Life Cycle Assessment of a Hybrid Poly Butylene Succinate Composite

Total Page:16

File Type:pdf, Size:1020Kb

Life Cycle Assessment of a Hybrid Poly Butylene Succinate Composite View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Waterloo's Institutional Repository Life Cycle Assessment of a Hybrid Poly Butylene Succinate Composite by Hassan Moussa A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Environmental Studies in Environment and Resource Studies Waterloo, Ontario, Canada, 2014 © Hassan Moussa 2014 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Poly butylene succinate (PBS) is a biodegradable plastic polymer that has physical and mechanical properties similar to common petroleum plastics like polypropylene (PP) and polyethylene (PE). PBS may be produced from petroleum or bio-based feedstocks, or by a hybrid combination of petroleum and bio-based resources. Producers are reducing content of petroleum components used for the production of PBS, and by doing so are seeking potential environmental performance improvements. In this study, “hybrid” PBS refers to the production of PBS polymer from bio-based succinic acid (SAC) sourced from sorghum and petroleum-based 1, 4-butanediol (BDO). Given its biodegradability, PBS is commercially used for compostable bags and agricultural mulching film applications. A recent study in Ontario identified composite materials made with PBS blended with natural fibres like switchgrass (SG) as promising for applications in automotive products. Such novel composite materials are touted as potential bio-based alternatives to conventional petroleum-based plastics. Of the few studies that have considered the environmental performance of PBS materials, none have assessed the potential environmental impacts of a hybrid PBS composite. Therefore, this study undertook a life cycle assessment (LCA) of SG reinforced hybrid PBS composite (hybrid composite). LCA is an environmental management technique that is used to assess environmental aspects (inputs and outputs) and potential environmental impacts of a product or service throughout its life cycle. The analysis considered a cradle-to-gate system boundary and evaluated eleven environmental performance indicators. The environmental performance of the hybrid composite was compared to a conventional glass fibre (GF) reinforced polypropylene (PP) composite (baseline composite), a material that is widely used in automotive components. iii Results showed that the production of the hybrid composite in comparison to the baseline composite decreased potential impact for most of the assessed indicators: cumulative energy demand by 40%, waste heat by 23%, global warming potential by 35%, smog by 2%, carcinogens by 54%, non-carcinogens by 172%, respiratory effects by 22% and ecotoxicity by 45%. Increases in the values of impact indicators were apparent for ozone depletion, acidification, and eutrophication by 43%, 16%, and 322%, respectively. Analysis revealed that dominant influences on results were not related directly to the bio-based make-up. Rather, the biggest influence on the environmental performance of composite production were the sources of heat used in petroleum-based materials, the energy mix in electricity for bio-based materials, the type of reinforcing fibre and the co-product treatment methodology used. The study helps fill a gap in knowledge regarding bio-based chemicals and hybrid biodegradable plastic composites, and points to opportunities for future research on feedstocks for industrial composite materials. The importance of this study is that it helps to identify the environmental strengths and weaknesses associated with the production of the hybrid composite specifically, and bio-based materials more generally. It points to alternative material substitution options for use in the automotive industry. In this study, life cycle assessment exemplifies multidisciplinary methodologies, which seek to traverse the boundaries between the social and natural sciences and disciplines to support more sustainable policy decisions for a bio-economy. The systematic nature and the widely applicable consequences of this LCA study have the potential to contribute to industrial and business management, and reach the public policy arena in an effort to drive environmental and social change. iv Acknowledgements I would like to thank each and every one who provided me with help and guidance, and made this journey an experience of a life-time. First, my advisor, Dr. Steven B. Young for his unlimited support in spite of the difficulties that we have overcome, Dr. Goretty Dias, the technical committee member for her valuable contribution to this work, Prof. Ian Rowlands for being the examiner, and Dr. Derek Armitage, the chair of my exam. I also acknowledge the importance of the collaboration between the University of Waterloo and Myriant Corporation, U.S.A. and their valuable contribution to this work. In particular, I would like to thank Dr. Michael Mang, Product Technology Manager and Mrs. Amy Miranda Manager, Communications