1. Padil Species Factsheet Scientific Name: Common Name Image

Total Page:16

File Type:pdf, Size:1020Kb

1. Padil Species Factsheet Scientific Name: Common Name Image 1. PaDIL Species Factsheet Scientific Name: Chilecomadia valdiviana (Philippi) (Lepidoptera: Cossidae) Common Name Carpenter worm Live link: http://www.padil.gov.au/pests-and-diseases/Pest/Main/136297 Image Library Australian Biosecurity Live link: http://www.padil.gov.au/pests-and-diseases/ Partners for Australian Biosecurity image library Department of Agriculture, Water and the Environment https://www.awe.gov.au/ Department of Primary Industries and Regional Development, Western Australia https://dpird.wa.gov.au/ Plant Health Australia https://www.planthealthaustralia.com.au/ Museums Victoria https://museumsvictoria.com.au/ 2. Species Information 2.1. Details Specimen Contact: Museum Victoria - [email protected] Author: Walker, K. Citation: Walker, K. (2006) Carpenter worm(Chilecomadia valdiviana)Updated on 10/21/2011 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/pests-and-diseases/Pest/Main/136297 2.3. Facets Status: Exotic species - absent from Australia Group: Moths Commodity Overview: Horticulture, Forestry Commodity Type: Timber, Fresh Stems Distribution: Central and South America 2.4. Other Names Chilean carpenter worm PESTF - 2.5. Diagnostic Notes There are several species of the cossid moth genus _Chilecomadia_ in South America: - _Chilecomadia discoclathratus_ Bryk 1945 - _Chilecomadia moorei_ Silva Figuero 1915 - _Chilecomadia munroei_ (Clench, 1957) - _Chilecomadia valdiviana_ Philippi 1860 - _Chilecomadia zeuzerina_ Bryk 1945 The larvae of _Chilecomadia moorei_, called the Chilean Moth or Butterworm of Trevo worm, is commercially collected and sold in the pet food trade. The carpentar worm, _Chilecomadia valdiviana_, is pest species. The larvae feed on _Nothofagus_ and _Salix_ species and are considered a pest in Chilean Eucalyptus plantations. They have been reported on _Eucalyptus globulus globulus, Eucalyptus nitens, Eucalyptus camaldulensis, Eucalyptus delegatensis_ and _Eucalyptus viminalis_. Adult females forewing span 48 and 60 mm and body length about 30-40mm, forewings with mottled colours of grey, ash, brown and white; each forewing with two distinct triangles (one in the chorda - the base of the R veins; and a second at the base of the CuA and CuP veins) of white, yellow and black scales; hindwings brown, sometimes withtwo or three white spots. Body is heavily covered with grey-silver hairs, the side of the abdomen has banded black and brown hair; legs banded. Males, have a wingspan of 42 - 48 mm, are darker and more diffuse than the females. The antennaes in both sexes are similar. 2.6. References Lanfranco, D., H. S. Dungey (2001). Insect damage in Eucalyptus: A review of plantations in Chile. Austral Ecology Vol 26(5): 477 2.7. Web Links Exotic Forest Pests Online Symposium: http://www.apsnet.org/online/ExoticPest/Papers/haugen.htm Images of larva and damage: http://www.invasive.org/browse/subject.cfm?sub=4032 Pest Status: http://tncweeds.ucdavis.edu/products/gallery/chiva1.html Translated description: http://translate.google.com/translate?hl=en&sl=es&u=http://www2.udec.cl/entomologia/Ch- valdiviana.html&sa=X&oi=translate&resnum=4&ct=result&prev=/search%3Fq%3DChilecomadia%2Bvaldivian a%26hl%3Den%26lr%3D%26sa%3DG 3. Diagnostic Images South America South America Body above: Natural History Museum, Body side: Natural History Museum, London London Contact Contact South America Chile VII Region, Las Trancas, 13 January Dorsal view: Copyright Natural History 2003. Leg M. Beeche Museum, London Contact Forewing Image: Sarah McCaffrey Museums Victoria South America South America Head above: Natural History Museum, Head below: Natural History Museum, London Contact London Contact Chile VII Region, Las Trancas, 13 January Chile VII Region, Las Trancas, 13 January 2003. Leg M. Beeche 2003. Leg M. Beeche Head Front Image: Sarah McCaffrey Head Side Image: Sarah McCaffrey Museums Victoria Museums Victoria South America South America Lateral view: Natural History Museum, Ventral view: Natural History Museum, London Contact London Contact 4. Other Images South America Chile VII Region, Las Trancas, 13 January Body below: Natural History Museum, 2003. Leg M. Beeche London Contact Dorsal Image: Sarah McCaffrey Museums Victoria Chile VII Region, Las Trancas, 13 January Chile VII Region, Las Trancas, 13 January 2003. Leg M. Beeche 2003. Leg M. Beeche Lateral Image: Sarah McCaffrey Museums Ventral Image: Sarah McCaffrey Museums Victoria Victoria Results Generated: Thursday, September 30, 2021 .
