Salt by the Sea

Total Page:16

File Type:pdf, Size:1020Kb

Salt by the Sea [Salt/Sodium Reduction] Vol. 18 No. 3 March 2008 ww Salt by the Sea By Deb North, Contributing Editor Salt has been in general use before history was even recorded. According to the Salt Institute, Alexandria, VA, about 4,700 years ago, the "Peng-Tzao-Kan-Mu" was published in China, and is regarded as the earliest known treatise on pharmacology emphasizing a discussion of more than 40 kinds of salt. Today, there are hundreds, maybe thousands, of varieties of salt, with some 14,000 known uses. Food-grade salt use accounts for as little as 5%, according to the Salt Institute. (The largest markets are for highway salt and water conditioning.) A grain of salt Salt is the oldest known food additive, and the most widely used of all food preservatives. Sea salt is in a category all its own, distinguished from other varieties such as table, iodized, kosher, rock and pickling salts. "Sea salt is a natural product that does not contain any commercial additives," says Al Kirchner, CEO, Ocean’s Flavor Foods, Asheville, NC, which makes a product that has 45% to 57% less sodium than regular sea salt. Sea salt is derived from living oceans and saline seas and is typically formed in an open environment (usually a shallow pond), with wind, sun and climate conditions that cause evaporation that, in the end, forms crystals. The evaporation process concentrates the sea saltwater, or brine, which is moved pond to pond where heavy deposits of calcium sulfate are laid down. "At certain concentrations or salinities, specific minerals or salts begin to crystallize and recrystallize and drop out of the brine," says George Lutz, quality assurance—technical services manager, Cargill Salt, Minneapolis. Some grades of sea salt are not as refined as table salt and can contain some trace minerals, including iron, calcium, magnesium, manganese, potassium, zinc and iodine. Sea salt comes in both fine-grain and coarse-grain. Flake type sea salts may be perceived as less salty or "sharp-tasting" and more subtle than table salt. The real differences between sea salt and table salt are primarily taste and texture, but also include place of origin, particle size and shape, color, crystal count, moisture content, adherence, flowability, solubility and more. "I hesitate to guess how many types of sea salts are available," says Linda Kragt, technical services manager, Morton Salt, Chicago. There could be as many different varieties as coffee or wine and from as many different regions around the globe. Table or granulated salts contain about 2,400 mg of sodium per teaspoon; however, coarse grades of sea salt have fewer crystals per teaspoon and, therefore, less sodium by volume. The difference is less dramatic by weight. While a typical refined table salt is 99%-plus sodium chloride, or about 40% sodium, a typical sea salt might only have about 96% sodium chloride, somewhere in the www.foodproductdesign.com Page 1 [Salt/Sodium Reduction] Vol. 18 No. 3 March 2008 neighborhood of 38.5% sodium. One sea-salt-based product marketed by Nexcel Natural Ingredients, a division of Spectrum Foods, Springfield, IL, is called a natural sodium-reduced, magnesium- enriched sea salt with sodium, potassium and magnesium that, the company says, "contains 60% less sodium than ordinary salt yet can be used to replace it on a 1:1 basis." Sea salt’s primary function today is flavor enhancement, and is most-commonly used by chefs to flavor foods and "liven up" a dish. "Sea salt as an ingredient has a healthier reputation than table salt; sea salt as a condiment or finisher has a more-engaging flavor," says Kirchner. Sea salt is not recommended for food preservation, because the natural mineral content can discolor some foods. Salty trend The use of sea salt is a major food trend. "With the proliferation of televised cooking shows and celebrity chefs, consumers are being exposed to new cooking techniques and global cuisines, such as the flavors of Asia, South America and Europe," says Lutz. "Foods made with artisanal ingredients—including sea salts—are gaining in popularity as consumers demand fuller flavor, more- satisfying mouthfeel and greater satiety." Rising consumer awareness and acceptance has also put this ingredient on the map. "Sea salt was originally confined to health-food and gourmet stores, and now it is much more mainstream," says Kragt. "The trends on the food shows and in the restaurants eventually work their way into processed foods." But, she cautions, "just because a chef is using a type of sea salt does not mean it’s right for food processing." Pass the salt It’s time to play "match the sea salt" and its characteristics with the correct foodservice and food- processing applications. Here are some of the more-common types: Coarse sea salt. With large-grained crystals, coarse sea salt will dissolve more slowly, with a more- deliberate release of the salty taste, according