A New Euselachian Shark from the Early Permian of the Middle Urals, Russia

Total Page:16

File Type:pdf, Size:1020Kb

A New Euselachian Shark from the Early Permian of the Middle Urals, Russia A new euselachian shark from the early Permian of the Middle Urals, Russia ALEXANDER O. IVANOV, CHRISTOPHER J. DUFFIN, and SERGE V. NAUGOLNYKH Ivanov , A.O., Duffin, C.J., and Naugolnykh, S.V. 2017. A new euselachian shark from the early Permian of the Middle Urals, Russia. Acta Palaeontologica Polonica 62 (2): 289–298. The isolated teeth of a new euselachian shark Artiodus prominens Ivanov and Duffin gen. et sp. nov. have been found in the Artinskian Stage (Early Permian) of Krasnoufimskie Klyuchiki quarry (Sverdlovsk Region, Middle Urals, Russia). The teeth of Artiodus possess a multicuspid orthodont crown with from four to nine triangular cusps; prominent labial projection terminating in a large round tubercle; distinct ornamentation from straight or recurved cristae; oval or semilu- nar, elongate, considerably vascularized base; dense vascular network formed of transverse horizontal, ascending, short secondary and semicircular canals. The teeth of the new taxon otherwise most closely resemble the teeth of some prot- acrodontid and sphenacanthid euselachians possessing a protacrodont-type crown, but differ from the teeth of all other known euselachians in the unique structure of the labial projection. The studied teeth vary in crown and base morphol- ogy, and three tooth morphotypes can be distinguished in the collection reflecting a moderate degree of linear gradient monognathic heterodonty. The range of morphologies otherwise displayed by the collection of teeth shows the greatest similarity to that described for the dentitions of relatively high-crowned hybodontids from the Mesozoic. The internal structure of the teeth, including their vascularization system is reconstructed using microtomography. The highest chon- drichthyan taxonomic diversity is found in the Artinskian, especially from the localities of the Middle and South Urals. Key words: Chondrichthyes, Elasmobranchii, teeth, Permian, Russia, Urals. Alexander O. Ivanov [[email protected]], Institute of Earth Sciences, St. Petersburg State University, 16 Liniya 29, St. Petersburg, 199178, Russia; Kazan Federal University, 18 Kremlevskaya ul., Kazan, 420008, Russia. Christopher J. Duffin [[email protected]], Palaeontology Section, Earth Science Department, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK; current address: 146, Church Hill Road, Sutton, Surrey SM3 8NF, UK. Serge V. Naugolnykh [[email protected]], Geological Institute of Russian Academy of Sciences, 7, Pyzhevsky per., Moscow, 119017, Russia; Kazan Federal University, 18, Kremlevskaya ul., Kazan, 420008, Russia. Received 31 January 2017, accepted 14 March 2017, available online 31 May 2017. Copyright © 2017 A.O. Ivanov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. (see details and references in Zangerl 1981; Ginter et al. 2010). Introduction More recently, bulk processing of sediment for microverte- When Louis Agassiz produced his monumental pioneering brate content has vastly increased our knowledge of Mesozoic work on fossil fishes (Agassiz 1833–1843), Carboniferous selachian faunas. Carboniferous and Devonian deposits have chondrichthyans were well represented, as were those from begun to be sampled in a similar fashion (Ginter et al. 2010), Late Triassic and later deposits. Chondrichthyans of what again yielding significant numbers of new taxa. This approach were eventually to be identified as Devonian and Permian age has only recently been applied to sequences of Permian age, were, by contrast, almost totally absent. This sampling gap but the initial results are, as expected, very encouraging (e.g., was later gradually to be filled by descriptions of often par- Johnson 1981, 1996; Ivanov 2005; Koot et al. 2013). tial chondrichthyan skeletons and dentitions from now clas- Chondrichthyan remains are both diverse and abun- sic localities. These include the Cisuralian (lower Permian) dant in the early Permian of the Middle Urals of Russia, of Germany, Bohemia, Oklahoma and Texas (USA); the especially in rocks belonging to the Artinskian Stage Guadelupian (middle Permian) of East Greenland; the (early Permian); the vicinity of Krasnoufimsk (Sverdlovsk Lopingian (upper Permian) Marl Slate (north east England), Region, Middle Urals) is famous for its Artinskian fishes. Kupferschiefer (Germany), Productus Limestone (Pakistan) Symphyseal tooth-whorls of the agassizodontid eugene- and deposits of Montpelier (Bear Lake County, Idaho, USA) odontiform, Helicoprion bessonovi Karpinsky, 1899, were Acta Palaeontol. Pol. 62 (2): 289–298, 2017 https://doi.org/10.4202/app.00347.2017 290 ACTA PALAEONTOLOGICA POLONICA 62 (2), 2017 Institutional abbreviations.