HISTOLOGY, CYTOLOGY and EMBRYOLOGY (A Course of Lectures)

Total Page:16

File Type:pdf, Size:1020Kb

HISTOLOGY, CYTOLOGY and EMBRYOLOGY (A Course of Lectures) HISTOLOGY, CYTOLOGY AND EMBRYOLOGY (a course of lectures) CONTENTS: Lecture 1. Origin and Subiect Matter of Histology (V.L. Goryachkina) 2 Lecture 2. Membranous and Nonmembranous Organelles (V.L .Goryachkina) 5 Lecture 3. Nucleus and Cell Cycle (V.L. Goryachkina) 8 Lecture 4. Introduction to Tissues and Tissue Development. Initial Stages of Embryonic Development (T.V. Boronikhina) 10 Lecture 5. Epithelial Tissue (S.L. Kuznetsov) 13 Lecture 6. Blood and Lymph (T.V. Boronikhina) 17 Lecture 7. Connective Tissues (V.L. Goryachkina) 21 Lecture 8. Cartilage and Bone (T.V. Boronikhina) 26 Lecture 9. Muscle Tissues (V.L. Goryachkina) 30 Lecture 10. Nervous Tissue – I (S.L. Kuznetsov) 33 Lecture 11. Nervous Tissue – II (S.L. Kuznetsov) 35 Lecture 12. Nervous System – I (S.L. Kuznetsov) 37 Lecture 13. Nervous System – II (S.L. Kuznetsov) 39 Lecture 14. Primary Sentient Sense Organs: The Eye and the Organ of Smell (T.V. Boronikhina) 41 Lecture 15. Secondary Sentient Sense Organs: The Ear and the Organ of Taste (T.V. Boronikhina 46 Lecture 16. Cardiovascular System – I (V.L. Goryachkina) 49 Lecture 17. Cardiovascular System – II (V.L. Goryachkina) 52 Lecture 18. Central Organs of Hemopoiesis: Red Bone Marrow and Thymus(V.L. Goryachkina) 56 Lecture 19. Peripheral Organs of Hemopoiesis and Immunogenesis (V.L. Goryachkina) 60 Lecture 20. Endocrine System – I (S.L. Kuznetsov) 63 Lecture 21. Endocrine System – II (S.L. Kuznetsov) 66 Lecture 22. Gastrointestinal Tract – I (S.L. Kuznetsov) 69 Lecture 23. Gastrointestinal Tract – II (S.L. Kuznetsov) 72 Lecture 24. Gastrointestinal Tract – III (S.L. Kuznetsov) 74 Lecture 25. Respiratory System (V.L. Goryachkina) 76 Lecture 26. Integumentary System: Skin and Its Appendages (V.L. Goryachkina) 79 Lecture 27. Urinary System (S.L. Kuznetsov) 83 Lecture 28. Male Reproductive System (T.V. Boronikhina) 86 Lecture 29. Female Reproductive System – I (T.V. Boronikhina) 90 Lecture 30. Female Reproductive System – II (T.V. Boronikhina) 94 Lecture 31. Human Embryology – I (T.V. Boronikhina) 98 Lecture 32. Human Embryology – II (T.V. Boronikhina) 101 Lecture 1 The Origin and the Subiect Matter of Histology (V.L. Goryachkina) From its derivation, the word “histology” (the Greek histos – tissue, logia – study or science of) means the science of tissues. But what is a tissue? This was derived from the French tissu, which means a weave or texture. It was introduced in the language of biology by Bichat (1771-1802). He wrote a book on the tissues of the body, in which he named more than 20 tissues. However, he did not use the microscope to classify them. Seventeen years after Bichat’s death the term “histology” was coined by the microscopist Meier, who used microscopy for describing tissues. It was established that there were only four basic tissues: epithelium, connective tissue, muscle tissue, and nervous tissue. In the 17th century Robert Hooke built a compound microscope. He examined a thin slice of cork and observed that it was composed of tiny empty compartments. He named the small compartmenTS-cells. Subsequently, other biologists studied plant tissue with a microscope, and it became obvious that in living plants the small compartments contained a little jelly-like body. Furthermore, as animal tissues were studied by microscopy, it became obvious that they were composed of tiny jelly-like bodies. So by 1839, the cell doctrine was postulated independently by Schleiden and Schwann. The microscope revealed the cell to have two main parts. Living cells have a more or less central part. This central part was named its nucleus (the Latin nux - nut), because it reminded of a nut lying in the center of its shell. For the same reason the Greek prefix “kary” (the Greek karyon - nut) may also be used in words with reference to the nucleus. For example, the dissolution of the nucleus as a cell dies is called karyolysis (the Greek lysis denotes dissolution). A membrane was seen to enclose the nucleus, and it was named the nuclear membrane or envelope. One or more rounded, dark-staining bodies in the interior of the nucleus were each called a nucleolus. Tiny granules or