to Kragt. Many professional chefs prefer it as a finishing salt, because of its higher moisture levels and because they can easily add a "pinch" with their fingers. Coarse sea salt is well suited for foodservice use in salt-encrusted cooking applications (meat or fish) and as flavoring for soups, stews, pasta and processed tomato products. For a topical salt, Lutz says to consider particle size and shape, since the salt will be tasted directly on the tongue. "For example," he says, "a coarse, sun- and wind-made sea salt with high sodium chloride would be a consideration in a pretzel or bagel application, as opposed to a fine granulated salt in a chip application." Fine sea salt. Its finer granule size and silky texture lets fine sea salt work best in baking applications, for boiling in pasta water, adding to sauces and making marinades. It dissolves much quicker than its coarse counterpart. www.foodproductdesign.com Page 2 [Salt/Sodium Reduction] Vol. 18 No. 3 March 2008 Flake sea salt. A light crystal with a mild flavor and unusual texture, flake sea salt appears as a pyramid of snowflakes. It works well as a finishing salt for pastas and mild meats such as lamb, and applied topically to vegetables and fruits. Because the delicate flakes melt quickly and evenly as they are applied, they adhere easily to food. Purified sea salt, untreated. This is a granular, white, crystalline sea salt made by evaporating the brine from seawater. "It typically contains less than 30 ppm of calcium and magnesium, with no anti- caking or free-flowing additives or conditioners," says Lutz. He says some of the best uses for this type of sea salt include mayonnaise, salad dressings, margarine, conventional churn butter and canned vegetables such as peas, lima beans and tomatoes. Purified sea salt with yellow prussiate of soda (YPS). This variety has improved caking resistance and is particularly useful for dry salt dispensing or brining, and in baking, cheese manufacturing and meat processing. Celtic sea salt. The branded Celtic sea salt refers to a product harvested by hand from the Atlantic seawater off the coast of Brittany, France. It is known for retaining the ocean’s flavor essence and naturally occurring minerals, and for its distinctive light-gray color. Chefs use it for cooking, baking and finishing dishes. Fleur de sel. Labeled "flower of salt," young crystals of fleur de sel are delicately hand-harvested by traditional paludiers (salt farmers) from the sea salt beds in the Guérande (west central) region of France. It has a unique flavor and aroma profile reminiscent of the sea, and its color is not marred by the minerals and sediment that darken other sea salts. Its moist, crunchy texture is praised by chefs who use fleur de sel to finish many a fine plate. It is suited for salads, cooked fresh vegetables and grilled meats. Deb North, freelance food writer, marketing consultant and recent graduate of LeCordon Bleu College of Culinary Arts, can be e-mailed at [email protected]. www.foodproductdesign.com Page 3 .
Recommended publications
  • Latest Press Release from Consensus Action on Salt and Health
    ‘POSH’ SALT HEALTH CLAIMS SHOULD BE TAKEN WITH A GRAIN OF SALT! Sodium chloride accounts for nearly 100% of all rock and sea salts surveyed and are therefore just a more pricey way of damaging our health Health claims on labels fuel confusion; one in four Which? members (28%) admit to thinking rock and sea salts are healthier than table salt 17.11.11 ‘Posh’ salts such as rock and sea salts have been popularised by TV chefs who sprinkle them liberally on their culinary creations. New research from CASH (Consensus Action on Salt and Health) and Which? reveals that gourmet rock and sea salts are as damaging to your health as regular salt, despite on pack claims that the products are ‘natural’ and ‘contain minerals’. The sodium chloride content of ‘posh’ salts, such as Maldon and Himalayan (Best Care Products), and table salt (Saxa), were measured by a public analyst [Ref 1]. Sodium and chloride combine to form salt (NaCl), it is this combination of minerals which puts up our blood pressure, leading to strokes, heart failure and heart disease and are also linked to osteoporosis, stomach cancer and kidney disease. The results show they all contain just as much sodium chloride as each other, and are therefore just as damaging for our health. However, according to a Which? member survey [Ref 2], those who buy rock or sea salt cite reasons such as believing they are healthier (24%) or more natural (39%) than table salt. Sodium Chloride (NaCl) content of surveyed salts 98.86 96.65 99.50 100.65 103.57 97.19 91.48 100 80 60 40 20 NaCl contentNaCl (g/100g) 0 Best Care Cornish Sea Halen Mon Maldon Sea Saxa Table Tidman's Zauber der Products Salt Co Pure White Salt Flakes Salt Natural Rock Gewürze Himalayan Cornish Sea Sea Salt Salt Fleur de Sel Crystal Salt Salt NB Some salts total more or less than 100% NaCl per 100g.
