AN ABSTRACT of the THESIS of Nicholas C. Mehmel for the Degree

Total Page:16

File Type:pdf, Size:1020Kb

AN ABSTRACT of the THESIS of Nicholas C. Mehmel for the Degree AN ABSTRACT OF THE THESIS OF Nicholas C. Mehmel for the degree of Master of Science in Geology presented on September 15, 2020 Title: Assessment of Extraterrestrial Tracers Ir, Pt and 3He in Polar Ice Cores Abstract Approved: ____________________________________________ Edward J. Brook This thesis focuses on the investigation of extraterrestrial tracers Ir, Pt and 3He in polar ice cores. These tracers may Be used to identify characteristics of interplanetary dust particles, and to quantify the flux of extraterrestrial material during impact events, certain volcanic eruptions, and staBle Background periods. In the first chapter I present novel Ir and Pt concentration records in ice cores from Summit Greenland, spanning the Tambora eruption of 1815 and the Tunguska impact event of 1908. A significant Pt signal is observed within a year of the TamBora eruption, But no oBserved signal is associated with the Tunguska event. Also presented here is a direct comparison between two estaBlished chemical digestion procedures, to assess what portions of the Ir and Pt signal are captured By each. An average Ir concentration of ~0.4 fg/g and average Pt concentration of ~15.7 fg/g are recorded, suggesting a total flux of interplanetary dust particles Between 43.5 – 217 metric tons/day on Earth. In the second chapter, I present 3He concentrations in very large ice samples (3+ kg) from Taylor Glacier, Antarctica, and report an average concentration among 7 samples of 5.32 x 10-17 ccSTP/g, with 3 4 3 4 an average He/ He ratio of 98.77 RA (SD: 34.4 RA), where RA is the atmospheric He/ He ratio comparaBle to stratospheric IDPs. Size fraction experiments and magnetic separation experiments were also performed on 3He- bearing particles in ice samples, and several bulk ice 3 4 samples recorded He/ He ratios over 200 RA. © Copywrite by Nicholas C. Mehmel September 15, 2020 All Rights Reserved Assessment of Extraterrestrial Tracers Ir, Pt and 3He in Polar Ice Cores by Nicholas C. Mehmel A THESIS submitted to Oregon State University in partial fulfilment of the requirements for the degree of Master of Science Presented September 15, 2020 Commencement June 2021 Master of Science thesis of Nicholas C. Mehmel presented on September 15, 2020 APPROVED: _________________________________________________ Major Professor, representing Geology _________________________________________________ Dean of the College of Earth, Ocean, and Atmospheric Sciences _________________________________________________ Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. ______________________________________________________________________________ Nicholas C. Mehmel, Author ACKNOWLEDGEMENTS I would like to thank my advisor, Ed Brook, for his continued support and encouragement throughout the pursuit of this thesis. His expertise and previous experience working with interplanetary dust particles in ice have helped guide me through this difficult exploratory work. He has served as an excellent mentor and role model, reaching above and beyond my expectations, and teaching me what science research is really about. I also greatly appreciate the help provided by the members of my thesis committee. Dave Graham expertly guided me through the laboratory work on 3He presented here, and treated me like a member of his own lab. We faced many challenges and setbacks while performing our measurements, but his complete mechanical mastery of the furnace, vacuum line and mass spec overcame each one. Brian Haley welcomed me to the Keck Lab with great enthusiasm, and his expert background in wet chemistry and trace metal analyses made PGE measurements possible. Maybe one day we will figure out how to get those Hf columns to work. I owe a huge debt to Chris Russo, whose analytical expertise and countless hours helping me perform ICP-MS measurements taught me more than I could imagine about trace metal analyses. Chris performed all PGE measurements during the COVID-19 pandemic, which I can never fully repay him for. I want to thank Ed, Dave, Brian, and Chris, as well as Jesse Muratli, specifically for their logistical and emotional support following the Burt Hall fire of November, 2018. My proximity to the event, and the