clumps of dark-staining material scattered about within the nucleus were called chromatin (the Greek chrom – color) because of their affinity for certain dyes. The outer and generally larger part of the cell was called cytoplasm (the Greek “kytos” denotes something that is hollow or that covers; plasma, something molded). Now it is known that the cytoplasm contains organelles. These organelles lie suspended in the cytoplasmic matrix or cytosol. With the advent of electron microscopy it became possible to observe the cell membrane itself. The cell membrane received the name plasmalemma (derived from the Greek lemma meaning bark) for its resemblance to the bark of trees. Cytoplasm The cytoplasm contains organelles (they are constant structures of the cells) and inclusions (they are inconstant structures). Organelles are described as membranous (membrane-limited) and nonmembranous. A.The membranous organelles include: (1) plasma (cell) membrane; (2) rough-surfaced endoplasmic reticulum (rER); (3) smooth-surfaced endoplasmic reticulum (sER); (4) Golgi apparatus; (5) mitochondria; (6) lyzosomes; (7) peroxysomes; B. The nonmembranous organelles include: (1) ribosomes (both those attached to the rER membrane and those free in the cytoplasm) (2) centrioles (and their derivatives); (3) filaments (of various varieties); (4) microtubules. Microtubules and filaments form the cytoskeleton elements. Cell membrane The cell membrane is not visible under the light microscope, because the total thickness of the cell membrane is about 8 to 10 nm. With the electron microscope it appears as if it is formed of three layers: the outer dark layer, the inner dark layer, and the light layer (between the outer and the inner layers). That is why it was called the trilaminar membrane. Sometimes (with low resolution of electron microscope) we can observe only a dark line. The cell membrane is formed of phospholipids, proteins, and carbohydrates. The poshospholipid molecule is composed of two parts: hydrophobic and hydrophilic lipids. The outer dark layer and the 2 inner dark layer of the cell membrane are due to the presence of phospholipids. Large integral proteins are situated between phospholipids. They extend from one side of the cell membrane (the outer dark layer) to the other (the inner dark layer). Large integral proteins perform important functions in cell metabolism, regulation, and integration. They can serve as receptors of enzymes, a pump, or any combination of these functions. Peripheral proteins form a noncontinuous layer in the lipid layers (outer and inner). Cholesterol molecules are present in the cytoplasmic aspect of the cell membrane. Some carbohydrates are attached to large integral proteins and phospholipids. Carbohydrates attached to phospholipids are termed glycolipids; carbohydrates attached to proteins are termed glycoproteins. Glycolipids and glycoproteins form a cell coat or glycocalyx. This outer layer may be very thick or thin, depending on the cell function. Functions of the glycocalyx: 1. It takes part: (a) in cell recognition; (b) in the formation of intercellular adhesion (aids in holding adjacent cells together); (c) in adsorption of molecules to the cell surface. 2. It serves as receptor sites for hormones. Functions of the cell membrane: (1) Passive diffusion of small molecules. The cell membrane can allow dissolved gases, essential ions, and oxygen to pass into the cell. It also allows carbon dioxide and other metabolic wastes to leave the cell; (2) Active transport. In order to pass through the cell membrane, large molecules such as sugar, amino acids, and fatty acids should be combined with some catalysts. This combination requires energy. That is why this transport was termed active. (3) Selective transport. The presence of the receptors on the outer surface of the cell membrane allows it to select and determine which materials can enter the cell and which substances are to leave the cell; (4) Transport of different material by endocytosis is the process of vesicular transport when it involves substances entering the cell. Two forms of endocytosis are recognized: phagocytosis (the Greek for cell eating). For example, the ingestion of bacteria or other cells. pinocytosis (the Greek for cell drinking). For example, the