—PM SPU, Palaeontological A St. Petersburg Arkhangel'sk Museum, Institute of Earth Sciences, St. Petersburg State University, Russia; NHMUK PV, Fossil Fish Section, Earth Science Department, Natural History Museum, London, UK. S N RUSSIA Pechora I A Moscow T N Material and methods U O Those teeth which have been separated from their enclosing M Kazan' matrix were studied and micrographed using Cambridge Voronezh Perm' Kama CamScan-4 and Tescan VEGA-II XMU scanning electron Yekaterinburg microscopes. One specimen with a broken crown in lon- Volga Ufa L gitudinal section was photographed using an optical Leica A MZ 16 microscope fitted with a digital camera. The internal Volgograd R Chelyabinsk U structure of the teeth of the new taxon was reconstructed utilising a SkyScan 1172 Bruker-microCT (Center for Geo- Environmental Research and Modeling “GEOMODEL”, Research park of St. Petersburg State University). Projection B images were reconstructed using NRecon software into Klyuchiki cross section images having rotated them to an upright posi- Quarry tion in the software DataViewer. CTAnalyzer software was used to correct visualization and interpretation of the recon- structed images, and CTVox software was used to achieve 3D volume rendering. Specimens still adhering to the matrix were observed and photographed using a Leica M205C optical microscope and Leica DFC425 C digital microscope camera. This sys- Ufa River tem was used to produce high-resolution pictures of objects that have a high 3-D type character. Using the multi-focus option and Leica application suite (LAS) software the clear- Krasnoufimsk est images are retained and combined so that the object has optimum focus. The system provides a scale but the object size was checked directly with the specimen next to a stage graticule measuring to the nearest 0.1 mm. Geological setting 1 2km 0 Krasnoufimskie Klyuchiki quarry is located 1 km east of Fig. 1. Maps of Ural (A) and Krasnoufimsk area (B; source of the map the village of Klyuchiki and around 7 km to the north of from https://yandex.ru/maps/) showing the location of Krasnoufimskie the town of Krasnoufimsk, Krasnoufimsk District, Sverd- Klyuchiki quarry. lovsk Region, Russia (Fig. 1). This area belongs to the Yuryuzan-Ay Depression of the Middle Urals. The quarry collected in Artinskian deposits exposed at Divya Gora in extends over an area of 150 m2 and now exposes depos- 1898 (Karpinsky 1899). Further abundant fish remains were its of the Divya Formation (Sarginskian Regional Stage, later discovered in several quarries surrounding the town Upper Substage of the Artinskian; for details of the regional of Krasnoufimsk: Chigvintsevo, Krasnoufimskie Kluchiki, stratigraphy see Chuvashov and Dyupina 1973; Chuvashov Ryabinovka, Selektsiya, Sobolevskiy. In addition to the et al. 1990; Naugolnykh 2014). The deposits exposed in symphyseal tooth-whorls of Helicoprion and numerous iso- the quarry consist of platy marls of grey to yellow-grey or lated teeth of ctenacanthids, euselachians and petalodontids blue-grey color, with intercalations of clay, siltstone, and (Ivanov 2014). These localities have also yielded well pre- limestone. The general thickness of the exposed deposits is served parts of the endoskeleton of euselachian elasmo- approximately 6 m. branch and cochliodont holocephalian (Ivanov 2013, 2014). The palaeontologically richest interval is in the mid- The purpose of the present paper is to describe the dle part of the section and corresponds to the relatively teeth of a new euselachian shark which have been found at dark blue-grey marls. The assemblage of fossils from Krasnoufimskie Klyuchiki quarry. Krasnoufimskie Klyuchiki quarry includes the follow- IVANOV ET AL. —NEW PERMIAN SHARK FROM URALS, RUSSIA 291 ing higher plants: the lycopodiopsid, Ufadedron ufaensis Type species: Artiodus prominens Ivanov and Duffin gen. et sp. nov.; Naugolnykh, 2014; Paracalamites sp., an equisetophyte; see below. the peltasperm Permocallipteris sp.; the vojnovskyan gym- Diagnosis.