    [Show full text]
  • 1.5. Raman Spectroscopy
    Open Research Online The Open University’s repository of research publications and other research outputs Characteristic Raman Bands of Amino Acids and Halophiles as Biomarkers in Planetary Exploration Thesis How to cite: Rolfe, Samantha (2017). Characteristic Raman Bands of Amino Acids and Halophiles as Biomarkers in Planetary Exploration. PhD thesis The Open University. For guidance on citations see FAQs. c 2016 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000c66a Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Characteristic Raman Bands of Amino Acids and Halophiles as Biomarkers in Planetary Exploration Samantha Melanie Rolfe MPhys (Hons), University of Leicester, 2010 September 2016 The Open University School of Physical Sciences A THESIS SUBMITTED TO THE OPEN UNIVERSITY IN THE SUBJECT OF PLANETARY SCIENCES FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Acknowledgements To my parents, Mark and Melanie, and my brother, Alex, who have always supported and encouraged me to follow my dreams and overcome all and any obstacles to achieve them. To my grandparents, Anthony and Margery Wilson, Aubrey and Val Rolfe and Marjorie and Russell Whitmore, this work is dedicated to you. To Chris, my rock, without you I absolutely would not have been able to get through this process.
    [Show full text]
  • Purified Sea Salt with Magnesium Carbonate
    Cargill® Food Processing Salts Purified Sea Saltwith Magnesium Carbonate Product Description Physical Information Purified Sea Salt with Magnesium Carbonate This material is a food grade, granular, white crystalline Purified Sea Salt with Magnesium Carbonate sodium chloride product manufactured under stringent PHYSICAL MIN TARGET MAX process control procedures. Cargill Sea Salts are made from Pacific Ocean sea salt, which is harvested from ponds NaCl (%) 99.7 99.96 100 near the San Francisco Bay. Ca & Mg as Ca (%) 0.003 Sulfate as SO4 (%) 0.01 Product Application Water Insolubles (%) 0.025 0.01 Bulk Density (#cu/ft) 69 74 84 This material is intended for table and cooking use, as well as direct application in foods manufactured by the various Bulk Density (g/l) 1105 1185 1345 food processing industries. This material contains Surface Moisture (%) 0.02 Magnesium Carbonate, which is added to improve caking Magnesium Carbonate (%) 0.5 resistance and flowability. PERCENT PARTICLE SIZE MIN TARGET MAX Product Certifications DISTRIBUTION (SCREENS) Sieve - USS 30 Mesh Retained 0 40 50 Cargill® Sea Salts meet USDA, FDA and Food Chemicals Codex for food use. Sieve - USS 40 Mesh Retained 34 Sieve - USS 50 Mesh Retained 16 Cargill® Sea Salts are certified Kosher for Passover (OU-P) SieveCargill - USS 70 Mesh® RetainedSea Salt 8 by the Orthodox Union. Sieve - Retained on Pan 0 1 10 Made with Sun, Wind and Time Allergen Status Harvesting sea salt from San Francisco Bay today is similar to the salt-making process that has been used for centuries. In accordance with the 2004 USA Food Allergen Labeling and Consumer Protection Act (FALCPA), no allergen declarations are required for this product.
    [Show full text]
  • Insights on Cadmium Removal by Bioremediation: the Case of Haloarchaea
    Review Insights on Cadmium Removal by Bioremediation: The Case of Haloarchaea Mónica Vera-Bernal 1 and Rosa María Martínez-Espinosa 1,2,* 1 Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; [email protected] 2 Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain * Correspondence: [email protected]; Tel.: +34-965903400 (ext. 1258; 8841) Abstract: Although heavy metals are naturally found in the environment as components of the earth’s crust, environmental pollution by these toxic elements has increased since the industrial revolution. Some of them can be considered essential, since they play regulatory roles in different biological processes; but the role of other heavy metals in living tissues is not clear, and once ingested they can accumulate in the organism for long periods of time causing adverse health effects. To mitigate this problem, different methods have been used to remove heavy metals from water and soil, such as chelation-based processes. However, techniques like bioremediation are leaving these conventional methodologies in the background for being more effective and eco-friendlier. Recently, different research lines have been promoted, in which several organisms have been used for bioremediation approaches. Within this context, the extremophilic microorganisms represent one of the best tools for the treatment of contaminated sites due to the biochemical and molecular properties they show. Furthermore, since it is estimated that 5% of industrial effluents are saline and hypersaline, halophilic microorganisms have been suggested as good candidates for bioremediation Citation: Vera-Bernal, M.; and treatment of this kind of samples.