extreme setbacks it presented, left a heavy mental toll on me. Their timely support and encouragement kept me on track. I must thank Philip Place from Rochester, as well as Geoff Hargreaves from the NSF Ice Core Facility, for retrieving and sending me the relevant ice samples. A great thanks to Monica Arianza and Joe McConnell at DRI for their excellent work dating and providing chemistry on Summit ice. Thank you to Andy Menking and Mike Kalk, for providing me with unique ice samples, and helping me with various tasks in the freezer. And a great thanks to all my friends in the CEOAS community, who helped make this project a success. A resounding thank you must be paid to the Comer Family Foundation, for their generous financial support dedicated to the PGE portion of this research. CONTRIBUTION OF AUTHORS Three co-authors are specified in Chapter 1 of this thesis. Ed Brook provided the impetus for this PGE project by expanding on his previous pilot studies. He provided significant guidance with chapter organization and completed a large portion of chapter editing. Brian Haley helped conceptualize and implement laboratory methods for the project in the OSU Keck Lab, and collaborated on experimental design. Joe McConnell from DRI provided the continuous flow chemistry data presented and is responsible for the age model we used for ice samples. Two co-authors are specified in Chapter 2 of this thesis. Ed Brook provided the impetus for this 3He project as well, building on two previous published works investigating He isotopes in ice cores. He provided the bulk of editing for this chapter. Dave Graham, who runs the noble gas geochemistry lab at OSU, helped design the project and individual experiments from the start. We collaborated closely to perform all 3He measurements presented here. 1 TABLE OF CONTENTS CHAPTER 1: IRIDIUM AND PLATINUM ACCRETION IN POLAR ICE: RECORDS FROM SUMMIT, GREENLAND SPANNING THE TAMBORA ERUPTION OF 1815 AND TUNGUSKA IMPACT OF 1908 Page 1.1 ABSTRACT ........................................................................................................................................................ 2 1.2 INTRODUCTION ................................................................................................................................................ 2 1.2.1 Background: IDP Flux and Entry Heating Process ....................................................................................... 3 1.2.2 Terrestrial Archives, IDP Composition, and Previous Work Towards ET Tracers .......................................... 5 1.2.3 Strong HF Acid Digestion vs. Weak HNO3 Suspension Methods ................................................................. 8 1.2.4 Younger Dryas Boundary Impact Hypothesis ............................................................................................. 9 1.2.5 Volcanic PGE Input ...................................................................................................................................10 1.2.6 Tambora & Tunguska Events ....................................................................................................................13 1.2.7 Research Significance and Primary Research Goals ...................................................................................14 1.3 METHODS .......................................................................................................................................................16 1.3.1 Sample Collection and Dating ...................................................................................................................16 1.3.2 Cutting Procedure ....................................................................................................................................17 1.3.3 Sample Cleaning and Pre-Concentration Procedure ..................................................................................17 1.3.4 Digestion Procedures- Strong HF Digestion ...............................................................................................18 1.3.5 Digestion Procedure- Weak HNO3 Digestion .............................................................................................19 1.3.6 Procedural Blanks ....................................................................................................................................20 1.3.7 PGE and