Generalized Correlation Chart Showing the Time-Stratigraphic, Rock-Stratigraphic, and Regional Hydrogeologic Units in the Floridan Aquifer System by Lester J

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Correlation Chart Showing the Time-Stratigraphic, Rock-Stratigraphic, and Regional Hydrogeologic Units in the Floridan Aquifer System by Lester J U.S. Department of the Interior Professional Paper 1807 U.S. Geological Survey Groundwater Resources Program Plate 2 of 23 UNIT ALABAMA FLORIDA GEORGIA SOUTH CAROLINA MAPPED GULF COAST SYSTEM SERIES Northern Southern IN THIS STAGE Panhandle peninsula peninsula REPORT West East Southwest Southeast Southwest Northeast Downdip Updip Undifferentiated Undifferentiated Undifferentiated Undifferentiated Holocene Post-glacial deposits deposits deposits deposits Undifferentiated Undifferentiated Terrace terrace sand, shell, Post- deposits Pleisto- Wisconsin Terrace Terrace and and clay Quaternary Miocene cene to deposits deposits shallow deposits Terrace rocks Nebraskan marine deposits deposits Waccamaw Formation Miccosukee Citronelle Formation Formation Citronelle Pliocene Foleyan and Undifferentiated Tamiami Miccosukee Cypress- Raysor sand, shell, Raysor Goose Formation equivalents Formation Formation head Forma- Jackson Bluff and clay Bone Valley Formation Creek Formation tion Limestone Formation Member Coosawhatchie Clovellian Fm Peace River Alum Statenville Ducklakian Undifferentiated Fm Formation deposits Bluff Napoleonvillian Marks Head Fm Coosa- Staten- Ebenezer Ebenezer Rocks of Group whatchie Member Member Torreya Penney ville Miocene Arcadia Fm Fm Miocene Fm Farms Fm Coosawhatchie Coosawhatchie age Formation Formation Formation Torreya St. Marks Chattahoochee Tampa Marks Head Marks Head Anachuacian Hawthorn Group Formation Catahoula Sandstone Formation Formation Member 1 Formation Formation (restricted) Hawthorn Group Parachuchla Fm Hawthorn Group Nocatee Lower part of Chatta- Para- Parachuchla hoochee 1 chuchla Formation Tiger Leap Member Member Arcadia Fm Fm Fm Paynes Hammock Drayton Limestone Ashley Fm Suwannee Suwannee Chickasawhay Fm Chickasawhay Suwannee Limestone Member Chckasawhayan (restricted) Formation Limestone Limestone (restricted) Bridgeboro Suwannee Suwannee Limestone Bridgeboro Limestone Limestone Limestone Bucatunna Clay Bucatunna Member Clay Member Rocks of Oligocene Oligocene Byram Unnamed marl age Formation Member Byram Fm Glendon Limestone Glendon Vicksburgian Limestone Marianna Vicksburg Group Vicksburg Member Formation Mint Marianna Marianna Spring Ochlockonee Formation Member Formation Formation Forest Hill Red Formation Bluff Bumpnose Formation Bumpnose Formation Formation Cooper Parkers Ferry Shubuta Fm Tobacco Member Tobacco (part) Member Road Road Harleyville Sand Puchuta Marl Sand Member Member Member Cooper Group Irwinton Rocks of Dry Branch Ocala Sand late Cocoa Sand Ocala Ocala Ocala Limestone Member Jacksonian Clay Yazoo Member Eocene Member Limestone Limestone Limestone (updip) age Twiggs North Twistwood Clay Creek Clay Member Member Barnwell Group Moodys Branch Clinchfield Barnwell Formation Formation Sand Tertiary Eocene Gosport McBean McBean Sand Formation Cross Formation Member Rocks of ? Avon Avon Santee middle Avon Libson Libson Park Libson Park Lime- Warley Eocene Claibornian 2 2 Park 2 Formation Formation Formation Formation Formation stone Hill Formation Santee Limestone age Moultrie Marl Member ? Huber Tallahatta Tallahatta Tallahatta (?) Congaree 2 2 2 Formation Formation Formation Formation Formation Rocks of Hatchetigbee early Formation Undifferentiated Bashi Hatchetigbee Oldsmar Eocene lower Eocene Member Formation Formation age rocks Fishburne Formation Bells Landing Oldsmar Oldsmar Marl Member Formation Formation Tuscahoma Tuscahoma Sabinian Formation Formation Greggs Landing Undifferentiated Marl Member Paleocene Baker rocks Black Mingo Group Grampian Hills Wilcox Group Williamsburg Formation Member Hill Nanafalia Wilcox Group “Ostrea thirsae” beds Fm Formation Nanafalia Gravel Creek Formation Sand Member Salt Mountain Salt Mountain Limestone3 Limestone3 Coal Bluff Rocks of Cedar Lang Syne Formation Paleocene Paleocene Marl Member Keys age Cedar Cedar Formation Oak Hill Naheola Formation Keys Keys Member Formation Formation Matthews Landing Porters Marl Member Midwayan