    [Show full text]
  • The Changing Technology of Post Medieval Sea Salt Production in England
    1 Heritage, Uses and Representations of the Sea. Centro de Investigação Transdisiplinar Cultura, Espaço e Memoría (CITCEM) Porto, Faculdade de Letras da Universidade do Porto, 20-22 October 2011. The changing technology of post medieval sea salt production in England Jeremy Greenwood Composition of seawater Sea water contains 3.5% evaporites of which salt (sodium chloride) comprises 77.8%. The remainder is known as bittern as it includes the bitter tasting, aperient and deliquescent sulphates of magnesium (Epsom salt) and sodium (Glauber’s salt) as well as about 11% magnesium chloride. 2 Successful commercial salt making depends on the fractional crystallisation of seawater producing the maximum amount of salt without contamination by bittern salts. As seawater is evaporated, very small amounts of calcium carbonate are precipitated followed by some calcium sulphate. This is followed by the crystallisation of sodium chloride but before this is complete, bitter Epsom salt appears; something that needs to be avoided.1 In Continental Europe, evaporation of sea water is achieved solely by the energy of the wind and sun but this is not possible in the English climate so other techniques were developed. 1 http://www.solarsaltharvesters.com/notes.htm SOLAR SALT ENGINEERING 3 Evaporation vessel Briquetage The earliest known English method of coastal saltmaking has been found in the late Bronze Age. This involved boiling seawater in crude clay dishes supported by clay firebars (briquetage) and was widespread in Europe. This technique continued into the Iron Age and into the Roman period with variations inevitably occurring in the industry, although the dating of saltworks is very problematical.2 Detailed interpretation continues to be a matter of dispute.
    [Show full text]
  • LAS VEGAS PRODUCT CATALOG INGREDIENTS Full Page Ad for FINE PASTRY 11”X 8.5”
    PRODUCT CATALOG LAS VEGAS chefswarehouse.com BAKING AND PASTRY FROZEN/RTB BREAD ...................12 BEVERAGES, GOAT CHEESE ............................21 CONDIMENTS BAKING JAM ..............................4 PIZZA SHELLS ...............................12 COFFEE AND TEA GOUDA.......................................21 AND JAMS TORTILLAS/WRAPS ......................12 HAVARTI.......................................22 BAKING MIXES ............................4 BAR MIXERS ................................17 CHUTNEY ....................................25 WRAPPERS ..................................12 JACK CHEESE .............................22 BAKING SUPPLIES .......................4 BITTERS .........................................17 GLAZES AND DEMI-GLAZES .......25 BROWNIES ..................................12 MASCARPONE ...........................22 COLORANTS ...............................4 CORDIAL ....................................17 KETCHUP .....................................25 CAKES ASSORTED ......................12 MISCELLANEOUS ........................22 CROISSANTS ...............................4 JUICE ...........................................17 MAYO ..........................................25 TARTS ...........................................13 MOUNTAIN STYLE ........................22 DÉCOR ........................................4 MISCELLANEOUS ........................17 MUSTARD ....................................25 COULIS ........................................13 MOZZARELLA ..............................22 EXTRACTS ....................................6
    [Show full text]
  • Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2*
    J. Microbiol. Biotechnol. (2013), 23(12), 1645–1653 http://dx.doi.org/10.4014/jmb.1308.08015 Research Article Minireview jmb Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2* 1Department of Bio-Food Materials, College of Medical and Life Sciences, Silla University, Busan 617-736, Republic of Korea 2Research Center for Extremophiles, Silla University, Busan 617-736, Republic of Korea Received: August 8, 2013 Revised: September 6, 2013 Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular Accepted: September 9, 2013 biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are First published online being isolated and identified from high salt-fermented foods consumed by humans, and it has September 10, 2013 been found that various types of halophilic archaea exist in food products by culture- *Corresponding author independent molecular biological methods. In addition, even if the numbers are not quite Phone: +82-51-999-6308; high, DNAs of various halophilic archaea are being detected in human intestines and much Fax: +82-51-999-5458; interest is given to their possible roles. This review aims to summarize the types and E-mail: [email protected] characteristics of halophilic archaea reported to be present in foods and human intestines and pISSN 1017-7825, eISSN 1738-8872 to discuss their application as well. Copyright© 2013 by The Korean Society for Microbiology Keywords: Halophilic archaea, fermented foods, microbiome, human intestine, Halorubrum and Biotechnology Introduction Depending on the optimal salt concentration needed for the growth of strains, halophilic microorganisms can be Archaea refer to prokaryotes that used to be categorized classified as halotolerant (~0.3 M), halophilic (0.2~2.0 M), as archaeabacteria, a type of bacteria, in the past.