REE Measurement Methods .......................................................................................................20 1.3.8 Method Modification Due to Laboratory Fire ...........................................................................................21 1.3.9 Test of Separating REEs from PGEs Using Column Chemistry ....................................................................22 1.3.10 Oxide Interferences ...............................................................................................................................23 1.3.11 Reducing Blanks & Teflon Digestion Vessel Cleaning Procedures.............................................................25 1.3.12 Data Reduction: Corrections and Uncertainty .........................................................................................26
Recommended publications
  • Pleistocene Organic Matter Modified by the Hiawatha Impact, Northwest Greenland Adam A
    https://doi.org/10.1130/G47432.1 Manuscript received 23 January 2020 Revised manuscript received 2 April 2020 Manuscript accepted 8 April 2020 © 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 29 May 2020 Pleistocene organic matter modified by the Hiawatha impact, northwest Greenland Adam A. Garde1, Anne Sofie Søndergaard2, Carsten Guvad1, Jette Dahl-Møller3, Gernot Nehrke4, Hamed Sanei2, Christian Weikusat4, Svend Funder3, Kurt H. Kjær3 and Nicolaj Krog Larsen3 1 Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen K, Denmark 2 Lithospheric Organic Carbon (LOC) Group, Department of Geoscience, Aarhus University, Høegh Guldbergs Gade 2, 8000 Aarhus, Denmark 3 Globe Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K, Denmark 4 Alfred Wegener Institute, Am Handelshafen, 27570 Bremerhaven, Germany ABSTRACT an iron meteorite (Kjær et al., 2018). The bulk The 31-km-wide Hiawatha impact crater was recently discovered under the ice sheet mineral assemblage and chemical composi- in northwest Greenland, but its age remains uncertain. Here we investigate solid organic tion of the sand indicate sourcing from gran- matter found at the tip of the Hiawatha Glacier to determine its thermal degradation, ulite-grade rocks similar to Paleoproterozoic provenance, and age, and hence a maximum age of the impact. Impactite grains of micro- paragneiss exposed in the ice-free foreland brecchia and shock-melted glass in glaciofluvial sand contain abundant dispersed carbon, to the crater (locally including sulfidic parag- and gravel-sized charcoal particles are common on the outwash plain in front of the crater.
    [Show full text]
  • The Universe Contents 3 HD 149026 B
    History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture .
    [Show full text]
  • Ice & Stone 2020
    Ice & Stone 2020 WEEK 22: MAY 24-30 Presented by The Earthrise Institute # 22 Authored by Alan Hale This week in history MAY 24 25 26 27 28 29 30 MAY 24, 1981: American astronomer Harold Reitsema and his colleagues, observing from Arizona, detect a possible moon of Neptune during an apparent occultation of a background star. This object was confirmed by Voyager 2 during its flyby of Neptune in August 1989 and is now known as Larissa and designated as Neptune VII. Two views of Larissa, a dark, irregularly shaped moon of Neptune discovered in 1989 by Voyager 2. Courtesy of NASA/JPL. MAY 24, 2001: Comet LINEAR C/2001 A2, the first relatively bright naked-eye comet of the 21st Century, passes through perihelion at a heliocentric distance of 0.779 AU. It is a future “Comet of the Week.” MAY 24 25 26 27 28 29 30 MAY 25, 44 B.C.: According to approximate orbital calculations, the comet known as “Caesar’s Comet” (formally designated C/-43 K1) passes through perihelion at a heliocentric distance of 0.22 AU. It is this week’s “Comet of the Week.” COVER IMAGE CREDIT: Front and back cover: This artist’s conception shows ESA’s proposed Hera Mission to the Didymos binary asteroid system. Hera will carry two CubeSat Opportunity Payloads (COPINS) to support the science goals of the main spacecraft, as well demonstrate deep space inter-satellite link techniques. Courtesy of ESA/ScienceOffice.org. MAY 24 25 26 27 28 29 30 MAY 27, 1894: Arctic explorer Robert Peary, together with Hugh Lee and an Inuit guide named Tallakoteah, locate what is now known as the Cape York meteorite on an island off the northwestern coast of Greenland.
