What's New in Veterinary Anesthesia and Analgesia?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analgesia and Sedation in Hospitalized Children
Analgesia and Sedation in Hospitalized Children By Elizabeth J. Beckman, Pharm.D., BCPS, BCCCP, BCPPS Reviewed by Julie Pingel, Pharm.D., BCPPS; and Brent A. Hall, Pharm.D., BCPPS LEARNING OBJECTIVES 1. Evaluate analgesics and sedative agents on the basis of drug mechanism of action, pharmacokinetic principles, adverse drug reactions, and administration considerations. 2. Design an evidence-based analgesic and/or sedative treatment and monitoring plan for the hospitalized child who is postoperative, acutely ill, or in need of prolonged sedation. 3. Design an analgesic and sedation treatment and monitoring plan to minimize hyperalgesia and delirium and optimize neurodevelopmental outcomes in children. INTRODUCTION ABBREVIATIONS IN THIS CHAPTER Pain, anxiety, fear, distress, and agitation are often experienced by GABA γ-Aminobutyric acid children undergoing medical treatment. Contributory factors may ICP Intracranial pressure include separation from parents, unfamiliar surroundings, sleep dis- PAD Pain, agitation, and delirium turbance, and invasive procedures. Children receive analgesia and PCA Patient-controlled analgesia sedatives to promote comfort, create a safe environment for patient PICU Pediatric ICU and caregiver, and increase patient tolerance to medical interven- PRIS Propofol-related infusion tions such as intravenous access placement or synchrony with syndrome mechanical ventilation. However, using these agents is not without Table of other common abbreviations. risk. Many of the agents used for analgesia and sedation are con- sidered high alert by the Institute for Safe Medication Practices because of their potential to cause significant patient harm, given their adverse effects and the development of tolerance, dependence, and withdrawal symptoms. Added layers of complexity include the ontogeny of the pediatric patient, ongoing disease processes, and presence of organ failure, which may alter the pharmacokinetics and pharmacodynamics of these medications. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig. -
268 Part 522—Implantation Or Injectable Dosage Form
§ 520.2645 21 CFR Ch. I (4–1–18 Edition) (ii) Indications for use. For the control 522.82 Aminopropazine. of American foulbrood (Paenibacillus 522.84 Beta-aminopropionitrile. larvae). 522.88 Amoxicillin. 522.90 Ampicillin injectable dosage forms. (iii) Limitations. The drug should be 522.90a Ampicillin trihydrate suspension. fed early in the spring or fall and con- 522.90b Ampicillin trihydrate powder for in- sumed by the bees before the main jection. honey flow begins, to avoid contamina- 522.90c Ampicillin sodium. tion of production honey. Complete 522.144 Arsenamide. treatments at least 4 weeks before 522.147 Atipamezole. main honey flow. 522.150 Azaperone. 522.161 Betamethasone. [40 FR 13838, Mar. 27, 1975, as amended at 50 522.163 Betamethasone dipropionate and FR 49841, Dec. 5, 1985; 59 FR 14365, Mar. 28, betamethasone sodium phosphate aque- 1994; 62 FR 39443, July 23, 1997; 68 FR 24879, ous suspension. May 9, 2003; 70 FR 69439, Nov. 16, 2005; 73 FR 522.167 Betamethasone sodium phosphate 76946, Dec. 18, 2008; 75 FR 76259, Dec. 8, 2010; and betamethasone acetate. 76 FR 59024, Sept. 23, 2011; 77 FR 29217, May 522.204 Boldenone. 17, 2012; 79 FR 37620, July 2, 2014; 79 FR 53136, 522.224 Bupivacaine. Sept. 8, 2014; 79 FR 64116, Oct. 28, 2014; 80 FR 522.230 Buprenorphine. 34278, June 16, 2015; 81 FR 48702, July 26, 2016] 522.234 Butamisole. 522.246 Butorphanol. § 520.2645 Tylvalosin. 522.275 N-Butylscopolammonium. 522.300 Carfentanil. (a) Specifications. Granules containing 522.304 Carprofen. 62.5 percent tylvalosin (w/w) as 522.311 Cefovecin. -
Euthanasia of Experimental Animals