ingestion of bulk fluid. Phagocytosis: Pinocytosis: When a solid particle comes in contact with the The plasma membrane invaginates to form small cell membrane, the membrane gradually pits or caveolae. Gradually these pits will surrounds the particle from all it sides, forming a separate from the cell membrane. They have bag. This bag is pinched off from the cell been referred to as pinocytosis vesicles. membrane and moves inside the cytoplasm. It is called a phagosome. (5) Vesicular transport by exocytosis. Exocytosis is the name given to the process of vesicular transport when it involves substance leaving the cell. For example: the liver produces a very low density lipoprotein (VLDL), which is released to the blood through exocytosic vesicles. VLDL is a component of blood serum that controls the dispersal of serum lipids, a factor important in the development of atherosclerosis. (6) Sodium–potassium pump function. The cell membrane is continually pumping sodium ions to the outside of the cell. As a result the concentration of sodium is higher in the tissue fluid than in the cytoplasm. The concentration of potassium ions is higher in the cytoplasm than in the tissue fluid. The sodium–potassium pump is responsible for the cell membrane polarization. It keeps the cell membrane with a positive charge on the outside and with a negative charge on the inside. Cell membrane modifications The cell membrane is fluid and a dynamic system, not a static structure. It participates in the functional and metabolic activities of the cell. It forms special structures (microvilli and cilia) and junctions. (1) Microvilli.
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Histology Histology
    HISTOLOGY HISTOLOGY ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA NATIONAL MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Серія заснована в 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) The series is initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 1 L. V. Arnautova O. A. Ulyantseva HISTÎLÎGY A course of lectures A manual Odessa The Odessa National Medical University 2011 UDC 616-018: 378.16 BBC 28.8я73 Series “Medical Student’s Library” Initiated in 1999 Authors: L. V. Arnautova, O. A. Ulyantseva Reviewers: Professor V. I. Shepitko, MD, the head of the Department of Histology, Cytology and Embryology of the Ukrainian Medical Stomatologic Academy Professor O. Yu. Shapovalova, MD, the head of the Department of Histology, Cytology and Embryology of the Crimean State Medical University named after S. I. Georgiyevsky It is published according to the decision of the Central Coordinational Methodical Committee of the Odessa National Medical University Proceedings N1 from 22.09.2010 Навчальний посібник містить лекції з гістології, цитології та ембріології у відповідності до програми. Викладено матеріали теоретичного курсу по всіх темах загальної та спеціальної гістології та ембріології. Посібник призначений для підготовки студентів до практичних занять та ліцензійного екзамену “Крок-1”. Arnautova L. V. Histology. A course of lectures : a manual / L. V. Arnautova, O. A. Ulyantseva. — Оdessa : The Оdessa National Medical University, 2010. — 336 p. — (Series “Medical Student’s Library”). ISBN 978-966-443-034-7 The manual contains the lecture course on histology, cytology and embryol- ogy in correspondence with the program.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Effects of Altering Titin Expression on Myofibril Assembly in a Skeletal Muscle Cell Line Qunfeng Dong Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Effects of altering titin expression on myofibril assembly in a skeletal muscle cell line Qunfeng Dong Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Cell Biology Commons Recommended Citation Dong, Qunfeng, "Effects of altering titin expression on myofibril assembly in a skeletal muscle cell line " (2000). Retrospective Theses and Dissertations. 12680. https://lib.dr.iastate.edu/rtd/12680 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this rBproduction is dependent upon the quality of the copy submitted. Broicen or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did rrat send UMI a complete manuscript and there are missing pages, these will t>e noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Histology -2Nd Stage Dr. Abeer.C.Yousif