Creek Porters Creek Formation Formation Undifferentiated Rhems Formation McBryde Paleocene Clayton rocks Limestone Clayton Member Formation Formation Pine Barren Member Prairie Bluff Providence Providence Sand Chalk Sand Rocks of Rocks of Lawson Lawson Peedee Formation/ Navarroan Navarro Ripley Lawson Navarro Ripley Formation Limestone Limestone 4 Steel Creek Formation age Formation Limestone age Cusseta Sand Gulfian Demopolis Cusseta Sand Member Chalk Member Cretaceous Rocks of Rocks of Rocks of Rocks of Tayloran Rocks of Blufftown Taylor age Black Creek Taylor age Arcola Limestone Taylor age Taylor age Formation Member of Taylor age Group Mooreville Chalk (part) (part) 1Previously included in Tampa Limestone. Any use of trade, firm, or product names is for descriptive purposes only 2Clastic unit now included in Lower Floridan aquifer. EXPLANATION and does not imply endorsement by the U.S. Government. 3Local, mostly subsurface. Mostly carbonate rocks of Floridan aquifer system Digital files available at http://pubs.usgs.gov/pp/1807/. 4 Very locally part of Floridan aquifer system. Suggested citation: Williams, L.J., and Kuniansky, E.L., 2015, Revised Mostly clastic rocks of Southeastern Coastal Plain aquifer system hydrogeologic framework of the Floridan aquifer system in Florida and in that are also included in Floridan aquifer system parts of Georgia, Alabama, and South Carolina: U.S. Geological Survey Professional Paper 1807, 140 p., 23 pls., http://dx.doi.org/10.3133/pp1807. Fm Formation ISSN 2330–7102 (online) Generalized Correlation Chart Showing the Time-Stratigraphic, Rock-Stratigraphic, and Regional Hydrogeologic Units in the Floridan Aquifer System By Lester J. Williams and Eve L. Kuniansky 2015.
Recommended publications
  • Exhibit Specimen List FLORIDA SUBMERGED the Cretaceous, Paleocene, and Eocene (145 to 34 Million Years Ago) PARADISE ISLAND
    Exhibit Specimen List FLORIDA SUBMERGED The Cretaceous, Paleocene, and Eocene (145 to 34 million years ago) FLORIDA FORMATIONS Avon Park Formation, Dolostone from Eocene time; Citrus County, Florida; with echinoid sand dollar fossil (Periarchus lyelli); specimen from Florida Geological Survey Avon Park Formation, Limestone from Eocene time; Citrus County, Florida; with organic layers containing seagrass remains from formation in shallow marine environment; specimen from Florida Geological Survey Ocala Limestone (Upper), Limestone from Eocene time; Jackson County, Florida; with foraminifera; specimen from Florida Geological Survey Ocala Limestone (Lower), Limestone from Eocene time; Citrus County, Florida; specimens from Tanner Collection OTHER Anhydrite, Evaporite from early Cenozoic time; Unknown location, Florida; from subsurface core, showing evaporite sequence, older than Avon Park Formation; specimen from Florida Geological Survey FOSSILS Tethyan Gastropod Fossil, (Velates floridanus); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimen from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimens from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Mouth of Withlacoochee River, Levy County, Florida; specimens from John Sacha Collection PARADISE ISLAND The Oligocene (34 to 23 million years ago) FLORIDA FORMATIONS Suwannee
    [Show full text]
  • Soil Survey of Pinellas County, Florida
    United States In cooperation with Department of the University of Florida, Agriculture Institute of Food and Soil Survey of Agricultural Sciences, Natural Agricultural Experiment Pinellas County, Resources Stations, and Soil and Conservation Water Science Service Department; the Florida Florida Department of Agricultural and Consumer Services; and the Pinellas County Board of Commissioners i How To Use This Soil Survey Detailed Soil Maps The detailed soil maps can be useful in planning the use and management of small areas. To find information about your area of interest, locate that area on the Index to Map Sheets. Note the number of the map sheet and turn to that sheet. Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described. The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs. ii This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey. Major fieldwork for this soil survey was completed in 2002. Soil names and descriptions were approved in 2003. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 2003.