    [Show full text]
  • Report on the Composition of Prevalent Salt Varieties
    Federal Department of Home Affairs FDHA Federal Food Safety and Veterinary Office FSVO Nutrition Esther Infanger, Max Haldimann, Mai 2016 Report on the composition of prevalent salt varieties 071.1/2013/16500 \ COO.2101.102.7.405668 \ 000.00.61 Contents Summary ................................................................................................................................................. 3 Zusammenfassung .................................................................................................................................. 4 Synthèse .................................................................................................................................................. 5 Sintesi .................................................................................................................................................... 6 1 Introduction ................................................................................................................................. 7 2 Starting point............................................................................................................................... 7 3 Methods ...................................................................................................................................... 8 4 Results ........................................................................................................................................ 9 5 Discussion ...............................................................................................................................
    [Show full text]
  • Life at Low Water Activity
    Published online 12 July 2004 Life at low water activity W. D. Grant Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Building, University Road, Leicester LE1 9HN, UK ([email protected]) Two major types of environment provide habitats for the most xerophilic organisms known: foods pre- served by some form of dehydration or enhanced sugar levels, and hypersaline sites where water availability is limited by a high concentration of salts (usually NaCl). These environments are essentially microbial habitats, with high-sugar foods being dominated by xerophilic (sometimes called osmophilic) filamentous fungi and yeasts, some of which are capable of growth at a water activity (aw) of 0.61, the lowest aw value for growth recorded to date. By contrast, high-salt environments are almost exclusively populated by prokaryotes, notably the haloarchaea, capable of growing in saturated NaCl (aw 0.75). Different strategies are employed for combating the osmotic stress imposed by high levels of solutes in the environment. Eukaryotes and most prokaryotes synthesize or accumulate organic so-called ‘compatible solutes’ (osmolytes) that have counterbalancing osmotic potential. A restricted range of bacteria and the haloar- chaea counterbalance osmotic stress imposed by NaCl by accumulating equivalent amounts of KCl. Haloarchaea become entrapped and survive for long periods inside halite (NaCl) crystals. They are also found in ancient subterranean halite (NaCl) deposits, leading to speculation about survival over geological time periods. Keywords: xerophiles; halophiles; haloarchaea; hypersaline lakes; osmoadaptation; microbial longevity 1. INTRODUCTION aw = P/P0 = n1/n1 ϩ n2, There are two major types of environment in which water where n is moles of solvent (water); n is moles of solute; availability can become limiting for an organism.