and Government Affairs. Finally, this research was supported by the Province of Ontario, Ontario Ministry of Agri-foods and Rural Affairs (OMAFRA), Project Number: 200004-200005-200006, Renewable, Recyclable and Lightweight Hybrid Green Composites from Lignin, Switch grass, Miscanthus and Bioplastics for Sustainable Manufacturing. v Dedication This thesis is dedicated to: My wife and my two daughters for their unconditional love and support To the memory of my beloved dad My mom and my siblings And to all my true friends vi Table of Contents AUTHOR'S DECLARATION ...................................................................................................................... ii Abstract ........................................................................................................................................................ iii Acknowledgements ....................................................................................................................................... v Dedication .................................................................................................................................................... vi Table of Contents ........................................................................................................................................ vii List of Figures ............................................................................................................................................... x List of Tables .............................................................................................................................................. xii List of Abbreviations ................................................................................................................................. xiii 1. Introduction ........................................................................................................................................... 1 1.1 Bio-based Materials ...................................................................................................................... 1 1.2 Poly Butylene Succinate (PBS)..................................................................................................... 3 1.3 Switchgrass (SG) .......................................................................................................................... 4 1.4 Problem Statement and Objectives ............................................................................................... 4 1.5 Thesis Structure ............................................................................................................................ 6 2. Literature Review ...................................................................................................................................... 7 2.1 Plastics and Composites ................................................................................................................ 7 2.1.1 Background ........................................................................................................................... 7 2.1.2 Bio-plastics ......................................................................................................................... 13 2.1.3 Bio-based Polymers ................................................................................................................... 15 2.1.4 Biodegradable Polymers ..................................................................................................... 18 2.1.5 Natural Fibres ...................................................................................................................... 21 2.1.6 Bio-based Plastic Composites in the Automotive Industry ................................................. 24 vii 2.1.7 Poly (butylene succinate) (PBS) ......................................................................................... 28 2.1.8 Switchgrass .............................................................................................................................. 29 2.1.9 Bio-based vs. Petroleum-based Products ............................................................................ 32 2.2 Life Cycle Assessment ...............................................................................................................
Recommended publications
  • Introduction to Bioplastics Alan Fernyhough, October 20Th 2011 Outline: Introduction to Bioplastics