    Dr. Abeer.c.Yousif Histology -2nd stage What is histology? Histology is the science of microscopic anatomy of cells and tissues, in Greek language Histo= tissue and logos = study and it's tightly bounded to molecular biology, physiology, immunology and other basic sciences. Tissue: A group of cells similar in structure, function and origin. In tissue cells may be dissimilar in structure and functions but they are always similar in origin. Classification of tissues: despite the variations in the body the tissues are classified into four basic types: 1. Epithelium (epithelial tissue) covers body surfaces, line body cavities, and forms glands. 2. Connective tissue underlies or supports the other three basic tissues, both structurally and functionally. 3. Muscle tissue is made up of contractile cells and is responsible for movement. 4. Nerve tissue receives, transmits, and integrates information from outside and inside the body to control the activities of the body. Epithelium General Characterizes of epithelial tissues: 1. Cells are closed to each other and tend to form junctions 2. Little or non-intracellular material between intracellular space. 3. Cell shape and number of layers correlate with the function of the epithelium. 4. Form the boundary between external environment and body tissues. 5. Cell showed polarity 6. Does not contain blood vesicle (vascularity). 7. Mitotically active. 8. Rest on basement membrane (basal lamina). 9. Regeneration: because epithelial tissue is continually damage or lost. 10. Free surface: epithelial tissue always has apical surface or a free adage. Dr. Abeer.c.Yousif Histology -2nd stage Method of Classification epithelial tissue 1- Can be classified according to number of layer to two types: A.
    [Show full text]
  • Electrical Stimulation Attenuates Morphological Alterations
    ORIGINAL ARTICLE Electrical stimulation attenuates morphological alterations and prevents atrophy of the denervated cranial tibial muscle Eletroestimulação atenua alterações morfológicas e previne atrofia do músculo tibial cranial desnervado Cleuber Rodrigo de Souza Bueno1, Mizael Pereira2, Idvaldo Aparecido Favaretto Junior2, Carlos Henrique Fachin Bortoluci1, Thais Caroline Pereira dos Santos1, Daniel Ventura Dias3, Letícia Rossi Daré3, Geraldo Marco Rosa Junior1 ABSTRACT ratos Wistar, distribuídos em quatro grupos: Grupo Controle Inicial, Objective: To investigate if electrical stimulation through Russian Grupo Controle Final, Grupo Experimental Desnervado Tratado, Grupo current is able to maintain morphology of the cranial tibial muscle Experimental Desnervado. A eletroestimulação foi realizada com um of experimentally denervated rats. Methods: Thirty-six Wistar rats protocolo de corrente russa aplicada três vezes por semanas, durante were divided into four groups: the Initial Control Group, Final Control 45 dias. Ao final, os animais foram eutanasiados e, em seguida, Group, Experimental Denervated and Treated Group, Experimental foram realizadas as análises histológica e morfométrica. Os dados Denervated Group. The electrostimulation was performed with a foram submetidos à análise estatística, com nível de significância protocol of Russian current applied three times per week, for 45 de p<0,05. Resultados: Os Grupos Experimental Desnervado e days. At the end, the animals were euthanized and histological and o Grupo Experimental Desnervado
    [Show full text]
  • Aandp2ch25lecture.Pdf
    Chapter 25 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Introduction • Most nutrients we eat cannot be used in existing form – Must be broken down into smaller components before body can make use of them • Digestive system—acts as a disassembly line – To break down nutrients into forms that can be used by the body – To absorb them so they can be distributed to the tissues • Gastroenterology—the study of the digestive tract and the diagnosis and treatment of its disorders 25-2 General Anatomy and Digestive Processes • Expected Learning Outcomes – List the functions and major physiological processes of the digestive system. – Distinguish between mechanical and chemical digestion. – Describe the basic chemical process underlying all chemical digestion, and name the major substrates and products of this process. 25-3 General Anatomy and Digestive Processes (Continued) – List the regions of the digestive tract and the accessory organs of the digestive system. – Identify the layers of the digestive tract and describe its relationship to the peritoneum. – Describe the general neural and chemical controls over digestive function. 25-4 Digestive Function • Digestive system—organ system that processes food, extracts nutrients, and eliminates residue • Five stages of digestion – Ingestion: selective intake of food – Digestion: mechanical and chemical breakdown of food into a form usable by