    [Show full text]
  • 10Th 1St 2Nd 3Rd 4Th 5Th 6Th 7Th 8Th 9Th A&M A&P AAA
    10th Agatha Amadeus Apr Auerbach Barr Berglund Boca Brigham Byzantine 1st Agee Amarillo April Aug Barrett Bergman Bodleian Brighton Byzantium 2nd Agnes Amazon Aquarius Augean Barrington Bergson Boeing Brillouin CA 3rd Agnew Amelia Aquila Augusta Barry Bergstrom Boeotia Brindisi CACM 4th Agricola Amerada Aquinas Augustan Barrymore Berkeley Boeotian Brisbane CATV 5th Agway America Arab Augustine Barstow Berkowitz Bogota Bristol CB 6th Ahmadabad American Arabia Augustus Bart Berkshire Bohemia Britain CBS 7th Ahmedabad Americana Arabic Aurelius Barth Berlin Bohr Britannic CCNY 8th Aida Americanism Araby Auriga Bartholomew Berlioz Bois Britannica CDC 9th Aides Ames Arachne Auschwitz Bartlett Berlitz Boise British CEQ A&M Aiken Ameslan Arcadia Austin Bartok Berman Bolivia Briton CERN A&P Aileen Amherst Archer Australia Barton Bermuda Bologna Brittany CIA AAA Ainu Amman Archibald Australis Basel Bern Bolshevik Britten CO AAAS Aires Ammerman Archimedes Austria Bassett Bernadine Bolshevism Broadway CPA AAU Aitken Amoco Arcturus Ave Batavia Bernard Bolshevist Brock CRT ABA Ajax Amos Arden Aventine Batchelder Bernardino Bolshoi Broglie CT AC Akers Ampex Arequipa Avery Bateman Bernardo Bolton Bromfield CUNY ACM Akron Amsterdam Ares Avesta Bates Bernet Boltzmann Bromley CZ ACS Alabama Amtrak Argentina Avis Bathurst Bernhard Bombay Brontosaurus Cabot AK Alabamian Amy Argive Aviv Bator Bernice Bonaparte Bronx Cadillac AL Alameda Anabaptist Argonaut Avogadro Battelle Bernie Bonaventure Brooke Cady AMA Alamo Anabel Argonne Avon Baudelaire Berniece Boniface
    [Show full text]
  • A A&M A&P Aaa Aaas Aardvark Aarhus Aaron Aau Aba Ababa Aback
    a a&m a&p aaa aaas aardvark aarhus aaron aau aba ababa aback abacus abaft abalone abandon abandoned abandoning abandonment abase abased abasement abash abashed abashing abasing abate abated abatement abater abating abba abbas abbe abbey abbot abbott abbreviate abbreviated abbreviating abbreviation abby abc abdicate abdomen abdominal abduct abducted abduction abductor abe abed abel abelian abelson aberdeen abernathy aberrant aberrate aberration abet abetted abetter abetting abeyance abeyant abhor abhorred abhorrent abhorrer abhorring abide abided abiding abidjan abigail abilene ability abject abjection abjectly abjure abjured abjuring ablate ablated ablating ablation ablative ablaze able abler ablest ablution ably abnegation abner abnormal abnormality abnormally abo aboard abode abolish abolished abolisher abolishing abolishment abolition abolitionist abominable abominate aboriginal aborigine aborning abort aborted aborting abortion abortive abortively abos abound abounded abounding about above aboveboard aboveground abovementioned abrade abraded abrading abraham abram abramson abrasion abrasive abreact abreaction abreast abridge abridged abridging abridgment abroad abrogate abrogated abrogating abrupt abruptly abscessed abscissa abscissae abscissas abscond absconded absconding absence absent absented absentee absenteeism absentia absenting absently absentminded absinthe absolute absolutely absolution absolve absolved absolving absorb absorbed absorbency absorbent absorber absorbing absorption absorptive abstain abstained abstainer abstaining
    [Show full text]
  • 1 Journal of Geography and Earth Sciences June 2019, Vol. 7, No. 1, Pp. 78-109 ISSN 2334-2447 (Print) 2334-2455 (Online) Copyr
    Journal of Geography and Earth Sciences June 2019, Vol. 7, No. 1, pp. 78-109 ISSN 2334-2447 (Print) 2334-2455 (Online) Copyright © The Author(s). All Rights Reserved. Published by American Research Institute for Policy Development DOI: 10.15640/jges.v7n1a9 URL: https://doi.org/10.15640/jges.v7n1a9 12,800 years ago, Hellas and the World on Fire and Flood Volker Joerg Dietrich1, Evangelos Lagios2 & Gregor Zographos3 Abstract The controversial large cosmic impact hypothesis (~12,800 years BP) over the Northern Hemisphere explains not only wildfires everywhere but also the rapid cooling of the Younger Dryas by destabilizing and melting parts of the Laurentide and probably Fennoscandian Ice Shield; flooding large parts of North America and draining into the North Atlantic, which caused a slowdown or shutdown of warm water northward. The assumption of an impact origin of the approx. 20 km in diameter and only 100 m deep bowl-shaped size of the Holocene Pagasitic Gulf (Thessaly, central Greece), is based on a large negative gravimetric residual anomaly and Quaternary morphotectonic criteria along its shores, the shape of embankments and mountainous surroundings; such as collapse structures, slumping and landslides. Quaternary surficial cataclastic and brittle deformation from macroscopic to microscopic scale is present in many locations; e.g. micron size close-spaced planar fractures (PF‟s) in quartz and calcite. A modeled 1km comet with a density of 1500kg/m3and an impact velocity of 50km/s fitted best all observed ground parameters that generated airburst overpressures of 242 MPa causing cataclysmic wild fires and subsequent flooding. Keywords: Comet airburst, Younger Dryas, Pagasitic Gulf (Greece), 12,800 years, asteroid impact 1 Institute of Geochemistry and Petrology, Department of Earth Sciences, Swiss Federal Institute of Technology (ETH Zurich, Switzerland) CH 8092 Zurich, Switzerland.