    [Show full text]
  • A New Machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with Comments on the Origin of the Smilodontini (Mammalia, Carnivora, Felidae)
    A New Machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with Comments on the Origin of the Smilodontini (Mammalia, Carnivora, Felidae) Steven C. Wallace1*, Richard C. Hulbert Jr.2 1 Department of Geosciences, Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, Tennessee, United States of America, 2 Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America Abstract South-central Florida’s latest Hemphillian Palmetto Fauna includes two machairodontine felids, the lion-sized Machairodus coloradensis and a smaller, jaguar-sized species, initially referred to Megantereon hesperus based on a single, relatively incomplete mandible. This made the latter the oldest record of Megantereon, suggesting a New World origin of the genus. Subsequent workers variously accepted or rejected this identification and biogeographic scenario. Fortunately, new material, which preserves previously unknown characters, is now known for the smaller taxon. The most parsimonious results of a phylogenetic analysis using 37 cranio-mandibular characters from 13 taxa place it in the Smilodontini, like the original study; however, as the sister-taxon to Megantereon and Smilodon. Accordingly, we formally describe Rhizosmilodon fiteae gen. et sp. nov. Rhizosmilodon, Megantereon, and Smilodon ( = Smilodontini) share synapomorphies relative to their sister-taxon Machairodontini: serrations smaller and restricted to canines; offset of P3 with P4 and p4 with m1; complete verticalization of mandibular symphysis; m1 shortened and robust with widest point anterior to notch; and extreme posterior ‘‘lean’’ to p3/p4. Rhizosmilodon has small anterior and posterior accessory cusps on p4, a relatively large lower canine, and small, non-procumbent lower incisors; all more primitive states than in Megantereon and Smilodon.
    [Show full text]
  • Honeymoon Island Beach Nourishment Field Trip, 2015, 37 P
    Honeymoon Island Beach Nourishment Field Trip Southeastern Geological Society Guidebook No. 64 June 12-13, 2015 A Field Guide to Honeymoon Island Beach Nourishment Southeastern Geological Society Guidebook No. 64 Field Trip June 12-13, 2015 2015 SEGS OFFICERS President – Greg Mudd Vice President – Bryan Carrick Secretary – Samantha Andrews Treasurer – Harley Means Past President - John Herbert Guidebook Compiled and Edited by: Bryan Carrick, P.G., 2015 Published by: THE SOUTHEASTERN GEOLOGICAL SOCIETY P.O. Box 1636 Tallahassee, Florida 32302 Southeastern Geological Society Guidebook No. 64 June 12-13, 2015 TABLE OF CONTENTS INTRODUCTION AND ACKNOWLEDGMENTS by: Bryan Carrick, P.G. …............................................................................................... 2 HONEYMOON ISLAND BEACH RESTORATION PROJECT by: Brett D. Moore, P.E., Humiston & Moore Engineers .................................................. 3 ROSS/OSSI (ROSSI): A COASTAL MANAGEMENT TOOL FOR OFFSHORE SAND SOURCES by:Jennifer L. Coor1, Candace Beauvais2, Jase D. Ousley3................................................ 9 SEDIMENT ENGINEERING THRU DREDGING AND WITH NATURE (SETDWN) – FATE OF FINES IN THE DREDGING AND PLACEMENT PROCESS by:Coraggio K. Maglio1, Jase D. Ousley2, Jennifer L.Coor3.…..…………......................16 MODERN AND HISTORICAL MORPHODYNAMICS OF THE JOHN’S PASS - BLIND PASS DUAL-INLET SYSTEM, PINELLAS COUNTY, FLORIDA by: Mark H. Horwitz, University of South Florida........................................................... 23 INVERTEBRATE PALEONTOLOGY
    [Show full text]
  • Miocene Paleontology and Stratigraphy of the Suwannee River Basin of North Florida and South Georgia