    Introduction to Bioplastics Alan Fernyhough, October 20th 2011 Outline: Introduction to Bioplastics • Petrochemical plastics background • What are bioplastics? • Bioplastic market growth and drivers • The three leading compostable bioplastics − Starches − Celluloses − Compostable Polyesters Petroleum Fuels, Chemicals & Plastics PETROLEUM REFINING FUELS & OILS CRUDE OIL PETCHEM FEEDSTOCKS (~3%) ADDITIVES: chemicals; fillers/fibres CHEMICAL BUILDING COMPOUNDING POLYMERISATION BLOCKS/MONOMERS & PROCESSING extrusion, POLYMERS moulding PE,PP,PVC,PS,PET,.. foaming,.. PLASTIC PRODUCTS Example Monomers & Derived Polymers (Petroleum Refining) Petrochemical / Further Derived Example Polymers Monomer/intermediate Monomer/intermediate Ethylene, propylene PE, PP, .. Vinyl chloride PVC,.. Vinyl acetate PVac; EVA, PVAlc.,. Acrylic acid EAA,... Acrylonitrile SAN, ABS,... Ethylene glycol PET,.. Methyl methacrylate PMMA,... Lower alkenes LLDPE Butadiene ABS, PBD,... Xylenes / alkylated Terephthalic acid PET, PBT, PBAT benzenes (PX) Styrene PS/EPS, SAN, ABS Adipic Acid Nylon 6,6 ; PBAT Butanediol PBS, PBAT What are bioplastics? Two concepts*: 1. Biodegradable/Compostable – end of life functionality 2. Derived from Renewable Resources – start of life : renewable carbon ‘Bioplastics’ Petrochemical Bio-based Compostable Plastics Plastics Renewable plastics PE, PP, PET, PVC,.. PCL, PBS Starch, Cellulosics, Bio-PE, Bio-PET,... PLA, PHB, * European Bioplastics www.european-bioplastics.org Bioplastics Can be polymers that are: − biobased (renewable resource) and
    [Show full text]
  • Bioplastics: Biobased Plastics As Renewable And/Or Biodegradable Alternatives to Petroplastics
    BIOPLASTICS: BIOBASED PLASTICS AS RENEWABLE AND/OR BIODEGRADABLE ALTERNATIVES TO PETROPLASTICS 1. Introduction ‘‘Plastics’’ were introduced approximately 100 years ago, and today are one of the most used and most versatile materials. Yet society is fundamentally ambivalent toward plastics, due to their environmental implications, so interest in bioplastics has sparked. According to the petrochemical market information provider ICIS, ‘‘The emergence of bio-feedstocks and bio-based commodity polymers production, in tandem with increasing oil prices, rising consumer consciousness and improving economics, has ushered in a new and exciting era of bioplastics commercialization. However, factors such as economic viability, product quality and scale of operation will still play important roles in determining a bioplastic’s place on the commer- cialization spectrum’’ (1). The annual production of synthetic polymers (‘‘plastics’’), most of which are derived from petrochemicals, exceeds 300 million tons (2), having replaced traditional materials such as wood, stone, horn, ceramics, glass, leather, steel, concrete, and others. They are multitalented, durable, cost effective, easy to process, impervious to water, and have enabled applications that were not possible before the materials’ availability. Plastics, which consist of polymers and additives, are defined by their set of properties such as hardness, density, thermal insulation, electrical isolation, and primarily their resistance to heat, organic solvents, oxidation, and microorgan- isms. There are hundreds of different plastics; even within one type, various grades exist (eg, low viscosity polypropylene (PP) for injection molding, high viscosity PP for extrusion, and mineral-filled grades). Applications for polymeric materials are virtually endless; they are used as construction and building material, for packaging, appliances, toys, and furniture, in cars, as colloids in paints, and in medical applications, to name but a few.
    [Show full text]
  • Mitsubishi Chemical Sustainability Report 2018
    Plant-Derived, Biodegradable Plastic BioPBS™ Relevant SDG SDG 12: Ensure sustainable consumption and production patterns Striving toward Sustainable Production We are now facing such global-scale risks as accelerating climate change, the depletion of natural resources, disparities in water resource distribution, expanding and graying populations, and food and agricultural issues. Given this critical situation, as a chemical company, we believe it is our mission to realize, through innovation, the efficient use of natural resources and energy, the utilization of renewable resources, and the reduction of environmental burden and to thereby enhance environmental and social sustainability. Initiatives to replace non-renewable petroleum with renewable biomass as the raw material for plastic produc- tion are helping to more efficiently use resources and greatly contribute to ensuring sustainable production, part of one of the SDGs. At the same time, making plastics biodegradable while retaining their useful proper- ties makes it easier for them to break down in the environment, helping to reduce environmental burden. With BioPBS™, a renewably sourced and biodegradable product, Mitsubishi Chemical (MCC) has developed a plastic that offers both of these unrelated attributes. Features of BioPBS™ Polybutylene succinate (PBS) is an aliphatic polyester resin made from succinic acid and 1,4-butanediol, two raw ingredients typically manufactured from petroleum. In contrast, BioPBS™ is made with succinic acid derived from plant materials, a renewable resource. Its excellent biodegradability at low temperatures—ulti- mately breaking down into water and CO2—sets it apart from other biodegradable plastics like polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT). BioPBS™ also boasts such outstanding qualities as low-temperature heat sealability, compatibility with other materials, heat resistance and flexibility.