    [Show full text]
  • Master Thesis
    Master Thesis Degree Project in Geology 60 hp Impactites from the Hiawatha crater, North-West Greenland Jacob Gustafsson Stockholm 2020 Department of Geological Sciences Stockholm University SE-106 91 Stockholm Abstract The recent discovery of the 31-km-wide Hiawatha impact crater has raised unanswered questions about its age, impactor and highly unusual organic carbon component. Previous research suggests a fractionated iron meteorite impactor, a probable maximum 3–2.4 Ma impact age and a possible Younger Dryas impact age. The first objective in this study has been to investigate a possible link between the Cape York meteorites and the Hiawatha impact crater by comparing the chromium isotopic signature in chromite from a Cape York meteorite with the chromium isotopic signature in potential chromite from the Hiawatha impactor. The second objective has been to investigate a possible Hiawatha signature in the Younger Dryas deposits from Baffin Bay. The third objective has been to study the organic carbon component in impactites derived from the Hiawatha impact crater. Heavy mineral grains were separated from glaciofluvial sediment which contains Hiawatha impactite grains. Not a single chromite grain was found and the possible link to the Cape York meteorites could not be tested. The petrographic examination of Younger Dryas marine deposits resulted in absence of impact-related Hiawatha grains. A petrological investigation revealed that organic carbon was likely found in five of six variably shocked impactites derived from the Hiawatha impact crater. The character of the organic carbon varies between the samples and also within individual samples. Vitrinite reflectance measurements of the organic carbon in two impactites yielded low reflectance values compared to charcoalification experiments of wood.
    [Show full text]
  • Manfred Gottwald, Thomas Kenkmann, Wolf Uwe Reimold Verlag Dr
    TERRESTRIAL IMPACT STRUCTURES: The TanDEM-X Atlas. Vol.1 and 2. Manfred Gottwald, Thomas Kenkmann, Wolf Uwe Reimold Verlag Dr. Friedrich Pfeil, München 2020, 608 p. ISBN 978-3-89937-261-8 TERRESTRIAL IMPACT STRUCTURES The TanDEM-X Atlas 1 Africa, North/Central America, South America M. Gottwald, T. Kenkmann and W. U. Reimold Verlag Dr. Friedrich Pfeil Manfred Gottwald Thomas Kenkmann Wolf Uwe Reimold TERRESTRIAL IMPACT STRUCTURES The TanDEM-X Atlas 1 Africa, North/Central America, South America Verlag Dr. Friedrich Pfeil · München 2020 ISBN 978-3-89937-261-8 Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar. front cover Vredefort Dome, Meteor Crater, Serra da Cangalha (from left to right). Top row: TanDEM-X topographic maps; bottom row Sentinel-2 RGB images, fused with the TanDEM-X digital elevation model. back cover Top: Meteor Crater (photo: T. Kenkmann); bottom: B.P. structure (photo: W. U. Reimold). print support by and Wolf Uwe Reimold and Manfred Gottwald Copyright © 2020 by Verlag Dr. Friedrich Pfeil, München Alle Rechte vorbehalten – All rights reserved. Dieses Werk ist urheberrechtlich geschützt. Jede Art der Vervielfältigung und Weitergabe, auch auszugsweise und in elektronischer Form, insbesondere im Internet, bedarf der ausdrücklichen Genehmigung durch den Verlag Dr. Friedrich Pfeil. Druckvorstufe: Verlag Dr. Friedrich Pfeil, München Druck: PBtisk a.s., Prˇíbram I – Balonka ISBN 978-3-89937-261-8 Printed in the European Union Verlag Dr. Friedrich Pfeil, Wolfratshauser Straße 27, 81379 München, Germany Tel.: + 49 (0)89 5528600-0 • Fax: + 49 (0)89 5528600-4 • E-Mail: [email protected] www.pfeil-verlag.de Contents Contents Preface .....................................................................