    MIOCENE PALEONTOLOGY AND STRATIGRAPHY OF THE SUWANNEE RIVER BASIN OF NORTH FLORIDA AND SOUTH GEORGIA SOUTHEASTERN GEOLOGICAL SOCIETY Guidebook Number 30 October 7, 1989 MIOCENE PALEONTOLOGY AND STRATIGRAPHY OF THE SUWANNEE RIVER BASIN OF NORTH FLORIDA AND SOUTH GEORGIA Compiled and edit e d by GARY S . MORGAN GUIDEBOOK NUMBER 30 A Guidebook for the Annual Field Trip of the Southeastern Geological Society October 7, 1989 Published by the Southeastern Geological Society P. 0 . Box 1634 Tallahassee, Florida 32303 TABLE OF CONTENTS Map of field trip area ...... ... ................................... 1 Road log . ....................................... ..... ..... ... .... 2 Preface . .................. ....................................... 4 The lithostratigraphy of the sediments exposed along the Suwannee River in the vicinity of White Springs by Thomas M. scott ........................................... 6 Fossil invertebrates from the banks of the Suwannee River at White Springs, Florida by Roger W. Portell ...... ......................... ......... 14 Miocene vertebrate faunas from the Suwannee River Basin of North Florida and South Georgia by Gary s. Morgan .................................. ........ 2 6 Fossil sirenians from the Suwannee River, Florida and Georgia by Daryl P. Damning . .................................... .... 54 1 HAMIL TON CO. MAP OF FIELD TRIP AREA 2 ROAD LOG Total Mileage from Reference Points Mileage Last Point 0.0 0.0 Begin at Holiday Inn, Lake City, intersection of I-75 and US 90. 7.3 7.3 Pass under I-10. 12 . 6 5.3 Turn right (east) on SR 136. 15.8 3 . 2 SR 136 Bridge over Suwannee River. 16.0 0.2 Turn left (west) on us 41. 19 . 5 3 . 5 Turn right (northeast) on CR 137. 23.1 3.6 On right-main office of Occidental Chemical Corporation.
    [Show full text]
  • Hydrogeology and Analysis of Aquifer Characteristics in West-Central Pinellas County, Florida
    Hydrogeology and Analysis of Aquifer Characteristics in West-Central Pinellas County, Florida By James C. Broska and Holly L. Barnette U.S. Geological Survey Open-File Report 99–185 Prepared in cooperation with PINELLAS COUNTY Tallahassee, Florida 1999 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information Copies of this report can be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services Suite 3015 Box 25286 227 North Bronough St. Denver, CO 80225 Tallahassee, FL 32301 888-ASK-USGS CONTENTS Abstract ................................................................................................................................................................ 1 Introduction.......................................................................................................................................................... 1 Purpose and Scope ...................................................................................................................................... 2 Description of the Study Area..................................................................................................................... 2 Hydrogeologic Framework .................................................................................................................................
    [Show full text]
  • State of Florida Department Of
    STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Herschel T. Vinyard Jr., Secretary REGULATORY PROGRAMS Jeff Littlejohn, Deputy Secretary FLORIDA GEOLOGICAL SURVEY Jonathan D. Arthur, State Geologist and Director OPEN-FILE REPORT 98 Text to accompany geologic map of the USGS Tarpon Springs 30 x 60 minute quadrangle, central Florida By Richard C. Green, William L. Evans, III, Christopher P. Williams, Clinton Kromhout and Seth W. Bassett 2012 ISSN (1058-1391) This geologic map was funded in part by the USGS National Cooperative Geologic Mapping Program under assistance award number G11AC20418 in Federal fiscal year 2011 TABLE OF CONTENTS ABSTRACT .................................................................................................................................... 1 INTRODUCTION .......................................................................................................................... 1 Methods........................................................................................................................................... 2 Previous Work ................................................................................................................................ 5 GEOLOGIC SUMMARY .............................................................................................................. 5 Structure ........................................................................................................................................ 10 Geomorphology ...........................................................................................................................