Recommended publications
  • Alien Invasive Species and International Trade
    Forest Research Institute Alien Invasive Species and International Trade Edited by Hugh Evans and Tomasz Oszako Warsaw 2007 Reviewers: Steve Woodward (University of Aberdeen, School of Biological Sciences, Scotland, UK) François Lefort (University of Applied Science in Lullier, Switzerland) © Copyright by Forest Research Institute, Warsaw 2007 ISBN 978-83-87647-64-3 Description of photographs on the covers: Alder decline in Poland – T. Oszako, Forest Research Institute, Poland ALB Brighton – Forest Research, UK; Anoplophora exit hole (example of wood packaging pathway) – R. Burgess, Forestry Commission, UK Cameraria adult Brussels – P. Roose, Belgium; Cameraria damage medium view – Forest Research, UK; other photographs description inside articles – see Belbahri et al. Language Editor: James Richards Layout: Gra¿yna Szujecka Print: Sowa–Print on Demand www.sowadruk.pl, phone: +48 022 431 81 40 Instytut Badawczy Leœnictwa 05-090 Raszyn, ul. Braci Leœnej 3, phone [+48 22] 715 06 16 e-mail: [email protected] CONTENTS Introduction .......................................6 Part I – EXTENDED ABSTRACTS Thomas Jung, Marla Downing, Markus Blaschke, Thomas Vernon Phytophthora root and collar rot of alders caused by the invasive Phytophthora alni: actual distribution, pathways, and modeled potential distribution in Bavaria ......................10 Tomasz Oszako, Leszek B. Orlikowski, Aleksandra Trzewik, Teresa Orlikowska Studies on the occurrence of Phytophthora ramorum in nurseries, forest stands and garden centers ..........................19 Lassaad Belbahri, Eduardo Moralejo, Gautier Calmin, François Lefort, Jose A. Garcia, Enrique Descals Reports of Phytophthora hedraiandra on Viburnum tinus and Rhododendron catawbiense in Spain ..................26 Leszek B. Orlikowski, Tomasz Oszako The influence of nursery-cultivated plants, as well as cereals, legumes and crucifers, on selected species of Phytophthopra ............30 Lassaad Belbahri, Gautier Calmin, Tomasz Oszako, Eduardo Moralejo, Jose A.