    [Show full text]
  • Geophysical Signature of the Tunnunik Impact Structure, Northwest Territories, Canada Y
    Geophysical signature of the Tunnunik impact structure, Northwest Territories, Canada Y. Quesnel, W. Zylberman, P. Rochette, Minoru Uehara, Jerome Gattacceca, G. Osinski, P. Dussouillez, C. Lepaulard, C. Champollion To cite this version: Y. Quesnel, W. Zylberman, P. Rochette, Minoru Uehara, Jerome Gattacceca, et al.. Geophysical signature of the Tunnunik impact structure, Northwest Territories, Canada. Meteoritics and Planetary Science, Wiley, 2020, 55 (3), pp.480-495. 10.1111/maps.13447. insu-02484453 HAL Id: insu-02484453 https://hal-insu.archives-ouvertes.fr/insu-02484453 Submitted on 25 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License This manuscript has been accepted for publication in Meteoritics and Planetary Science 1 Quesnel, Y. et al. (2020), Geophysical Signature of the Tunnunik Impact Structure, Northwest 2 Territories, Canada. Meteoritics and Planetary Science , 1-16, doi:10.1111/maps.13447 3 4 Geophysical Signature of the Tunnunik Impact Structure, 5 Northwest Territories, Canada 6 7 Y. Quesnel1, W. Zylberman1,2, P. Rochette1, M. Uehara1, J. Gattacceca1, G. R. Osinski2,3, 8 Dussouillez, P.1, Lepaulard, C.1 and C.
    [Show full text]
  • A Large Impact Crater Beneath Hiawatha
    A large impact crater beneath Hiawatha Glacier in northwest Greenland Kurt Kjær, Nicolaj Larsen, Tobias Binder, Anders Björk, Olaf Eisen, Mark Fahnestock, Svend Funder, Adam Garde, Henning Haack, Veit Helm, et al. To cite this version: Kurt Kjær, Nicolaj Larsen, Tobias Binder, Anders Björk, Olaf Eisen, et al.. A large impact crater beneath Hiawatha Glacier in northwest Greenland. Science Advances , American Association for the Advancement of Science (AAAS), 2018, 4 (11), pp.eaar8173. 10.1126/sciadv.aar8173. hal-02392102 HAL Id: hal-02392102 https://hal.archives-ouvertes.fr/hal-02392102 Submitted on 8 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License SCIENCE ADVANCES | RESEARCH ARTICLE GEOLOGY Copyright © 2018 The Authors, some A large impact crater beneath Hiawatha Glacier in rights reserved; exclusive licensee northwest Greenland American Association for the Advancement 1 1,2 3 1,4,5 3,6 of Science. No claim to Kurt H. Kjær *, Nicolaj K. Larsen , Tobias Binder , Anders A. Bjørk , Olaf Eisen , original U.S. Government 7 1 8 9,10 3 Mark A. Fahnestock , Svend Funder , Adam A.