    [Show full text]
  • Global Top Picks
    Equity Research 29 March 2015 1Q 2015 Global Top Picks Equity Research Team Barclays Capital Inc. and/or one of its affiliates does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. Investors should consider this report as only a single factor in making their investment decision. This research report has been prepared in whole or in part by equity research analysts based outside the US who are not registered/qualified as research analysts with FINRA. PLEASE SEE ANALYST CERTIFICATION(S) AND IMPORTANT DISCLOSURES BEGINNING ON PAGE 153. Barclays | 1Q 2015 Global Top Picks 29 March 2015 2 Barclays | 1Q 2015 Global Top Picks FOREWORD A lot has changed since we published our last Global Top Picks in December. The plunge in oil prices and the rise in the US dollar have produced clear beneficiaries in the euro area and Japan, where monetary policy continues to be extremely supportive, providing support for further upside in stock prices. As we argue in our Global Outlook: Oil, the dollar and monetary policy: it’s all (or at least mostly) good , lower inflation as a result of lower oil prices, combined with a stronger dollar, also argues for the Fed to be more cautious about raising rates than it otherwise would have been, allowing risk assets to continue to perform well. Against this continued accommodative backdrop, we raise our price targets for continental European and Japanese equities, forecasting an additional 13% and 9% of total returns from current levels to the end of 2015, respectively.
    [Show full text]
  • D 2.1 Background Information and Biorefinery Status, Potential and Sustainability
    Project no.: 241535 – FP7 Project acronym: Star-COLIBRI Project title: Strategic Targets for 2020 – Collaboration Initiative on Biorefineries Instrument: Specific Support Action Thematic Priority: Coordination and support actions D 2.1 Background information and biorefinery status, potential and Sustainability – Task 2.1.2 Market and Consumers; Carbohydrates – Due date of deliverable: March 31, 2010 Start date of project: 01.11.2009 Duration: 24 months Organisation name of lead contractor for this deliverable: UoY Version: 1.0 Project co-funded by the European Commission within the Seventh Framework Programme (2007-2011) Dissemination level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Star-COLIBRI - Deliverable 2.1 D 2.1 Background information and biorefinery status, potential and Sustainability – Task 2.1.2 Market and Consumers; Carbohydrates – H.L. Bos, P.F.H. Harmsen & E. Annevelink Wageningen UR – Food & Biobased Research Version 18/03/10 Task 2.1.2 Market and Consumers; Carbohydrates 2 Star-COLIBRI - Deliverable 2.1 Content Management summary ............................................................................................................... 4 1 Introduction ........................................................................................................................ 5 1.1 Task description
    [Show full text]
  • BIO-BASED SUCCINIC ACID by Sudeep Vaswani (December 2010)
    PEP Review 2010-14 BIO-BASED SUCCINIC ACID By Sudeep Vaswani (December 2010) ABSTRACT In a U.S. Department of Energy report published in 2004, succinic acid was identified as one of the top twelve building-block chemicals that could be produced from renewable feedstocks. Currently, succinic acid uses a petroleum-derived maleic anhydride route for its production, which is both costly and environmentally unfriendly. As a result, there is a growing interest towards discovering a more economical and environmentally cleaner way for its production. One methodology that has been receiving increased attention is the use of bacterial microorganisms. This technology takes advantage of the fermentative capabilities of various microorganisms and utilizes a renewable substrate as a carbon source for acid formation. Succinic acid production from microbial organisms has tremendous potential as a building block for commodity chemicals with applications in several industries. Some of the succinic acid derivatives include: tetrahydrofuran (THF), 1,4-butanediol (BDO), succindiamide, succinonitrile, dimethylsuccinate, N-methyl-pyrrolidone, 2-pyrrolidone, and 1,4-diaminobutane. This PEP Review discusses and provides a detailed techno-economic analysis for bio-based succinic acid production with a capacity of 82.7 million lb/year (37,500 mt/yr). Additionally, it covers information regarding genetic engineering mechanisms, regulation of specific enzymes, and purification of succinic acid to provide a cost-competitive alternative to fossil fuels. © SRI Consulting PEP Review 2010-14 A private report by the Process Economics Program Review No. 2010-14 BIO-BASED SUCCINIC ACID by Sudeep Vaswani December 2010 Menlo Park, California 94025 SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards.
    [Show full text]
  • Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
    Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products.
