Presidential Green Chemistry Challenge: Award Recipients, 1996

Total Page:16

File Type:pdf, Size:1020Kb

Presidential Green Chemistry Challenge: Award Recipients, 1996 The Presidential Green Chemistry Challenge Award Recipients 1996—2014 Contents Introduction................................................................................................................1 2014 Winners Academic Award: Professor Shannon S. Stahl, University of Wisconsin-Madison .......................................................................2 Small Business Award: Amyris..................................................................................................................... 3 Greener Synthetic Pathways Award: Solazyme, Inc. ....................................................................................................... 4 Greener Reaction Conditions Award: QD Vision, Inc. ..................................................................................................... 5 Designing Greener Chemicals Award: The Solberg Company...........................................................................................6 2013 Winners Academic Award: Professor Richard P. Wool, University of Delaware ........................................................................................7 Small Business Award: Faraday Technology, Inc........................................................................................ 8 Greener Synthetic Pathways Award: Life Technologies Corporation ............................................................................. 9 Greener Reaction Conditions Award: The Dow Chemical Company...............................................................................10 Designing Greener Chemicals Award: Cargill, Inc..............................................................................................................11 2012 Winners Academic Awards: Professor Geoffrey W. Coates, Cornell University .............................................................................................12 Professor Robert M. Waymouth, Stanford University Dr. James L. Hedrick, IBM Almaden Research Center .........................................................................13 Small Business Award: Elevance Renewable Sciences, Inc... ..................................................................14 Greener Synthetic Pathways Award: Codexis, Inc. Professor Yi Tang, University of California, Los Angeles.................................................................15 Greener Reaction Conditions Award: Cytec Industries Inc. ..............................................................................................16 Contents iii Designing Greener Chemicals Award: Buckman International, Inc. ................................................................................17 2011 Winners Academic Award: Professor Bruce H. Lipshutz, University of California, Santa Barbara .............................................................18 Small Business Award: BioAmber, Inc.. .....................................................................................................19 Greener Synthetic Pathways Award: Genomatica .........................................................................................................20 Greener Reaction Conditions Award: Kraton Performance Polymers, Inc......................................................................21 Designing Greener Chemicals Award: The Sherwin-Williams Company .........................................................................22 2010 Winners Academic Award: James C. Liao, Ph.D., Easel Biotechnologies, LLC and University of California, Los Angeles ................................................................23 Small Business Award: LS9, Inc.. ..............................................................................................................24 Greener Synthetic Pathways Award: The Dow Chemical Company BASF ...................................................................................................................... 25 Greener Reaction Conditions Award: Merck & Co., Inc. Codexis, Inc. .........................................................................................................26 Designing Greener Chemicals Award: Clarke ....................................................................................................................27 2009 Winners Academic Award: Professor Krzysztof Matyjaszewski, Carnegie Mellon University ........... ..................................................................28 Small Business Award: Virent Energy Systems, Inc. .................................................................................29 Greener Synthetic Pathways Award: Eastman Chemical Company .............................................................................30 Greener Reaction Conditions Award: CEM Corporation .................................................................................................31 Designing Greener Chemicals Award: The Procter & Gamble Company Cook Composites and Polymers Company........................................................32 iv Contents 2008 Winners Academic Award: Professors Robert E. Maleczka, Jr. and Milton R. Smith, III, Michigan State University ................................................................................ 33 Small Business Award: SiGNa Chemisty, Inc. ..........................................................................................34 Greener Synthetic Pathways Award: Battelle .................................................................................................................35 Greener Reaction Conditions Award: Nalco Company ................................................................................................... 