—As for species, by monotypy. nosperms Rufloria sp. and Lepeophyllum sp. (or so-called Stratigraphic and geographic range.—Late Artinskian “Angarian cordaits”; see Naugolnykh 2001); isolated seeds of (early Permian) of the Middle Urals (Russia). the early coniferophytes Cardiocarpus cordatus (Eichwald) Schmalhausen, 1887, Catpolithes sp., and Cordaicarpus Artiodus prominens Ivanov and Duffin sp. nov. sp.; invertebrates: conulariids; brachiopods; bivalves; the Figs. 2–5. gastropod Worthenia aff. burtasorum (Golovkinsky, 1868); nautiloids Orthoceratites siphonocentralis Krotov, 1885 Etymology: From Latin
Recommended publications
  • Symmoriiform Sharks from the Pennsylvanian of Nebraska
    Acta Geologica Polonica, Vol. 68 (2018), No. 3, pp. 391–401 DOI: 10.1515/agp-2018-0009 Symmoriiform sharks from the Pennsylvanian of Nebraska MICHAŁ GINTER University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland. E-mail: [email protected] ABSTRACT: Ginter, M. 2018. Symmoriiform sharks from the Pennsylvanian of Nebraska. Acta Geologica Polonica, 68 (3), 391–401. Warszawa. The Indian Cave Sandstone (Upper Pennsylvanian, Gzhelian) from the area of Peru, Nebraska, USA, has yielded numerous isolated chondrichthyan remains and among them teeth and dermal denticles of the Symmoriiformes Zangerl, 1981. Two tooth-based taxa were identified: a falcatid Denaea saltsmani Ginter and Hansen, 2010, and a new species of Stethacanthus Newberry, 1889, S. concavus sp. nov. In addition, there occur a few long, monocuspid tooth-like denticles, similar to those observed in Cobelodus Zangerl, 1973, probably represent- ing the head cover or the spine-brush complex. A review of the available information on the fossil record of Symmoriiformes has revealed that the group existed from the Late Devonian (Famennian) till the end of the Middle Permian (Capitanian). Key words: Symmoriiformes; Microfossils; Carboniferous; Indian Cave Sandstone; USA Midcontinent. INTRODUCTION size and shape is concerned [compare the thick me- dian cusp, almost a centimetre long, in Stethacanthus The Symmoriiformes (Symmoriida sensu Zan- neilsoni (Traquair, 1898), and the minute, 0.5 mm gerl 1981) are a group of Palaeozoic cladodont sharks wide, multicuspid, comb-like tooth of Denaea wangi sharing several common characters: relatively short Wang, Jin and Wang, 2004; Ginter et al. 2010, figs skulls, large eyes, terminal mouth, epicercal but ex- 58A–C and 61, respectively].
    [Show full text]
  • Annual Repor T 2014
    Annual Report 2014 2014 Highlights Forrest Steller sea lion, Eden, gave birth to a healthy male pup on July 20, 2014. Forrest is the first male Steller sea lion born in North American collections since the 1980s. This is the second pup for parents Woody and Eden. Eleanor, “Ellie,” was born on June 20, 2013. Eider Research 2014 brought the most successful breeding season for the Eider Research Program. For the first time since the program’s start, two female Steller’s eiders naturally incubated eggs and reared ducklings. The Alaska SeaLife Center is the only facility in North America to have Steller’s eiders naturally incubate and rear their young. Sea Otter BTS Another first for the Center: Sea Otter Behind-the-Scenes (BTS) Tours were offered to guests! The Sea Otter BTS provided a unique opportunity for guests to get paw-to-paw with three playful critters. New Ticketing Counter The ticketing counter got a makeover! Guests are now greeted with a harbor-themed front desk as they enter through the doors. Chiswell Island A record number of Steller sea lion births were recorded at Chiswell Island. Alaska SeaLife Center researchers confirmed 114 births as the highest number they’ve observed since research began in 1998. Family Science Night The Education Department implemented a new program for younger children and families in Seward. “Family Science Night” offers kids and adults of all ages fun and educational activities throughout the winter. 3 and its substantial research on the hearing capabilities of arctic seals. These vital connections with partner organizations enable the entire marine community to reach their goals, thereby creating sustainable marine From the President and CEO ecosystems the world over.