    [Show full text]
  • The Entomofauna on Eucalyptus in Israel: a Review
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 116: 450–460, 2019 http://www.eje.cz doi: 10.14411/eje.2019.046 REVIEW The entomofauna on Eucalyptus in Israel: A review ZVI MENDEL and ALEX PROTASOV Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeTzion 7528809, Israel; e-mails: [email protected], [email protected] Key words. Eucalyptus, Israel, invasive species, native species, insect pests, natural enemies Abstract. The fi rst successful Eucalyptus stands were planted in Israel in 1884. This tree genus, particularly E. camaldulensis, now covers approximately 11,000 ha and constitutes nearly 4% of all planted ornamental trees. Here we review and discuss the information available about indigenous and invasive species of insects that develop on Eucalyptus trees in Israel and the natural enemies of specifi c exotic insects of this tree. Sixty-two phytophagous species are recorded on this tree of which approximately 60% are indigenous. The largest group are the sap feeders, including both indigenous and invasive species, which are mostly found on irrigated trees, or in wetlands. The second largest group are wood feeders, polyphagous Coleoptera that form the dominant native group, developing in dying or dead wood. Most of the seventeen parasitoids associated with the ten invasive Eucalyptus-specifi c species were introduced as biocontrol agents in classical biological control projects. None of the polyphagous species recorded on Eucalyptus pose any threat to this tree. The most noxious invasive specifi c pests, the gall wasps (Eulophidae) and bronze bug (Thaumastocoris peregrinus), are well controlled by introduced parasitoids.
    [Show full text]
  • I0217s00.Pdf
    Manual de Plagas y Enfermedades del Bosque Nativo en Chile © 2008 Inscripción Nº Santiago de Chile El presente libro no puede ser reproducido, transmitido o almacenado, ni en todo ni en parte, sea por procesos mecánicos, ópticos, químicos, electrónicos, electroópticos o por fotocopia, sin permiso de los autores. ISBN Nº Primera Edición: 1.000 ejemplares, Julio de 2008 Impresión: Editora e Imprenta Maval Ltda. San José 5862, San Miguel Santiago de Chile Portada y Diseño: www.alfonsoquiroz.cl Diagramación: Maritza Toledo Impreso en Chile Manual de Plagas y Enfermedades del Bosque Nativo en Chile Asistencia para la Recuperación y Revitalización de los Bosques Templados de Chile, con énfasis en los Nothofagus Caducifolios P R O Y E C T O D E C O O P E R A CI Ó N T É C N I C A T C P / C H I / 3 1 0 2 (A) Indice de Contenidos Agradecimientos xx Introducción xx Capítulo 1 AGENTES DE DAÑO BIOTICOS 13 1.1. Insectos defoliadores 13 1.1.1. Brachysternus prasinus (Guérin, 1830) (Coleoptera: Scarabaeidae) 13 1.1.2. Cerospastus volupis (Konow, 1899) (Hymenoptera: Pergidae) 15 1.1.3. Coniungoptera nothofagi (Rentz y Gurney, 1985) (Orthoptera: Tettigonidae). 18 1.1.4. Euphitecia sp. (Lepidoptera: Geometridae) 21 1.1.5. Hylamorpha elegans (Burmeister, 1844) (Coleoptera: Scarabaeidae) 25 1.1.6. Oiketicus sp. (Lepidoptera: Psychidae) 28 1.1.7. Omaguacua longibursae (Parra y Beèche, 1986) (Lepidoptera: Geometridae). 32 1.1.8. Ormiscodes amphinome (Fabricius, 1775) (Lepidoptera: Saturniidae) 35 1.1.9. Ormiscodes cinnamomea (Feisthamel, 1839) (Lepidoptera: Saturniidae) 38 1.1.10.