    [Show full text]
  • Green Chemistry As a Tool for Understanding the Toxic Substances Control Act: a Lecture Module for Undergraduate Students Molly R
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program 5-1-2015 Green Chemistry as a Tool for Understanding the Toxic Substances Control Act: A Lecture Module for Undergraduate Students Molly R. Blessing University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Analytical Chemistry Commons, Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, Environmental Chemistry Commons, Environmental Policy Commons, Inorganic Chemistry Commons, Materials Chemistry Commons, Medicinal- Pharmaceutical Chemistry Commons, Organic Chemistry Commons, Other Chemistry Commons, Physical Chemistry Commons, Polymer Chemistry Commons, Radiochemistry Commons, Science and Mathematics Education Commons, and the Science and Technology Policy Commons Recommended Citation Blessing, Molly R., "Green Chemistry as a Tool for Understanding the Toxic Substances Control Act: A Lecture Module for Undergraduate Students" (2015). Honors Scholar Theses. 449. https://opencommons.uconn.edu/srhonors_theses/449 Green Chemistry as a Tool for Understanding the Toxic Substances Control Act: A Lecture Module for Undergraduate Students Molly Blessing Honors Scholar Thesis Department of Chemistry, University of Connecticut Storrs, CT 06269, United States May 2015 2 Abstract The Toxic Substances Control Act (TSCA) is the central form of chemical regulation existent in the United States today, yet scientists are often unaware or uncertain of its provisions. Violations of TSCA by unknowing chemists set industry and government unnecessarily at odds. A lecture on TSCA was developed for undergraduate students that uses the concept of green chemistry to promote interest and incentivize learning. Green chemistry methods are cleaner and less wasteful than traditional chemical ones, and many companies using them are at the forefront of technological innovation.
    [Show full text]
  • A Glimpse of Biodegradable Polymers and Their Biomedical Applications
    Spec. Matrices 2019; 7:1–19 Research Article Open Access Kazumasa Nomura* and Paul Terwilliger e-Polymers 2019; 19: 385–410 Self-dual Leonard pairs Review Article Open Access https://doi.org/10.1515/spma-2019-0001 Received May 8, 2018; accepted September 22, 2018 Tejas V. Shah and Dilip V. Vasava* Abstract: Let F denote a eld and let V denote a vector space over F with nite positive dimension. Consider A glimpse of biodegradablea pair A, A∗ of diagonalizable polymersF-linear maps and on V ,their each of which acts on an eigenbasis for the other one in an irreducible tridiagonal fashion. Such a pair is called a Leonard pair. We consider the self-dual case in which biomedical applicationsthere exists an automorphism of the endomorphism algebra of V that swaps A and A∗. Such an automorphism is unique, and called the duality A A∗. In the present paper we give a comprehensive description of this ↔ https://doi.org/10.1515/epoly-2019-0041 duality. In particular,NIPAM we - displayN-isopropylacrylamide an invertible F-linear map T on V such that the map X TXT− is the duality Received December 04, 2018; accepted March 29, 2019. → A A∗. We expressDEAMT -as N, a N-diethyl polynomial acrylamide in A and A∗. We describe how T acts on ags, decompositions, ↔ NVC - N-vinylcaprolactam Abstract: Over the past two decades, biodegradableand 24 bases for V. MVE - Methyl vinyl ether polymers (BPs) have been widely used in biomedical Keywords: LeonardPEO pair,- poly(ethylene tridiagonal matrix, oxide) self-dual applications such as drug carrier, gene delivery, tissue PPO - poly(propylene oxide) engineering, diagnosis, medical devices, and antibac- Classication: 17B37,15A21AAc - Acrylic acid terial/antifouling biomaterials.