EUTHANASIA OF EXPERIMENTAL ANIMALS • *• • • • • • • *•* EUROPEAN 1COMMISSIO N This document has been prepared for use within the Commission. It does not necessarily represent the Commission's official position. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int) Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 1997 ISBN 92-827-9694-9 © European Communities, 1997 Reproduction is authorized, except for commercial purposes, provided the source is acknowledged Printed in Belgium European Commission EUTHANASIA OF EXPERIMENTAL ANIMALS Document EUTHANASIA OF EXPERIMENTAL ANIMALS Report prepared for the European Commission by Mrs Bryony Close Dr Keith Banister Dr Vera Baumans Dr Eva-Maria Bernoth Dr Niall Bromage Dr John Bunyan Professor Dr Wolff Erhardt Professor Paul Flecknell Dr Neville Gregory Professor Dr Hansjoachim Hackbarth Professor David Morton Mr Clifford Warwick EUTHANASIA OF EXPERIMENTAL ANIMALS CONTENTS Page Preface 1 Acknowledgements 2 1. Introduction 3 1.1 Objectives of euthanasia 3 1.2 Definition of terms 3 1.3 Signs of pain and distress 4 1.4 Recognition and confirmation of death 5 1.5 Personnel and training 5 1.6 Handling and restraint 6 1.7 Equipment 6 1.8 Carcass and waste disposal 6 2. General comments on methods of euthanasia 7 2.1 Acceptable methods of euthanasia 7 2.2 Methods acceptable for unconscious animals 15 2.3 Methods that are not acceptable for euthanasia 16 3. Methods of euthanasia for each species group 21 3.1 Fish 21 3.2 Amphibians 27 3.3 Reptiles 31 3.4 Birds 35 3.5 Rodents 41 3.6 Rabbits 47 3.7 Carnivores - dogs, cats, ferrets 53 3.8 Large mammals - pigs, sheep, goats, cattle, horses 57 3.9 Non-human primates 61 3.10 Other animals not commonly used for experiments 62 4. -
Alfadolone Acetate (BANM, Rinnm) 362: 1749–57
1780 General Anaesthetics blood, then to the brain; recovery is a function of the zolam, and other anaesthetics such as etomidate, propofol, ful if the patient’s cooperation is required, as conscious- removal of the anaesthetic from the brain. With inject- or ketamine. Small doses of short-acting opioids, for ex- ness soon returns once the nitrous oxide is stopped. The able anaesthetics their activity is similarly dependent ample alfentanil, fentanyl, or remifentanil, given before or neuroleptic most commonly employed was droperidol and on their ability to penetrate the blood/brain barrier and at induction allow the use of smaller induction doses of it was usually used with fentanyl although other opioids recovery in turn is governed by their redistribution and some drugs used for anaesthesia, and this technique is par- have also been used. These procedures have since evolved ticularly suitable for poor-risk patients. into conscious sedation and monitored anaesthetic care excretion. The potency of inhalational anaesthetics is After induction, muscle relaxation with a rapidly acting techniques employing newer drugs. often expressed in terms of minimum alveolar concen- depolarising neuromuscular blocker such as suxamethoni- Ketamine used alone can produce a state of dissociative trations, known as MAC values. The MAC of an um aids intubation of the patient. Longer acting, compet- anaesthesia similar to that of neuroleptanalgesia in which anaesthetic is the concentration at 1 atmosphere that itive neuromuscular blockers may then be given to allow the patient may appear to be awake but is unconscious. will produce immobility in 50% of subjects exposed to procedures such as abdominal surgery to be carried out un- Marked analgesia and amnesia are produced, but there a noxious stimulus. -
G Genito Urinary System and Sex Hormones
WHO/EMP/RHT/TSN/2018.2 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Learning clinical pharmacology with the use of INNs and their stems. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.2). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing. -