    [Show full text]
  • Chondrichthyan Fishes (Sharks, Skates, Rays) Announcements
    Chondrichthyan Fishes (sharks, skates, rays) Announcements 1. Please review the syllabus for reading and lab information! 2. Please do the readings: for this week posted now. 3. Lab sections: 4. i) Dylan Wainwright, Thursday 2 - 4/5 pm ii) Kelsey Lucas, Friday 2 - 4/5 pm iii) Labs are in the Northwest Building basement (room B141) 4. Lab sections done: first lab this week on Thursday! 5. First lab reading: Agassiz fish story; lab will be a bit shorter 6. Office hours: we’ll set these later this week Please use the course web site: note the various modules Outline Lecture outline: -- Intro. to chondrichthyan phylogeny -- 6 key chondrichthyan defining traits (synapomorphies) -- 3 chondrichthyan behaviors -- Focus on several major groups and selected especially interesting ones 1) Holocephalans (chimaeras or ratfishes) 2) Elasmobranchii (sharks, skates, rays) 3) Batoids (skates, rays, and sawfish) 4) Sharks – several interesting groups Not remotely possible to discuss today all the interesting groups! Vertebrate tree – key ―fish‖ groups Today Chondrichthyan Fishes sharks Overview: 1. Mostly marine 2. ~ 1,200 species 518 species of sharks 650 species of rays 38 species of chimaeras Skates and rays 3. ~ 3 % of all ―fishes‖ 4. Internal skeleton made of cartilage 5. Three major groups 6. Tremendous diversity of behavior and structure and function Chimaeras Chondrichthyan Fishes: 6 key traits Synapomorphy 1: dentition; tooth replacement pattern • Teeth are not fused to jaws • New rows move up to replace old/lost teeth • Chondrichthyan teeth are
    [Show full text]
  • Invertebrate Ichnofossils from the Adamantina Formation (Bauru Basin, Late Cretaceous), Brazil
    Rev. bras. paleontol. 9(2):211-220, Maio/Agosto 2006 © 2006 by the Sociedade Brasileira de Paleontologia INVERTEBRATE ICHNOFOSSILS FROM THE ADAMANTINA FORMATION (BAURU BASIN, LATE CRETACEOUS), BRAZIL ANTONIO CARLOS SEQUEIRA FERNANDES Departamento de Geologia e Paleontologia, Museu Nacional, UFRJ, Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil. [email protected] ISMAR DE SOUZA CARVALHO Departamento de Geologia, Instituto de Geociências, UFRJ, 21949-900, Cidade Universitária, Rio de Janeiro, RJ, Brazil. [email protected] ABSTRACT – The Bauru Group is a sequence at least 300 m in thickness, of Cretaceous age (Turonian- Maastrichtian), located in southeastern Brazil (Bauru Basin), and consists of three formations, namely Adamantina, Uberaba and Marília. Throughout the Upper Cretaceous, there was an alternation between severely hot dry and rainy seasons, and a diverse fauna and flora was established in the basin. The ichnofossils studied were found in the Adamantina Formation outcrops and were identified as Arenicolites isp., ?Macanopsis isp., Palaeophycus heberti and Taenidium barretti, which reveal the burrowing behavior of the endobenthic invertebrates. There are also other biogenic structures such as plant root traces, coprolites and vertebrate fossil egg nests. The Adamantina Formation (Turonian-Santonian) is a sequence of fine sandstones, mudstones, siltstones and muddy sandstones, whose sediments are interpreted as deposited in exposed channel-bars and floodplains associated areas of braided fluvial environments. Key words: Bauru Basin, ichnofossils, late Cretaceous, continental palaeoenvironments, Adamantina Formation. RESUMO – O Grupo Bauru é uma seqüência de pelo menos 300 m de espessura, de idade cretácica (Turoniano- Maastrichtiano), localizada no Sudeste do Brasil (bacia Bauru), e consiste das formações Adamantina, Uberaba e Marília.
    [Show full text]
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • Official Application Dossier for the Accession to the Global Geoparks Network
    OFFICIAL APPLICATION DOSSIER FOR THE ACCESSION TO THE GLOBAL GEOPARKS NETWORK YANGAN-TAU GEOPARK (Yangantau, Republic of Bashkortostan, Russian Federation) November 2017 CONTENTS CONTENTS .................................................................................................................................... 2 А. IDENTIFICATION OF THE AREA ........................................................................................ 4 А.1. NAME OF THE PROPOSED GEOPARK .......................................................................... 4 А.2. LOCATION OF THE PROPOSED GEOPARK ................................................................. 4 A.3. SURFACE AREA, PHYSICAL AND HUMAN GEOGRAPHY CHARACTERISTICS OF THE PROPOSED GEOPARK .............................................................................................. 5 А.3.1. Geopark square area ...................................................................................................... 5 А.3.2. Physical geography ....................................................................................................... 5 А.3.3. Social-economic geography .......................................................................................... 6 А.4. ORGANIZATION IN CHARGE AND MANAGEMENT STRUCTURE OF THE PROPOSED GEOPARK ............................................................................................................. 7 А.4.1. Governing board ............................................................................................................ 7 A.