    [Show full text]
  • Analysis of Flammability and Smoke Emission of Rigid Polyurethane
    J Therm Anal Calorim DOI 10.1007/s10973-017-6294-4 Analysis of flammability and smoke emission of rigid polyurethane foams modified with nanoparticles and halogen-free fire retardants 1 1 2 1 Kamila Salasinska • Monika Borucka • Milena Leszczyn´ska • Wojciech Zatorski • 1 1 2 Maciej Celin´ski • Agnieszka Gajek • Joanna Ryszkowska Received: 30 November 2016 / Accepted: 8 March 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Using one-step method, rigid polyurethane Introduction foams were made, modified with developed fire retardant systems containing halogen-free flame retardants and Rigid polyurethane foams (RPUF) are used in many areas, nanofillers in the form of multi-walled carbon nanotubes or including construction industry as one of the best com- nanoscale titanium dioxide. The materials were subjected mercially available insulation materials. RPUF have very to a test using a cone calorimeter and smoke-generating good mechanical properties, resistance to aging and water chamber, and selected samples were further analyzed via and also atmospheric factors [1–4]. Unfortunately, rigid thermogravimetry and oxygen index. Moreover, the prod- polyurethane foams have also some disadvantages, among ucts of thermal degradation of selected samples were which special attention should be paid to flammability and identified using gas chromatography with mass spectrom- toxicity of the gas products emitted during thermal degra- eter. Conducted flammability tests confirmed the presence dation and combustion [5]. of a synergistic effect between the used nanofillers and Combustion of polymeric materials is an exothermic halogen-free flame retardants. It has been observed that the reaction of the catalytic oxidation of organic compounds carbonized layer, the formation of which favored the carried by energy supplied in the form of heat and forming presence of nanoadditives, inhibits the combustion process.
    [Show full text]
  • Bioamber Signs BDO Take-‐Or-‐Pay Contract for Planned 100,000 Ton
    BioAmber Signs BDO Take-or-Pay Contract for Planned 100,000 Ton Plant Off-take agreement with Vinmar is a major milestone in bringing bio-based BDO to market • Contract guarantees 100% of the output from 100,000 ton per year plant will be sold for 15 years • Vinmar partnership supports BDO technology’s progress and economic attractiveness • Agreement is commercial foundation for large-scale BDO plants in addition to Sarnia plant • Vinmar off-take obligation and equity participation will facilitate financing of planned BDO facility Minneapolis, MN, January 22, 2014. BioAmber Inc. (NYSE and EURONEXT Paris: BIOA), an industrial biotechnology company producing sustainable chemicals, today announced it has signed a take-or- pay contract for bio-based 1,4-Butanediol (“BDO”) with Vinmar International. Under the terms of the 15-year master off-take agreement, Vinmar has committed to purchase 100% of the BDO produced in a 100,000 ton per year capacity plant that BioAmber plans to build in North America and commission in 2017. Vinmar also plans to invest in the BDO plant alongside BioAmber. BDO is a building block chemical that is used in a wide range of products, including engineering plastics for the automotive industry, polyurethanes, biodegradable plastics and spandex. The current size of the global BDO market is approximately $4 billion. BioAmber produces BDO by combining its succinic acid technology with a catalyst technology licensed from DuPont and the company believes its bio-based BDO is cost competitive with petroleum derived BDO. To date, BioAmber has validated the high quality of its bio-based BDO with over 20 purchasers of petroleum BDO.
    [Show full text]
  • Performance Materials Solutions for the Polymer Industry Table of Contents Improving Well-Being by Offering the Best of Nature
    PERFORMANCE MATERIALS SOLUTIONS FOR THE POLYMER INDUSTRY TABLE OF CONTENTS IMPROVING WELL-BEING BY OFFERING THE BEST OF NATURE Roquette is a global leader in plant-based ingredients, Roquette provides high performing, innovative and a pioneer of plant proteins and a leading provider of sustainable plant-based solutions for industrial pharmaceutical excipients. applications. In collaboration with its customers and partners, the group addresses current and future societal challenges by unlocking the potential of nature to offer the best ingredients for food, nutrition and health markets. These ingredients respond to unique and essential needs, enable healthier lifestyles and are critical components of life-saving medicines. Thanks to a constant drive for innovation and a long- term vision, the group is committed to improving the well-being of millions of people all over the world while taking care of resources and territories. Roquette currently operates in over 100 countries, has a turnover of around 3.7 billion euros and employs 8,670 people worldwide. Roquette is a monomer producer from 100% biomass feedstock to serve brand owners and consumers. ROQUETTE GROUP KEY FIGURES 100+countries served 5000+customers years85 of industrial 8670employees by ONE Global and operational Commercial Network excellence 45+nationalities industrial25 sites patents40 / year €3.7bn turnover 300+R&D workforce PRODUCTION EXPERTISE STARCH PRODUCTION SCHEME Native starch Drying STARCH = o po r f lyme ts glu ni Modification cose u Hydrolysis Enzymes Modified starch
    [Show full text]