team. A total of 64 matches will be played in 12 venues located in 11 cities. The nal will take place on 15 July in Moscow at the Luzhniki Stadium. - The general visa policy of Russia will not apply to the World Cup participants and fans, who will be able to visit Russia without a visa right before and during the competition regardless of their citizenship [https://en.wikipedia.org/wiki/2018_FIFA_World_Cup]. IDWWS SECTION: Rybinsk – Moscow (433 km) Barents Sea WATERWAYS: Volga River, Rybinskoye, Ughlichskoye, Ivan’kovskoye Reservoirs, Moscow Electronic Navigation Charts for Russian Inland Waterways (RIWW) Canal, Ikshinskoye, Pestovskoye, Klyaz’minskoye Reservoirs, Moskva River 600 MOSCOW Luzhniki Arena Stadium (81.000), Spartak Arena Stadium (45.000) White Sea Finland Belomorsk [White Sea] Belomorsk – Petrozavodsk (402 km) Historic towns: Rybinsk, Ughlich, Kimry, Dubna, Dmitrov Baltic Sea Lock 13,2 White Sea – Baltic Canal, Onega Lake Small rivers: Medveditsa, Dubna, Yukhot’, Nerl’, Kimrka, 3 Helsinki 8 4,0 Shosha, Mologa, Sutka 400 402 Arkhangel’sk Towns: Seghezha, Medvezh’yegorsk, Povenets Lock 12,2 Vyborg Lakes: Vygozero, Segozero, Volozero (>60.000 lakes) 4 19 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 1 2 3 6 7 10 14 15 4,0 MOSCOW, Group stage 1/8 1/4 1/2 3 1 Estonia Petrozavodsk IDWWS SECTION: [Baltic Sea] St. -
T H E T I M E W O
GEOGRAPHY OF THE WORLD UralsTHE TIMEWORN GEOGRAPHY OF THE WORLD UralsTHE TIMEWORN By Barbara A. Somervill THE CHILD’S WORLD® CHANHASSEN, MINNESOTA Published in the United States of America by The Child’s World® PO Box 326, Chanhassen, MN 55317-0326 800-599-READ www.childsworld.com Content Adviser: Photo Credits: Cover/frontispiece: TASS/Sovfoto. Interior: Bryan & Cherry Alexander: 18; Animals Animals/Earth Scenes: 9 (OSF/O. Mark Williams, Newman), 14 (Bradley W. Stahl), 17 (Darek Kapp); Corbis: 11 (Steve Raymer), 26 Associate Professor, (Dave G. Houser); Wolfgang Kaehler: 6; Wolfgang Kaehler/Corbis: 8, 16, 21; Jacques University of Colorado, Langevin/Corbis Sygma: 22; Novosti/Sovfoto: 4, 24; TASS/Sovfoto: 5, 12, 13. Boulder, Colorado The Child’s World®: Mary Berendes, Publishing Director Editorial Directions, Inc.: E. Russell Primm, Editorial Director; Melissa McDaniel, Line Editor; Katie Marsico, Associate Editor; Judi Shiffer, Associate Editor and Library Media Specialist; Matthew Messbarger, Editorial Assistant; Susan Hindman, Copy Editor; Sarah E. De Capua and Lucia Raatma, Proofreaders; Marsha Bonnoit, Peter Garnham, Terry Johnson, Olivia Nellums, Chris Simms, Katherine Trickle, and Stephen Carl Wender, Fact Checkers; Tim Griffin/IndexServ, Indexer; Cian Loughlin O’Day, Photo Researcher; Linda S. Koutris, Photo Selector; XNR Productions, Inc., Cartographer The Design Lab: Kathleen Petelinsek, Design and Page Production Copyright © 2005 by The Child’s World® All rights reserved. No part of this book may be reproduced or utilized in any form or by any means without written permission from the publisher. Library of Congress Cataloging-in-Publication Data Somervill, Barbara A. The timeworn Urals / by Barbara A. Somervill. p. -
Permophiles Issue #28 1996 1
Permophiles Issue #28 1996 1. SECRETARY’S NOTE I should like to thank all those who contributed to this issue of I have discussed the matter of financial support for Permophiles @Permophiles@. The next issue will be in November 1996 and with many of the members of the Permian Subcommission; the will be prepared by the new secretary, CIaude Spinosa. Please consensus is that we should request voluntary donations to offset send your contributions to him (see note below from Forthcoming processing, mailing and paper costs. We are asking for contribu- Secretary). tions of $10 to $25. However, Permophiles will be mailed to ev- I should like to express my gratitude to those of you who have eryone on the mailing list regardless of whether a contribution is submitted contributions during my eight year term of office. You made. have helped make =Permophiles@ a useful, informative, and timely We have established access to Permophiles via the Internet; the Newsletter of the Subcommission on Permian Stratigraphy. address will be: J. Utting http://earth.idbsu.edu/permian/permophiles Geological Survey of Canada (Calgary) 3303 - 33rd Street N.W. Our intention is to provide a version of Permophiles that is readily Calgary, Alberta, Canada T2L 2A7 available through the Internet. The Internet version of Permophiles Phone (404) 292-7093 FAX (403) 292-6014 will have multiple formats. Initially the format of the Internet ver- E-mail INTERNET address: [email protected] sion will be different from the official paper version. Because new taxonomic names can not be published in Permophiles, a hard copy, downloaded from the interned will suffice for many of us. -
Peasants “On the Run”: State Control, Fugitives, Social and Geographic Mobility in Imperial Russia, 1649-1796