    [Show full text]
  • Insectos Taladradores De Madera
    AGENTES DE DAÑO BIOTICOS 111 Insectos succionadores Insectos taladradores de madera Calydon submetallicum Cheloderus childreni Chilecomadia valdiviana Epistomentis pictus Gnathotrupes barbifer Gnathotrupes caliculus Gnathotrupes consobrinus Gnathotrupes fimbriatus Gnathotrupes herbertfranzi Gnathotrupes impressus Gnathotrupes longipennis Gnathotrupes longiusculus Gnathotrupes nanus Gnathotrupes nothofagi Gnathotrupes pustulatus Gnathotrupes vafer Gnathotrupes velatus Grammicosum flavofasciatum Holopterus chilensis Lautarus concinnus Sibylla livida Strongylaspis limae Manual de Plagas y Enfermedades del Bosque Nativo en Chile Página 67 111 AGENTES DE DAÑO BIOTICOS Insectos taladradores de madera Calydon submetallicum (Blanchard, 1851) (Coleoptera, Cerambycidae) Sinonimia: • Callidium submetallicum Blanch., • Calydon submetallicum Thoms., • Mallosoma ubmetallicum Chevr., • M. submetallicum (Blanch.). Nombre común: • Taladro del ñirre. Figura 28. Adulto de Calydon submetallicum (A. Sartori). Distribución: En Chile se encuentra desde la Región de Coquimbo a la Región de Magallanes y La Antártica Chilena (Cerda, 1986). También se encuentra en la Argentina en Neuquén, Nahuel Huapi, San Martín de los Andes, Río Negro, Chubut, Santa Cruz, etc. (Bosq, 1951). Página 68 Manual de Plagas y Enfermedades del Bosque Nativo en Chile AGENTES DE DAÑO BIOTICOS 111 Insectos taladradores de madera Hospederos: bordes laterales anteriores y dirigidos • Nothofagus dombeyi (Mirb.) Oerst. hacia delante, siendo su color negro. Los (Coihue) (Monrós, 1943; Bosq, 1951; élitros son de color negro profundo con Cameron y Peña, 1982; Barriga et al., aspecto aterciopelado, éstos llevan un 1993); dibujo amarillo que rodea los dos tercios superiores de los élitros, ensanchándose • Nothofagus obliqua (Mirb.) Oerst. en su extremo posterior. Las patas son (Roble), robustas, de color azul metálico, los fémures están fuertemente terminados en • Nothofagus pumilio (Poepp. et Endl.) porra, sobrepasando éstos los élitros en Krasser (Lenga), el caso de los machos.
    [Show full text]
  • Cvckc-2017-0293-0311
    Clinical Approach to Ferret Lymphoma La’Toya Latney, DVM University of Pennsylvania Philadelphia, PA Lymphoma connotes a solid-tissue tumor composed of neoplastic lymphocytes in visceral organs, skin, or lymph nodes throughout the body (Antinoff). To date, lymphoma is the most common malignant neoplasia reported in the domestic ferret at 10-15% of all neoplastic presentations in the US and Europe, and lymphoma is the third most common neoplasia of ferrets, behind adrenocortical neoplasia and insulinoma. It is documented as a spontaneous neoplasia (Mayer, Quesenberry), however there have been reports of horizontal transmission via cell and cell-free inoculation (Erdman), which suggests that there may a viral etiology, however an agent has never been reported. There is one report of Helicobacter mustelidae-associated (MALT) gastric B-cell lymphoma (Erdman), and this syndrome appears to mimic gastric B cell lymphoma caused H.pylori in humans. Ferret lymphoma can occur across a number of age groups and has no specific sex predilections. In the early literature describing the disease, ferret lymphoma was classified by age of onset and assigned distinct prognosis, i.e. the aggressive and quickly fatal juvenile onset lymphoma form and the adult chronic onset form. This generalized classification scheme has been since retracted due to new clinical reports that reveal there is no specific age and cell-type trend. Most resources characterize lymphoma by cell line, i.e. large cell, lymphoblastic lymphoma (T cell) or small cell, lymphocytic lymphoma (B cell). Finally, there are several studies that report disease based on location, which include but are not limited to multicentric lymphoma (Ferreira), cutaneous lymphoma (Xi, Rosenbaum), malignant B-cell lymphoma with Mott cell differentiation (Gupta), polyostotic lymphoma (Long), epitheliotropic gastrointestinal T-cell lymphoma (Sinclair), focal thoracolumbar spinal cord lymphoma (Ingrao), myelo-osteolytic plasmacytic lymphoma in the femur (Eshar), and gastrointestinal lymphoma (Lee).