    [Show full text]
  • 2018 FIFA WORLD CUP RUSSIA'n' WATERWAYS
    - The 2018 FIFA World Cup will be the 21st FIFA World Cup, a quadrennial international football tournament contested by the men's national teams of the member associations of FIFA. It is scheduled to take place in Russia from 14 June to 15 July 2018,[2] 2018 FIFA WORLD CUP RUSSIA’n’WATERWAYS after the country was awarded the hosting rights on 2 December 2010. This will be the rst World Cup held in Europe since 2006; all but one of the stadium venues are in European Russia, west of the Ural Mountains to keep travel time manageable. - The nal tournament will involve 32 national teams, which include 31 teams determined through qualifying competitions and Routes from the Five Seas 14 June - 15 July 2018 the automatically quali ed host team. A total of 64 matches will be played in 12 venues located in 11 cities. The nal will take place on 15 July in Moscow at the Luzhniki Stadium. - The general visa policy of Russia will not apply to the World Cup participants and fans, who will be able to visit Russia without a visa right before and during the competition regardless of their citizenship [https://en.wikipedia.org/wiki/2018_FIFA_World_Cup]. IDWWS SECTION: Rybinsk – Moscow (433 km) Barents Sea WATERWAYS: Volga River, Rybinskoye, Ughlichskoye, Ivan’kovskoye Reservoirs, Moscow Electronic Navigation Charts for Russian Inland Waterways (RIWW) Canal, Ikshinskoye, Pestovskoye, Klyaz’minskoye Reservoirs, Moskva River 600 MOSCOW Luzhniki Arena Stadium (81.000), Spartak Arena Stadium (45.000) White Sea Finland Belomorsk [White Sea] Belomorsk – Petrozavodsk (402 km) Historic towns: Rybinsk, Ughlich, Kimry, Dubna, Dmitrov Baltic Sea Lock 13,2 White Sea – Baltic Canal, Onega Lake Small rivers: Medveditsa, Dubna, Yukhot’, Nerl’, Kimrka, 3 Helsinki 8 4,0 Shosha, Mologa, Sutka 400 402 Arkhangel’sk Towns: Seghezha, Medvezh’yegorsk, Povenets Lock 12,2 Vyborg Lakes: Vygozero, Segozero, Volozero (>60.000 lakes) 4 19 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 1 2 3 6 7 10 14 15 4,0 MOSCOW, Group stage 1/8 1/4 1/2 3 1 Estonia Petrozavodsk IDWWS SECTION: [Baltic Sea] St.
    [Show full text]
  • The Pharynx of the Stem-Chondrichthyan Ptomacanthus and the Early Evolution of the Gnathostome Gill Skeleton
    ARTICLE https://doi.org/10.1038/s41467-019-10032-3 OPEN The pharynx of the stem-chondrichthyan Ptomacanthus and the early evolution of the gnathostome gill skeleton Richard P. Dearden 1, Christopher Stockey1,2 & Martin D. Brazeau1,3 The gill apparatus of gnathostomes (jawed vertebrates) is fundamental to feeding and ventilation and a focal point of classic hypotheses on the origin of jaws and paired appen- 1234567890():,; dages. The gill skeletons of chondrichthyans (sharks, batoids, chimaeras) have often been assumed to reflect ancestral states. However, only a handful of early chondrichthyan gill skeletons are known and palaeontological work is increasingly challenging other pre- supposed shark-like aspects of ancestral gnathostomes. Here we use computed tomography scanning to image the three-dimensionally preserved branchial apparatus in Ptomacanthus,a 415 million year old stem-chondrichthyan. Ptomacanthus had an osteichthyan-like compact pharynx with a bony operculum helping constrain the origin of an elongate elasmobranch-like pharynx to the chondrichthyan stem-group, rather than it representing an ancestral condition of the crown-group. A mixture of chondrichthyan-like and plesiomorphic pharyngeal pat- terning in Ptomacanthus challenges the idea that the ancestral gnathostome pharynx con- formed to a morphologically complete ancestral type. 1 Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. 2 Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK. 3 Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. Correspondence and requests for materials should be addressed to M.D.B.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Biostratigraphy of the Phosphoria, Park City, and Shedhorn Formations