    [Show full text]
  • Epicurean Product Guide 2016 V6.Xlsx
    Epicurean Product Listing 2016 800.934.6495 173 Thorn Hill Rd Warrendale, PA 15086 ** For the most up to date listing, please visit our website ** version 6, 9/27/16 EPICUREAN PRODUCT LISTING Condiments.........................................3 Miscellaneous......................................8 Oils & Vinegars................................1210 Syrups.............................................1513 Spices.............................................1715 Dried Mushrooms............................2321 Dried Fruits & Nuts..........................2422 Breads and Crackers.......................2724 Meats & Seafood.............................3027 Pasta Sauces and Noodles.............3330 Desserts..........................................3633 Chocolate........................................4037 Grains & Legumes...........................4340 Cheese, Dairy, & Eggs....................4542 Bar & Bakery.......................................47 Baking & Pastry...................................50 Appetizers...........................................61 CONDIMENTS Prod # Description Packaging UoM Special Order 06206 BASE BEEF NO MSG 4/5 LB CS 06207 BASE BEEF NO MSG 5 LB EA 06176 BASE BEEF NO MSG MINORS 12/1 LB CS X 06179 BASE CHICKEN NO MSG 1 LB EA 06201 BASE CHICKEN NO MSG 5 LB EA 06178 BASE CHICKEN NO MSG MINORS 12/1 LB CS 06200 BASE CHICKEN NO MSG MINORS 4/5 LB CS 06180 BASE CLAM NO MSG MINORS 6/1 LB CS 06181 BASE CLAM NO MSG MINORS 1# EA 06198 BASE CRAB NO MSG MINORS 6/1 LB CS 06199 BASE CRAB NO MSG MINORS 1# EA 06187 BASE ESPAGNOLE SAUCE
    [Show full text]
  • Common Salt Without Additives Safety Data Sheet According to Federal Register / Vol
    Common Salt without Additives Safety Data Sheet According To Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations And According To The Hazardous Products Regulation (February 11, 2015). Date of Issue: 05/27/2021 Version: 1.0 SECTION 1: IDENTIFICATION 1.1. Product Identifier Product Form: Substance Product Name: Common Salt without Additives Synonyms: All purpose natural sea salt; All purpose Purex salt; Bulk Culinox 999 NC, Bulk extra coarse solar undried NC; Bulk KD Industrial Salt NC; Bulk Purex Salt NC; Bulk Rock salt NOC 17F NC; Bulk Rock WC extra coarse southern NC; Bulk Rock white crystal coarse southern NC; Bulk solar coarse salt undried NC, Bulk solar industrial crude salt NC; Bulk solar salt; Bulk solar WC extra coarse salt NC; Bulk solar white crystal coarse salt NC; Bulk solar white crystal medium salt NC; Bunny spool (plain salt), California pure coarse sea salt; California pure medium sea salt; California pure fine sea salt; Canning & Pickling Salt; Coarse sea salt (F114100000x); Commercial grade water softening pellets; Culinox 999 chemical grade salt; Culinox 999 fine salt; Culinox 999 food grade salt; Evaporated granulated salt; Evaporated salt pellets; Extra coarse sea salt; Extra fine 50 sea salt; Extra fine 70 sea salt; Feed mixing salt; Fine solar salt (w/o YPS); Hi-Purity super soft salt extra coarse crystals; Himalayan pink salt; H.G. blending salt; Hay & Stock salt, F&R; Industrial crude solar salt; ISCO crystals, bulk; ISCO medium, bulk; ISCO water conditioning, bulk; KD crude solar
    [Show full text]
  • KANSAS July 5, 2017 9:00A.M
    CITY OF HUTCHINSON AGENDA CITY COUNCIL MEETING COUNCIL CHAMBERS_;_ HUTCHINSON, KANSAS July 5, 2017 9:00a.m. 1. ROLL CALL Piros de Carvalho __ Soldner __ Inskeep __ Dechant__ Daveline __ 2. PLEDGE OF ALLEGIANCE TO THE FLAG 3. PRAYER 4. PROCLAMATIONS a. Parks and Recreation Month 5. PETITIONS, REMONSTRANCES, AND COMMUN/CA tlONS a. Oral communications from the audience. (Please limit your remarks to five (5) minutes and to items NOT on the agenda.) 6. CONSENT AGENDA a. Approval of Minutes of June 20, 2017 City Council meeting. b. Approval of License Agreement with C&M Investment LLC for private sewer th service in Maple Street right-of-way at 229 East 10 . c. Approval of appointments to the Hutchinson Housing Commission of the following: Nathan DeBerry, 2 West 21st, for a first three-year term beginning 6/29/2017 to 6/29/2020. Ryan Patton, 3504 Rockwood Drive, for a first three-year term beginning 6/29/2017 to 6/29/2020. d. Approval of appropriation ordinance in the amount of $2,040,307.12. Action - Motion to approve the Consent Agenda; and authorize the Mayor to sign. Motion-----~----- Second __________ Piros de Carvalho __ Soldner __ Inskeep __ Dechant__ Daveline __ City Council Agenda July 5, 2017 Page 2 7. ORDINANCES AND RESOLUTIONS a. Consider Ordinance pledging future use of quarter cent retailers' sales tax revenue. Action - Motion to approve an Ordinance pledging the future use of the revenue which may be received by the City of Hutchinson from the one-fourth of one percent retailers' sales tax levied in the City of Hutchinson, Kansas; and authorize the Mayor to sign.
    [Show full text]