(12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO). -
Effects of Alfaxalone Or Propofol on Giant-Breed Dog Neonates Viability
animals Article Effects of Alfaxalone or Propofol on Giant-Breed Dog Neonates Viability During Elective Caesarean Sections Monica Melandri 1, Salvatore Alonge 1,* , Tanja Peric 2, Barbara Bolis 3 and Maria C Veronesi 3 1 Società Veterinaria “Il Melograno” Srl, 21018 Sesto Calende, Varese, Italy; [email protected] 2 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; [email protected] 3 Department of Veterinary Medicine, Università degli Studi di Milano, 20100 Milan, Italy; [email protected] (B.B.); [email protected] (M.C.V.) * Correspondence: [email protected]; Tel.: +39-392-805-8524 Received: 20 September 2019; Accepted: 7 November 2019; Published: 13 November 2019 Simple Summary: Nowadays, thanks to the increased awareness of owners and breeders and to the most recent techniques available to veterinarians, the management of parturition, especially of C-sections, has become a topic of greater importance. Anesthesia is crucial and must be targeted to both the mother and neonates. The present study aimed to evaluate the effect of the induction agent alfaxalone on the vitality of puppies born from elective C-section, in comparison to propofol. After inducing general anesthesia for elective C-section, puppies from the mothers induced with alfaxalone had higher 5-min Apgar scores than those induced with propofol. The concentration of cortisol in fetal fluids collected at birth is neither influenced by the anesthetic protocol used, nor does it differ between amniotic and allantoic fluids. Nevertheless, the cortisol concentration in fetal fluids affects the relationship between anesthesia and the Apgar score: the present study highlights a significant relationship between the anesthetic protocol used and Apgar score in puppies, and fetal fluids cortisol concentration acts as a covariate of this relationship. -
The Cardiorespiratory and Anesthetic Effects of Clinical and Supraclinical
THE CARDIORESPIRATORY AND ANESTHETIC EFFECTS OF CLINICAL AND SUPRA CLINICAL DOSES OF ALF AXALONE IN CYCLODEXTRAN IN CATS AND DOGS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Laura L. Nelson, B.S., D.V.M. * * * * * The Ohio State University 2007 Dissertation Committee: Professor Jonathan Dyce, Adviser Professor William W. Muir III Professor Shane Bateman If I have seen further, it is by standing on the shoulders of giants. lmac Ne1vton (1642-1727) Copyright by Laura L. Nelson 2007 11 ABSTRACT The anesthetic properties of steroid hormones were first identified in 1941, leading to the development of neurosteroids as clinical anesthetics. CT-1341 was developed in the early 1970’s, featuring a combination of two neurosteroids (alfaxalone and alphadolone) solubilized in Cremophor EL®, a polyethylated castor oil derivative that allows hydrophobic compounds to be carried in aqueous solution as micelles. Though also possessing anesthetic properties, alphadolone was included principally to improve the solubility of alfaxalone. CT-1341, marketed as Althesin® and Saffan®, was characterized by smooth anesthetic induction and recovery in many species, a wide therapeutic range, and no cumulative effects with repeated administration. Its cardiorespiratory effects in humans and cats were generally mild. However, it induced severe hypersensitivity reactions in dogs, with similar reactions occasionally occurring in cats and humans. The hypersensitivity reactions associated with this formulation were linked to Cremophor EL®, leading to the discontinuation of Althesin® and some other Cremophor®-containing anesthetics. More recently, alternate vehicles for hydrophobic drugs have been developed, including cyclodextrins. -