    [Show full text]
  • Recovery of Skeletal Striated Muscle Tissue in a Model of Reversible Injury
    Salazar and Rosero, Biol Med (Aligarh) 2017, 9:5 DOI: 10.4172/0974-8369.1000411 Biology and Medicine Research Article Open Access Recovery of Skeletal Striated Muscle Tissue in a Model of Reversible Injury Nicolas Salazar and Doris Haydee Rosero* Universidad Icesi, Cali, Valle del Cauca, Colombia *Corresponding author: Doris Haydee Rosero-Salazar, Department of Medical Basic Sciences, Universidad Icesi, Cali, Valle del Cauca, Colombia, Tel: +573183761429; E-mail: [email protected] Received date: April 30, 2017; Accepted date: August 01, 2017; Published date: August 08, 2017 Copyright: © 2017 Salazar N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Abstract Reversible injury is a dynamic condition in tissues exposed to multiple harm situations including ischemia and post-ischemic recovery, in which the skeletal striated muscle tissue evidences histopathological characteristics to adapt to damage. During the inflammation and the regeneration phases of healing, the myocytes show morphological changes with an apparently complete recovery at the end of the treatment. Though the satellite cells play a key role in the recovery, not in all cases the regeneration is completely achieved. That is why in this research we measured the histopathological patterns evidenced by enzyme histochemistry and morphometric measurements, during the spontaneous recovery of skeletal muscle fibers underwent to short periods of ischemia of one and three hours and prolonged periods of reperfusion up to 32 days (768 hours). The selected muscles were the extensor carpi radialis longus and the soleus from Wistar rats.
    [Show full text]
  • Histochemical Characterization and Distribution of Mucosubstances and Enzyme Activity in the Lingual Salivary B
    Retour au menu BIOLOGIE Histochemical characterization and distribution of mucosubstances and enzyme activity in the lingual salivary B. M. Jarrar l glands of the one-humped came1 N. T. Taib 1 l(Camelus dromedarius) JARRAR (B. M.), TAIB (N. T.). Caractérisation histochimique et MATERIAL AND METHODS localisation des mucosubstances et leur activité enzymatique dans les landes salivaires du dromadaire (Camelus dromedurius). Revue i lev Méd. vét. Puys trop., 1989, 42 (1) : 63-71. The heads of sixteen adult camels, 9 males and 7 Des recherches histologiques et histochimiques ont été effectuées sur les glandes salivaires du dromadaire (Camelus dromedarius) afin d’en females, each immediately were removed following déterminer les structures et la répartition, la composition chimique et slaughter at the Riyadh abattoir. The whole tongue of les activités enzymatiques. Des glandes de Weber et des glandes de von each animal was divided into small pieces and were Ebner ont été trouvées dans la langue du dromadaire, mais les glandes apicales de Nünh étaient absentes. Les glandes de von Ebner se sont quickly immersed into containers each with one of the révélées séromuqueuses et d’architecture tubulo-acineuse ; elles sécrè- following fixatives : cold (4 “C) 10 p. 100 buffered for- tent des mucosubstances neutres, des sialomucines et un peu de malin (pH 7.8) with 2 p. 100 calcium acetate, alcoholic sulfomucines. Les glandes de Weber sont mucoséreuses et de type Bouin’s fluid, Rossman’s fluid and Zenker’s fluid. They tubulaire ; elles sécrètent des mucosubstances neutres, des sialomuci- nes et des sulfomucines résistantes à la hyaluronidase. Ces deux types were thoroughly washed in running water and proces- de glandes ont montré une activité enzymatique variable pour les sed for sectioning at 5-6 prn thickness.