    [Show full text]
  • A Survey of Cossid Moth Attack in Eucalyptus Niten$ on the Mpumalanga Highveld of South Africa G
    Research Note A survey of cossid moth attack in Eucalyptus niten$ on the Mpumalanga Highveld of South Africa G. R. Boreham Sappi Forests Research, Shaw Research Centre, P.O. Box 473, Howick, 3290 Email: [email protected] SYNOPSIS During July 2004, an infestation of an unknown larval insect in ten- year and older Eucalyptus nitens was reported on the Mpumalanga highveld of South Mrica. Samples of wood containing larvae were collected from the field and taken to the Forestry and Agricultural Biotechnology Institute, University of Pretoria. The adult specimens were subsequently identified by the Transvaal Museum as the native Coryphodema tristis. No records have been found ofthe insect on any member ofthe Myrtaceae. Atotal of approximately 3000 hectares ofE. nitens, within 95 compartments greater than eight years of age on the Mpumalanga Highveld were surveyed in September 2004. The older age classes and lower elevation sites had significantly higher infestations than the younger, higher elevation sites. Low infestations are present in young stands ofE. nitens « 6 years of age), and not restricted to lower productivity sites, an indication that the pest risk potential is higher than originally anticipated. Keywords: Cossid moth, Euc. nitens, wood borer, Coryphodema INTRODUCTION patersonii (Malvaceae) (Taylor, 1957). Other host plants include the bush willow (Combretum) (Picker During July 2004, the first signs ofinfestation by an et al., 2002), and other exotic ornamentals such as unknown insect in teh- year and older Eucalyp• oak, elm and hawthorn (Annecke & Moran, 1982). tus nitens compartments were reported by foresters Eight host plant records from the families Rosaceae, on the Mpumalanga highveld of South Africa.
    [Show full text]
  • Edible Insects
    1.04cm spine for 208pg on 90g eco paper ISSN 0258-6150 FAO 171 FORESTRY 171 PAPER FAO FORESTRY PAPER 171 Edible insects Edible insects Future prospects for food and feed security Future prospects for food and feed security Edible insects have always been a part of human diets, but in some societies there remains a degree of disdain Edible insects: future prospects for food and feed security and disgust for their consumption. Although the majority of consumed insects are gathered in forest habitats, mass-rearing systems are being developed in many countries. Insects offer a significant opportunity to merge traditional knowledge and modern science to improve human food security worldwide. This publication describes the contribution of insects to food security and examines future prospects for raising insects at a commercial scale to improve food and feed production, diversify diets, and support livelihoods in both developing and developed countries. It shows the many traditional and potential new uses of insects for direct human consumption and the opportunities for and constraints to farming them for food and feed. It examines the body of research on issues such as insect nutrition and food safety, the use of insects as animal feed, and the processing and preservation of insects and their products. It highlights the need to develop a regulatory framework to govern the use of insects for food security. And it presents case studies and examples from around the world. Edible insects are a promising alternative to the conventional production of meat, either for direct human consumption or for indirect use as feedstock.