PEASANTS “ON THE RUN”: STATE CONTROL, FUGITIVES, SOCIAL AND GEOGRAPHIC MOBILITY IN IMPERIAL RUSSIA, 1649-1796 A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in History By Andrey Gornostaev, M.A. Washington, DC May 7, 2020 Copyright 2020 by Andrey Gornostaev All Rights Reserved ii PEASANTS “ON THE RUN”: STATE CONTROL, FUGITIVES, SOCIAL AND GEOGRAPHIC MOBILITY IN IMPERIAL RUSSIA, 1649-1796 Andrey Gornostaev, M.A. Thesis Advisers: James Collins, Ph.D. and Catherine Evtuhov, Ph.D. ABSTRACT This dissertation explores the issue of fugitive peasants by focusing primarily on the Volga-Urals region of Russia and situating it within the broader imperial population policy between 1649 and 1796. In the Law Code of 1649, Russia definitively bound peasants of all ranks to their official places of residence to facilitate tax collection and provide a workforce for the nobility serving in the army. In the ensuing century and a half, the government introduced new censuses, internal passports, and monetary fines; dispatched investigative commissions; and coerced provincial authorities and residents into surveilling and policing outsiders. Despite these legislative measures and enforcement mechanisms, many thousands of peasants left their localities in search of jobs, opportunities, and places to settle. While many fugitives toiled as barge haulers, factory workers, and agriculturalists, some turned to brigandage and river piracy. Others employed deception or forged passports to concoct fictitious identities, register themselves in villages and towns, and negotiate their status within the existing social structure. -
The Southern Urals. Decoupled Evolution of the Thrust Belt and Its Foreland: a Consequence of Metamorphism and Lithospheric Weakening
Tectonophysics 320 (2000) 271–310 www.elsevier.com/locate/tecto The Southern Urals. Decoupled evolution of the thrust belt and its foreland: a consequence of metamorphism and lithospheric weakening Eugene V. Artyushkov a,*, Michael A. Baer a, Peter A. Chekhovich b, Nils-Axel Mo¨rner c a Institute of Physics of the Earth, Russian Academy of Sciences, B. Gruzinskaya 10, 123810, Moscow, Russia b Institute of the Lithosphere of Marginal Seas, Russian Academy of Sciences, 109180, Moscow, Russia c Stockholm University, Institute of Paleogeophysics and Geodynamics, Kra¨feriket 24, S-10691, Stockholm, Sweden Abstract An analysis is presented of the mechanisms of tectonic evolution of the southern part of the Urals between 48N and 60N in the Carboniferous–Triassic. A low tectonic activity was typical of the area in the Early Carboniferous — after closure of the Uralian ocean in the Late Devonian. A nappe, ≥10–15 km thick, overrode a shallow-water shelf on the margin of the East European platform in the early Late Carboniferous. It is commonly supposed that strong shortening and thickening of continental crust result in mountain building. However, no high mountains were formed, and the nappe surface reached the altitude of only ≤0.5 km. No high topography was formed after another collisional events at the end of the Late Carboniferous, in the second half of the Early Permian, and at the start of the Middle Triassic. A low magnitude of the crustal uplift in the regions of collision indicates a synchronous density increase from rapid metamorphism in mafic rocks in the lower crust. This required infiltration of volatiles from the asthenosphere as a catalyst. -
Tetrapod Localities from the Triassic of the SE of European Russia
Earth-Science Reviews 60 (2002) 1–66 www.elsevier.com/locate/earscirev Tetrapod localities from the Triassic of the SE of European Russia Valentin P. Tverdokhlebova, Galina I. Tverdokhlebovaa, Mikhail V. Surkova,b, Michael J. Bentonb,* a Geological Institute of Saratov State University, Ulitsa Moskovskaya, 161, Saratov 410075, Russia b Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK Received 5 November 2001; accepted 22 March 2002 Abstract Fossil tetrapods (amphibians and reptiles) have been discovered at 206 localities in the Lower and Middle Triassic of the southern Urals area of European Russia. The first sites were found in the 1940s, and subsequent surveys, from the 1960s to the present day, have revealed many more. Broad-scale stratigraphic schemes have been published, but full documentation of the rich tetrapod faunas has not been presented before. The area of richest deposits covers some 900,000 km2 of territory between Samara on the River Volga in the NW, and Orenburg and Sakmara in the SW. Continental sedimentary deposits, consisting of mudstones, siltstones, sandstones, and conglomerates deposited by rivers flowing off the Ural Mountain chain, span much of the Lower and Middle Triassic (Induan, Olenekian, Anisian, Ladinian). The succession is divided into seven successive svitas, or assemblages: Kopanskaya (Induan), Staritskaya, Kzylsaiskaya, Gostevskaya, and Petropavlovskaya (all Olenekian), Donguz (Anisian), and Bukobay (Ladinian). This succession, comprising up to 3.5 km of fluvial and lacustrine sediments, documents major climatic changes. At the beginning of the Early Triassic, arid-zone facies were widely developed, aeolian, piedmont and proluvium. These were replaced by fluvial facies, with some features indicating aridity.