Intravenous Alfaxalone Anaesthesia in Two Squamate Species: Eublepharis Macularius and Morelia Spilota Cheynei
INTRAVENOUS ALFAXALONE ANAESTHESIA IN TWO SQUAMATE SPECIES: EUBLEPHARIS MACULARIUS AND MORELIA SPILOTA CHEYNEI Tesi per il XXIX Ciclo del Dottorato in Scienze Veterinarie, Curriculum Scienze Cliniche Veterinarie Dipartimento di Scienze Veterinarie, Universita’ degli Studi di Messina Tutor: Prof. Filippo Spadola Cotutor: Prof. Zdenek Knotek Dr. Manuel Morici Sommario L’anestesia negli Squamati è una costante sfida della medicina e chirurgia dei rettili. Le differenze morfo-fisiologiche di questi taxa, rendono difficilmente applicabile i comuni concetti di anestesiologia veterinaria usati con successo negli altri animali da compagnia. Diversi protocolli anestetici sono stati utilizzati, sia per l’induzione che per il mantenimento, sia negli ofidi che nei sauri, ma con risultati variabili. Di fatti la maggior parte dei protocolli risultano in induzione o recuperi troppo brevi o troppo lunghi. L’obbiettivo di questa tesi dottorale è di valutare l’efficacia di un anestetico steroideo (alfaxalone), somministrato per via endovenosa in due specie di squamati usati come modello: il geco leopardo (Eublepharis macularius) e il pitone tappeto (Morelia spilota cheynei). Due metodi di somministrazione endovenosa (vena giugulare nei gechi e vena caudale nei serpenti) sono stati analizzati e descritti, usando un dosaggio di anestetico di 5 mg/kg in 20 gechi leopardo, e di 10 mg/kg in 10 pitoni tappeto. Nei gechi il tempo di induzione, il tempo di perdita del tono mandibolare, l’intervallo di anestesia chirurgica e il recupero completo sono stati rispettivamente di 27.5 ± 30.7 secondi, 1.3 ± 1.4 minuti, 12.5 ± 2.2 minuti and 18.8 ± 12.1 minuti. Nei pitoni tappeto, il tempo di induzione, la perdita di sensazione, il tempo di inserimento del tubo endotracheale, l’intervallo di anestesia chirurgica e il recupero sono stati rispettivamente di 3.1±0.8 minuti, 5.6±0.7 minuti, 6.9±0.9 minuti, 18.8±4.7 minuti, e 36.7±11.4 minuti. -
Pharmacology/Therapeutics II Block III Lectures 2013-14
Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine -
240 Part 522—Implantation Or Injectable Dosage Form
§ 520.2645 21 CFR Ch. I (4–1–14 Edition) feed; and for the control of porcine pro- (3) Limitations. Federal law restricts liferative enteropathies (PPE, ileitis) this drug to use by or on the order of a associated with Lawsonia intracellularis licensed veterinarian. when followed immediately by tylosin [77 FR 55415, Sept. 10, 2012] phosphate medicated feed. (B) For the treatment and control of PART 522—IMPLANTATION OR swine dysentery associated with Brachyspira hyodysenteriae. INJECTABLE DOSAGE FORM NEW (iii) Limitations. Prepare a fresh solu- ANIMAL DRUGS tion daily. Do not administer within 48 Sec. hours of slaughter. As indicated in 522.23 Acepromazine. paragraph (d)(3)(ii)(A) of this section, 522.52 Alfaxalone. follow with tylosin phosphate medi- 522.56 Amikacin. cated feed as in § 558.625(f)(1)(vi)(c) of 522.62 Aminopentamide. this chapter. 522.82 Aminopropazine. (4) Honey bees—(i) Amount. Mix 200 522.84 Beta-aminopropionitrile. milligrams tylosin in 20 grams confec- 522.88 Amoxicillin. 522.90 Ampicillin injectable dosage forms. tioners’/powdered sugar. Use imme- 522.90a Ampicillin trihydrate suspension. diately. Apply (dust) this mixture over 522.90b Ampicillin trihydrate powder for in- the top bars of the brood chamber once jection. weekly for 3 weeks. 522.90c Ampicillin sodium. (ii) Indications for use. For the control 522.144 Arsenamide. of American foulbrood (Paenibacillus 522.147 Atipamezole. 522.150 Azaperone. larvae). 522.161 Betamethasone. (iii) Limitations. The drug should be 522.163 Betamethasone dipropionate and fed early in the spring or fall and con- betamethasone sodium phosphate aque- sumed by the bees before the main ous suspension.