    [Show full text]
  • Observed Termite Activity in Sector 2 in 2009
    Termite Report 2009 Prepared by: Tim Myles, Ph.D. Termite Control Officer Community Design and Development Services, Building Services, City of Guelph COUNTRY CLUB GOLFVIEW R D . GLEN BR OOK D R . ISLIN GTON April, 2010 AVE. FER N D ALE WOOLWICH ST. D ALEBR OOK PL. SPEED RIVER W OOD LAW N R D . W GOLFVIEWRD. W OOD LAW N R D . E W OOD LAW N D EVONSHIRE W IN D SOR ST. CT. C EMETER Y GUELPH JUNCTION RAILWAY FAIRWAY LANE WINDERMERE INVERNESS DR. INVERNESS KINGS ETON PL.ETON BALMOR AL D R . LEY ST. COUNTRY CLUB GOLF C OU R SE C T. BERKLEY PL. WINDSOR SPEED RIVER RIVERVIEW PLACE BALMORALDR. WOOLWICH ST. WOOLWICH W AVER LEY D R . MARILYN DR. KEN SIN GTON ST. D ELTA ST. R IVER SID E PAR K WOLSELEY RD. LAN GSIDST. E VERMONT ST. BAILEY AVE. DAKOTA DR. DAKOTA KENSINGTON ST. KENSINGTON RD N ST. STEVENSON COLLINGWOODST. KENSINGTON ST. KENSINGTON METCALFEST. CLIVE AVE. CLIVE DELHI ST. C ATH C AR T ST. SEN IOR BEATTIE ST BEATTIE LILAC PL. C EN TR E SPEED RIVER SH AFTESBU R Y AVE. KATHLEEN ST. KATHLEEN BAILEY AVE. BAILEY FREEMAN AVE. FREEMAN WAVERLY DR. WAVERLY DUMBARTON ST. DUMBARTON VICTORIA RD. N RD. VICTORIA KNIGHTSWOOD BLVD. KNIGHTSWOOD SHERIDAN ST. SHERIDAN FR EEMAN AVE. RIVERVIEW DR. ST. DUMBARTON RIVERSIDE PARK SU MAC PL. BRIGHTON ST. BRIGHTON KITCHENER AVE. ST. RENFIELD GEMMEL NELSON RD. LN. AVE. GLAD STON E AVE. MARLBOROUGH GLADSTONE SPEEDVALE AVE. E ACORN PL. CHESTER ST. CT SHERWOOD DR. ALEXANDRA KNIGHTSWOOD MANHATTAN BLVD.
    [Show full text]
  • Analytic Hierarchy Process Prioritized Pest List
    Analytic Hierarchy Process Prioritized Pest List For FY 2009 Overview The Analytic Hierarchy Process (AHP) Prioritized Pest List for 2009 is a ranked list of 108 pests that are expected to cause damage to agricultural and/or natural resources if introduced into the United States. The prioritized pest list includes arthropods, pathogens, weeds, mollusks, and nematodes. We obtained pests from various sources (see tab Pest Sources for AHP PPL ). Subject matter experts in biology, economics, and agricultural quarantine inspection evaluated each pest against a weighted set of criteria. We grouped the criteria into the following categories: entry potential, establishment potential, potential for post-establishment proliferation and spread, economic impact , and non-economic impact. By combining the extent to which a pest fulfilled the set of criteria (determined by subject matter experts) with the criteria weights (determined by the National CAPS Committee), each pest received a score. The result is the prioritized pest list shown on tab AHP PPL_Prioritized . New for 2009 A new set of guidelines for pest listing was applied to the 2009 AHP Prioritized Pest List: Pests cannot be established in the conterminous United States (even if the distribution is limited) Pests cannot be considered non-reportable by PPQ Still in effect: Program pests with funding for national survey are not included in the AHP Prioritized Pest List We made the following changes to the 2009 AHP Prioritized Pest List: By applying the above guidelines, we removed 47 pests
    [Show full text]
  • This Is Only a Guide of Animals That MAY Be Legal in a State. Due to The
    OREGON LEGAL PET GUIDE POSSESS IMPORT TAKE COMMENTS This is only a guide of animals that MAY be legal in a state. Due to the extensive amount of laws involved that are constantly changing, UAPPEAL cannot guarantee the accuracy of the information. Users are responsible for checking all laws BEFORE getting an animal. Legal as Pets as Legal ODFWPermit Pets for Legal ODFWPermit Permit Ag Pets for Legal ARACHNID, CENTIPEDE, MILLIPEDE Fungus Gnat Killer (various) No No No Approved Invertebrate List - Not approved for pets/pet food Millipede, Desert Yes No Yes No No NA Approved Invertebrate - legal pets; Import - See Ag Millipede, Giant African (Thyropygus ) Yes No Yes No No NA Approved Invertebrate - legal pets; Import - See Ag Millipede, Giant African Black Yes No Yes No No NA Approved Invertebrate - legal pets; Import - See Ag Millipede, Round-backed (Spirobolus ) No No No Approved Invertebrate List - Not approved for pets/pet food Mite, Bindweed Gall No No No Approved Invertebrate List - Not approved for pets/pet food Mite, Cyclamen No No No Approved Invertebrate List - Not approved for pets/pet food Mite, Dried Fruit No No No Approved Invertebrate List - Not approved for pets/pet food Mite, Dust No No No Approved Invertebrate List - Not approved for pets/pet food Mite, Flour No No No Approved Invertebrate List - Not approved for pets/pet food Mite, Gorse Spider No No No Approved Invertebrate List - Not approved for pets/pet food Mite, Mold No No No Approved Invertebrate List - Not approved for pets/pet food Mite, Predator (various) No No
    [Show full text]
  • Insect Pests in Tropical Forestry, 2Nd Edition
    Insect Pests in Tropical Forestry, 2nd Edition We dedicate this book to our families, Trish, Richard, and Gev, and Ang, Cate, Nick, Richard, and Toby, for their patience and support during the writing of both editions of this book. Insect Pests in Tropical Forestry, 2nd Edition Dr F. Ross Wylie Department of Agriculture, Fisheries and Forestry, Queensland Government, Australia Dr Martin R. Speight Zoology Department, University of Oxford, and St Anne’s College, Oxford, UK CABI is a trading name of CAB International CABI CABI Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © F.R. Wylie and M.R. Speight 2012. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Wylie, F.R. Insect pests in tropical forestry / F. Ross Wylie, Martin R. Speight. -- 2nd ed. p. cm. Includes bibliographical references and index. ISBN 978-1-84593-635-8 (pbk : alk. paper) -- ISBN 978-1-84593-635-5 (hardback : alk. paper) 1. Forest insects--Tropics. 2. Forest insects--Control--Tropics. I. Speight, Martin R. II. Title. SB764.T73W95 2012 595.71734--dc23 2011042626 ISBN-13: 978 1 84593 636 5 (Hbk) 978 1 84593 635 8 (Pbk) Commissioning editor: Rachel Cutts Editorial assistant: Alexandra Lainsbury Production editor: Simon Hill Typeset by SPi, Pondicherry, India.
    [Show full text]
  • Parallel Host Range Expansion in Two Unrelated Cossid Moths Infesting
    Parallel host range expansion in two unrelated cossid moths infesting Eucalyptus nitens on two continents Dawit Tesfaye Degefu1,2, Brett Hurley2,3, Jeff Garnas2,3, Michael J. Wingfield2, Rodrigo Ahumada4 and Bernard Slippers1,2 1Department of Genetics, University of Pretoria, Pretoria, South Africa 2 Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa 3Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa 4Bioforest S.A., Casilla 70-C, Concepción, Chile Abstract. 1. Two cossid moths, Coryphodema tristis and Chilecomadia valdiviana, have recently become pests on Eucalyptus nitens in South Africa and Chile, respectively. Both C. tristis and C. valdiviana have large host ranges and high levels of similarity in their host distributions. Their infestations of E. nitens are the first records of these moths on Myrtaceae. 2. The contemporaneous adoption of E. nitens as a novel host, despite widespread availability of native and introduced Myrtaceae, suggests a non-random pattern of invasion. Phylogenetic relatedness among the two species linked to cryptic invasion of one or both moths at some time in the recent past provides a possible explanation for this pattern. 1 3. To test this hypothesis, variation in mtDNA sequences for the COI gene of C. tristis and C. valdiviana were analyzed. The COI mtDNA sequence data showed that C. tristis and C. valdiviana are highly divergent genetically, indicating that both are native on their respective continents with independent evolutionary trajectories. 4. The parallel host range expansions to E. nitens on different continents appear to be unrelated events, likely driven by characteristics of the biology and / or ecology of the host.
    [Show full text]