    Biostratigraphy of the Phosphoria, Park City, and Shedhorn Formations GEOLOGICAL SURVEY PROFESSIONAL PAPER 313-D Work done partly on behalf of the U.S. Atomic Energy Commission Biostratigraphy of the Phosphoria, Park City, and Shedhorn Formations By ELLIS L. YOCHELSON With a Section on Fish By DIANNE H. VAN SICKLE GEOLOGY OF PERMIAN ROCKS IN THE WESTERN PHOSPHATE FIELD GEOLOGICAL SURVEY PROFESSIONAL PAPER 313-D Work done partly on behalf of the U.S. Atomic Energy Commission Distribution of megafossils in more than collections, mainly from measured sections^ and their paleoecological interpretation UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 60 cents (paper cover) CONTENTS Page Page Abstract., ________________________________________ 571 Age of the Phosphoria and correlative formations Con. Introduction.______________________________________ 572 Shedhorn Sandstone.__________-____----------__ 626 Stratigraphic setting.___________________________ 573 Summary of age relationships,___________________ 627 Previous work..________________________________ 573 Geographic distribution of collections-________-___---- 630 Acknowledgments ______________________________ 574 Grandeur Member of Park City Formation-------- 630 Pr ocedures_ ________________________________________ 574 Idaho-__________________________________
    [Show full text]
  • Guide to Investment Chelyabinsk Region Pwc Russia ( Provides Industry-Focused Assurance, Advisory, Tax and Legal Services
    Guide to Investment Chelyabinsk Region PwC Russia (www.pwc.ru) provides industry-focused assurance, advisory, tax and legal services. Over 2,500 professionals working in PwC offices in Moscow, St Petersburg, Ekaterinburg, Kazan, Novosibirsk, Krasnodar, Yuzhno-Sakhalinsk and Vladikavkaz share their thinking, experience and solutions to develop fresh perspectives and practical advice for our clients. Global PwC network includes over 169,000 employees in 158 countries. PwC first appeared in Russia in 1913 and re-established its presence here in 1989. Since then, PwC has been a leader in providing professional services in Russia. According to the annual rating published in Expert magazine, PwC is the largest audit and consulting firm in Russia (see Expert, 2000-2011). This overview has been prepared in conjunction with and based on the materials provided by the Ministry of Economic Development of Chelyabinsk Region. This publication has been prepared for general guidance on matters of interest only, and does not constitute professional advice. You should not act upon the information contained in this publication without obtaining specific professional advice. No representation or warranty (express or implied) is given as to the accuracy or completeness of the information contained in this publication, and, to the extent permitted by law, PwC network, its members, employees and agents accept no liability, and disclaim all responsibility, for the consequences of you or anyone else acting, or refraining to act, in reliance on the information
    [Show full text]
  • Scientists Solve Mysteries of Ancient 'Shark' with Spiral-Toothed Jaw 27 February 2013
    Helicoprion: Scientists solve mysteries of ancient 'shark' with spiral-toothed jaw 27 February 2013 spiral saw blade – fit into a prehistoric fish with a poor fossil record, long assumed to be a species of a shark. "New CT scans of a unique specimen from Idaho show the spiral of teeth within the jaws of the animal, giving new information on what the animal looked like, how it ate," said Leif Tapanila, principal investigator of the study, who is an ISU Associate Professor of Geosciences and Idaho Museum of Natural History division head and research curator. The results of the study, "Jaws for a spiral tooth- whorl: CT images reveal novel adaptation and phylogeny in fossil Helicoprion," are being published in the Royal Society's journal, Biology Letters. Artist conception of Helicoprion by illustrator and artist Ray Troll. (Phys.org)—Using CAT scans and making 3-D virtual reconstructions of the jaws of the ancient fish Helicoprion, Idaho State University researchers have solved some of the mysteries surrounding large spiral fossils of this fish's teeth. The ISU Museum of Natural History has the largest public collection of Helicoprion spiral-teeth fossils in the world. The fossils of this 270-million-year-old fish have long mystified scientists because, for the most part, the only remains of the fish are its teeth because its skeletal system was made of cartilage, which doesn't preserve well. No one could Leif Tapanila with two of the largest Helicoprion whorls in the world. Credit: Ray Troll determine how these teeth – that look similar to a 1 / 3 In the IMNH's Idaho Virtualization Laboratory History, University of Rhode Island and Millersville Tapanila and his colleagues have virtual University.
    [Show full text]