    [Show full text]
  • Predicting Phosphatic Soil Distribution in Alachua County, Florida
    PREDICTING PHOSPHATIC SOIL DISTRIBUTION IN ALACHUA COUNTY, FLORIDA By RAVINDRA RAMNARINE A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIRE MENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003 Copyright 2003 by Ravindra Ramnarine To my brothers, Rishi and Shiva ACKNOWLEDGMENTS I would like to express my deepest gratitude to my advisor, Dr. Willie G. Harris, who provided guidance and support both in my academic and personal life. Dr. Harris was always enthusiastic in providing advice and assistance throughout the project; and was instrumental in its timely completion. I also thank my supervisory committee members for their expertise in different aspects of the project: Dr. Sabine Grunwald (GIS), Dr. Vimala Nair (total P analysis), and Dr. Kenneth Portier (statistical analysis). I thank Dr. Stanley Latimer for assistance in GIS operations; and transferring of GIS data to the GPS unit. A major part of the project involved GIS and I thank Larry “Rex” Ellis, Tait Chirenje, and Mike Tischler, who helped me overcome various GIS hurdles. The field sampling would not have been possible without the assistance of Mr. Keith Hollien, whose knowledge of the roads and tolerance of some “bad weather” were deeply appreciated. Also, I thank Keith Hollien and Natalie Rodriguez for assistance with the mineralogical analyses. Many of my professors and colleagues assisted in the project; some providing advice and others, a helping hand. They include Dr. Randall Brown, Dr. Mary Collins, Dr. Michael Binford, and Ms. Myrlène Chrysostome. I would also like to thank the landowners and park rangers who gave us permission for field sampling.
    [Show full text]
  • Florida Geological
    Geologic Map of the State of Florida - Southern Peninsula by Thomas M. Scott, P. G. #99, Kenneth M. Campbell, Frank R. Rupert, Jonathan D. Arthur, Thomas M. Missimer, Jacqueline M. Lloyd, J. William Yon, and Joel G. Duncan Qh Quaternary TQsu Tc Qh Thp Thpb Holocene Qh Qu Qh Holocene sedimennts Qu TQsu Tha TQuc Qu Pleistocene/Holocene Qa Qbd Qal Alluvium Qu Qu Qbd Beach ridge and dune Thp Qu TQd Qh Qu Undifferentiated sediments TQsu Pleistocene Qh Qa Anastasia Formation TQsu Qu TQsu Qk Key Largo Limestone Qh Qm Miami Limestone Qtr Trail Ridge sands Qa Tertiary/Quaternary Tt Pliocene/Pleistocene TQsu Shelly sediments of Qu Plio-Pleistocene age TQsu TQu Undifferentiated sediments Qh TQsu TQd Dunes TQuc Reworked Cypresshead sediments Tertiary Pliocene Tt Tc Cypresshead Formation Qm Tci Citronelle Formaation Tmc Miccosukee Formmation Tic Intracoastal Formmation Tt Tamiami Formation Tjb Jackson Bluff Formation Qh Miocene/Pliocene Tt Thcc Hawthorn Group, Coosawhatchie Formation, Charlton Member Thp Hawthorn Group, Peace River Formation Qm Thpb Hawthorn Group, Peace River Formation, Bone Valley Member Miocene Trm Residuum on Miocene sediments Tab Alum Bluff Group Qh Qk Hawthorn Group Th Qh Thc Hawthorn Group, Coosawhatchie Formation Ths Hawthorn Group, Statenville Formation Tht Hawthorn Group, Torreya Formation Tch Chatahoochee FFormation Qk Tsmk St. Marks Formaation Oligocene/Miocene Tha Hawthorn Group, Arcadia Formation That Hawthorn Group, Arcadia Formation, Tampa Member Qk Oligocene Qm Qm Tro Residuum on Oligocene sediments Ts Suwannee Limesttone Suwannee Limesttone - Marianna Limestone undifferentiated Tsm David B. Struhs, Secretary Eocene Tre Residuum on Eocene sediments To Ocala Limestone Tap Avon Park Formation 20 0 20 40 60 80 Miles 20 0 20 40 60 80 Kilometerrs Scale 1:750,000 1:750 000 Walter Schmidt Albers Conic Equal-Area Projection State Geologist and Chief SOFIA - http://sofia.usgs.gov.