    [Show full text]
  • The Hiawatha Impact Crater Objectives and Conclusions Glaciofluvial Impactite Grains
    Organic carbon from the Hiawatha impact crater, North-West Greenland Adam A. Garde1, Svend Funder2, Carsten Guvad1, Kurt H. Kjær2, Nicolaj Krog Larsen3, Jette Dahl-Møller4, Gernot Nehrke5, Hamed Sanei3, Anne Sofie Søndergaard3 and Christian Weikusat5. 1Geological Survey of Denmark and Greenland (GEUS), Denmark, [email protected], 2Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Denmark, 3Department of Geosience, Aarhus University, Denmark, 4Geobiology and Minerals Section, Natural History Museum, University of Copenhagen, Denmark, 5Alfred Wegener Institute, Bremerhaven, Germany. 20 cm Subfossil, un-charred, ~2.5 Ma old tree trunks up to 2 m long, Gymnosperm subfossil wood Heated carbonaceous particle Microbreccia with carbon in matrix Impact glass showing expulsion Sampling glaciofluvial sand recently washed out from under the ice sheet in adjacent Washington Land from impacted subglacial source of carbon around micro-orbicules washed out from the Hiawatha crater Glaciofluvial The Hiawatha impact crater Objectives and conclusions impactite grains A 77°30’N 80°W 70°W 60°W B • The newly discovered Hiawatha crater has a highly unusual organic carbon content in shock melt glasses, microbreccias, and around shocked quartz grains. Only few Shocked quartz fragment with other impact structures contain appreciable organic carbon (e.g. Gardnos, Haughton, planar deformation Darwin, Popigai, see references). features (PDFs) Washington Land HW21-2016 • Dispersed organic carbon was incorporated in microbreccias and shock melts. Kane Basin Active drainage path 79°N Nares Strait 77°30’N B Humboldt • Solid organic carbon was heated, depleated and homogenised to form particles Inglefield Land glacier with high reflectance (R = 1.0–3.5). Smith Sound Ice margin 0 Hiawatha Kap glacier København Qtz PDFs WHAT IS THE SOURCE OF THIS CARBON AND WHAT CAN IT TELL US? Shocked quartz with Greenland 750 m Ice Sheet Height PDFs and partially Thule • The obvious carbon source is subfossil wood, known from adjacent above Air Ba se melted feldspar.
    [Show full text]
  • Sedimentary Record from Patagonia, Southern Chile Supports Cosmic
    www.nature.com/scientificreports OPEN Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of Received: 27 March 2018 Accepted: 19 December 2018 biomass burning, climate change, Published: xx xx xxxx and megafaunal extinctions at 12.8 ka Mario Pino1,2, Ana M. Abarzúa1,2, Giselle Astorga1,2, Alejandra Martel-Cea1,2, Nathalie Cossio- Montecinos1, R. Ximena Navarro3, Maria Paz Lira4, Rafael Labarca1,2, Malcolm A. LeCompte5, Victor Adedeji6, Christopher R. Moore7, Ted E. Bunch8, Charles Mooney9, Wendy S. Wolbach 10, Allen West11 & James P. Kennett12 The Younger Dryas (YD) impact hypothesis posits that fragments of a large, disintegrating asteroid/ comet struck North America, South America, Europe, and western Asia ~12,800 years ago. Multiple airbursts/impacts produced the YD boundary layer (YDB), depositing peak concentrations of platinum, high-temperature spherules, meltglass, and nanodiamonds, forming an isochronous datum at >50 sites across ~50 million km² of Earth’s surface. This proposed event triggered extensive biomass burning, brief impact winter, YD climate change, and contributed to extinctions of late Pleistocene megafauna. In the most extensive investigation south of the equator, we report on a ~12,800-year-old sequence at Pilauco, Chile (~40°S), that exhibits peak YD boundary concentrations of platinum, gold, high-temperature iron- and chromium-rich spherules, and native iron particles rarely found in nature. A major peak in charcoal abundance marks an intense biomass-burning episode, synchronous with dramatic changes in vegetation, including a high-disturbance regime, seasonality in precipitation, and warmer conditions. This is anti-phased with northern-hemispheric cooling at the YD onset, whose rapidity suggests atmospheric linkage.
    [Show full text]