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]
  • General Anatomy of Gastro-Intestinal System
    General Anatomy of Gastro-IntesTinal System The teeth, Oral cavity, Tongue, Salivary glands, Pharynx. Their vessels and innervation IKIvo Klepáček Primordium of the alimentary canal (GastroInTestinal Canal) GIT devel– systema gastropulmonale – it develops from the embryonal intestine (entoderm) ; lower respiratory structurses are splitted from intewstine as a tracheobronchial pouch Ventral (head) intestine part is added to ectodermal pouch called stomodeum, caudal part of the intestine is added to ectodermal pouch called proctodeum Division of the alimentary tract: 1) oral ectodermal segment 2) main entodermal segment 3) caudal ectodermal segment děivision of the main segment: ventral gut (foregut – to biliary duct opening) middle gut (midgut – to 2/3 colon) IKdorsal gut (hindgut – to upper part of the anal canal Digestive System: Oral cavity (ectodermal origin) The gut and ist derivatives (entodermal origin) is devided in four sections: 1. Pharyngeal gut or pharynx 2. Foregut - esophagus, stomach, ¼ of duodenum, liver and gallblader, pancreas 3. Midgut – ¾ of duodenum, jejujnum, ilium, colon caecum, colon ascendens and 2/3 of colon transversum 4. Hindgut – 1/3 of colon transversum, colon descendens, colon sigmoideum, colon rectum, IKcanalis analis IK Alimentary tube (canal) - general structure – tunica mucosa (mucous membrane 1 • epithelium • lamina propria mucosae (lymph tissue) • lamina muscularis mucosae – tunica submucosa (submucous layer) – vessels, erves (plexus submucosus Meissneri) – tunica muscularis externa 7 (outer
    [Show full text]
  • The Regeneration and Transplantation of Entire Skeletal Muscles in Mammals*
    Chapter 3 THE REGENERATION AND TRANSPLANTATION OF ENTIRE SKELETAL MUSCLES IN MAMMALS* BRUCE M. CARLSON HE FIRST ACCURATE descriptions of skeletal muscle regeneration were T made well over a century ago (Waldeyer, 1865; Weber, 1867; Volk­ mann, 1893), but during the early years of the twentieth century state­ ments that skeletal muscle does not regenerate crept into the English pathology and surgical literature and have persisted with remarkable tenacity. The modern era of research on muscle regeneration began with the work on restoration of ischemic muscle in rabbits by Le Gros Clark during World War II (Le Gros Clark, 1946; Le Gros Clark and Blomfield, 1945). Subsequently, two developments were influential in shaping the course of much subsequent work on muscle regeneration. One was the discover y by Mauro (1961) of the muscle satellite cell, a nondescript mononuclear cell located between a skeletal muscle fiber and its surrounding basal lamina. The satellite cell was postulated to be a possible precursor cell for regenerating skeletal muscle. After almost two decades of often acrimo­ nious debate (see Mauro et al., 1970, 1979), the satellite has been demon­ strated to be a source of myogenic cells in regenerating mammalian muscl e (Snow, I 977a, b). Whether or not it is the sole source of myoblasts in regenerating mammalian muscle remains to be determined. There is still no definite information on the source of regenerating muscle cells in amphibian limb regeneration. The other major development that set the stage for much of the contem­ porary work in the field was the demonstration by Studitsky (1952, 1959) that entire muscles in birds and mammals can regenerate from minced fragments.
    [Show full text]