    [Show full text]
  • STATE of FLORIDA DEPARTMENT of ENVIRONMENTAL PROTECTION Virginia B
    ) -- - )' STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Virginia B. Wetherell, Secretary DIVISION OF ADMINISTRATIVE AND TECHNICAL SERVICES Nevin G. Smith, Director FLORIDA GEOLOGICAL SURVEY Walter Schmidt, State Geologist and Chief OPEN FILE REPORT 62 CORE DRILLING AND ANALYSIS: CITY OF SARASOTA, DOWNTOWN WELL FIELD (revised) by K.M. Campbell, P.G. 192, T.M. Scott and R.C. Green FLORIDA GEOLOGICAL SURVEY Tallahassee, Florida 1995 ISSN 1058-1391 -- - Core Drilling and Analysis: City of Sarasota, Downtown Well Field by K.M. Campbell, P.G. 192, T.M. Scott, P.G. 99 and R.C. Green 1994 Introduction The Florida Geological Survey (FGSL in cooperation with the U.S. Geological Survey (USGS) and the city of Sarasota, drilled and analyzed a deep core hole located at the Sarasota Downtown Well Field (SDWF). The investigation focused on the Neogene and Paleogene lithostratigraphy and the Floridan aquifer system. The corehole was drilled into the top of the Middle Eocene Avon Park Formation and terminated at a total depth of 1101 feet below land surface (bls). The core obtained in this study is cataloged as well W·16999 and is stored in the FGS core repository. Funding was provided by the Florida Geological Survey and the 'city of Sarasota. The SDWF draws water from both the intermediate and Floridan aquifer systems. The intermediate aquifer system and confining units consist of Neogene and Paleogene Hawthorn Group sediments. The Floridan aquifer system is composed of latest Paleogene sediments of the Hawthorn Group, and Paleogene sediments of the Suwannee and Ocala Limestones and the Avon Park Formation.
    [Show full text]
  • Detailed Geochemical and Mineralogical Analyses of Naturally Occurring Arsenic in the Hawthorn Group Olesya Lazareva University of South Florida
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-2-2004 Detailed Geochemical and Mineralogical Analyses of Naturally Occurring Arsenic in the Hawthorn Group Olesya Lazareva University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Lazareva, Olesya, "Detailed Geochemical and Mineralogical Analyses of Naturally Occurring Arsenic in the Hawthorn Group" (2004). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1126 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Detailed Geochemical and Mineralogical Analyses of Naturally Occurring Arsenic in the Hawthorn Group by Olesya Lazareva A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Geology College of Arts and Sciences University of South Florida Major Professor: Thomas Pichler, Ph.D. Thomas Scott, Ph.D. Jonathan Arthur, Ph.D Peter Harries, Ph.D. Date of Approval: November 2, 2004 Keywords: phosphate, mining, pyrite, aquifer, trace metal, florida © Copyright 2004, Olesya Lazareva ACKNOWLEDGEMENTS First and foremost, I would like to gratefully acknowledge the help, support and encouragement of my advisor Dr. Thomas Pichler, who presented me with this wonderful opportunity, and assisted me with developing the research topic and with completing and revising the paper. His contribution to my development as a geochemist cannot be underestimated. I am extremely thankful for his endless effort to provide invaluable assistance and inspired ideas.
    [Show full text]
  • Reconstructing Equid Mobility in Miocene Florida Using Strontium
    Reconstructing Equid Mobility in Miocene Florida Using Strontium Isotopes A thesis submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geology McMicken College of Arts and Sciences By: Jenelle Wallace B.S. State University of New York Geneseo Advisory Committee: Brooke Crowley, Ph.D. - Committee Chair Josh Miller, Ph.D. Aaron Diefendorf, Ph.D. i ABSTRACT Despite extensive research on the evolutionary history and ecology of horses, we know surprisingly little about the mobility of now-extinct species. We used strontium isotope ratios (87Sr/86Sr) in tooth enamel to reconstruct mobility patterns of horses from two Miocene fossil sites in northern Florida, USA: Thomas Farm (ca. 18 Ma) and Love Bone Bed (ca. 9.5 to 9 Ma). Gomphotheres and tapirs from Love Bone Bed were also included to represent dedicated browsers. Based on modern mobility patterns of extant taxa, we expected that small-bodied or browsing taxa would have 87Sr/86Sr similar to that of local limestone, indicating a relatively sedentary lifestyle. Large-bodied and grazing taxa should have higher and more variable 87Sr/86Sr, reflecting a higher degree of mobility across differing geologies. Surprisingly, the majority of taxa at both sites have higher 87Sr/86Sr than expected for underlying Eocene bedrock, and instead are similar to contemporary Late Oligocene to mid-Miocene seawater. There are several potential scenarios to explain this, one of which seems most plausible. Most individuals may have foraged close to the coast, where vegetation would have been heavily influenced by marine-derived strontium via sea spray.
    [Show full text]