36 Designing Greener Chemicals Award: Dow AgroSciences LLC ........................................................................................37 2007 Winners Academic Award: Professor Michael J. Krische, University of Texas at Austin ............................................................................ 38 Small Business Award: NovaSterilis Inc. ...................................................................................................39 Greener Synthetic Pathways Award: Professor Kaichang Li, Oregon State University; Columbia Forest Products Hercules Incorporated (now Ashland Inc.) ....................................................40 Greener Reaction Conditions Award: Headwaters Technology Innovation .................................................................. 41 Designing Greener Chemicals Award: Cargill, Incorporated ............................................................................................42 2006 Winners Academic Award: Professor Galen J. Suppes, University of Missouri-Columbia .................................................................... 43 Small Business Award: Arkon Consultants, NuPro Technologies, Inc. (now Eastman Kodak Company) .....................................................................44 Greener Synthetic Pathways Award: Merck & Co., Inc. ..................................................................................................45 Greener Reaction Conditions Award: Codexis, Inc. ......................................................................................................... 46 Designing Greener Chemicals Award: S.C. Johnson & Son, Inc. ......................................................................................47 Contents v 2005 Winners Academic Award: Professor Robin D. Rogers, The University of Alabama ............. ..................................................................48 Small Business Award: Metabolix, Inc. ....................................................................................................49 Greener Synthetic Pathways Award: Archer Daniels Midland Company Novozymes ..........................................................................................................50 Merck & Co., Inc. ..................................................................................................51 Greener Reaction Conditions Award: BASF Corporation ..................................... ............................................................52 Designing Greener Chemicals Award: Archer Daniels Midland Company .....................................................................53 2004 Winners Academic Award: Professors Charles A. Eckert and Charles L. Liotta, Georgia Institute of Technology ......................................................................54 Small Business Award: Jeneil Biosurfactant Company ...........................................................................55 Greener Synthetic Pathways Award: Bristol-Myers Squibb Company ...........................................................................56 Greener Reaction Conditions Award: Buckman Laboratories International, Inc. ..........................................................57 Designing Greener Chemicals Award: Engelhard Corporation (now BASF Corporation) ..............................................58 2003 Winners Academic Award: Professor Richard A. Gross, Polytechnic University ... ...................................................................................59 Small Business Award: AgraQuest, Inc. ....................................................................................................60 Greener Synthetic Pathways Award: Süd-Chemie Inc. ...................................................................................................61 Greener Reaction Conditions Award: DuPont .................................................................................................................62
Recommended publications
  • Introduction to Bioplastics Alan Fernyhough, October 20Th 2011 Outline: Introduction to Bioplastics
    Introduction to Bioplastics Alan Fernyhough, October 20th 2011 Outline: Introduction to Bioplastics • Petrochemical plastics background • What are bioplastics? • Bioplastic market growth and drivers • The three leading compostable bioplastics − Starches − Celluloses − Compostable Polyesters Petroleum Fuels, Chemicals & Plastics PETROLEUM REFINING FUELS & OILS CRUDE OIL PETCHEM FEEDSTOCKS (~3%) ADDITIVES: chemicals; fillers/fibres CHEMICAL BUILDING COMPOUNDING POLYMERISATION BLOCKS/MONOMERS & PROCESSING extrusion, POLYMERS moulding PE,PP,PVC,PS,PET,.. foaming,.. PLASTIC PRODUCTS Example Monomers & Derived Polymers (Petroleum Refining) Petrochemical / Further Derived Example Polymers Monomer/intermediate Monomer/intermediate Ethylene, propylene PE, PP, .. Vinyl chloride PVC,.. Vinyl acetate PVac; EVA, PVAlc.,. Acrylic acid EAA,... Acrylonitrile SAN, ABS,... Ethylene glycol PET,.. Methyl methacrylate PMMA,... Lower alkenes LLDPE Butadiene ABS, PBD,... Xylenes / alkylated Terephthalic acid PET, PBT, PBAT benzenes (PX) Styrene PS/EPS, SAN, ABS Adipic Acid Nylon 6,6 ; PBAT Butanediol PBS, PBAT What are bioplastics? Two concepts*: 1. Biodegradable/Compostable – end of life functionality 2. Derived from Renewable Resources – start of life : renewable carbon ‘Bioplastics’ Petrochemical Bio-based Compostable Plastics Plastics Renewable plastics PE, PP, PET, PVC,.. PCL, PBS Starch, Cellulosics, Bio-PE, Bio-PET,... PLA, PHB, * European Bioplastics www.european-bioplastics.org Bioplastics Can be polymers that are: − biobased (renewable resource) and
    [Show full text]
  • Bioplastics: Biobased Plastics As Renewable And/Or Biodegradable Alternatives to Petroplastics
    BIOPLASTICS: BIOBASED PLASTICS AS RENEWABLE AND/OR BIODEGRADABLE ALTERNATIVES TO PETROPLASTICS 1. Introduction ‘‘Plastics’’ were introduced approximately 100 years ago, and today are one of the most used and most versatile materials. Yet society is fundamentally ambivalent toward plastics, due to their environmental implications, so interest in bioplastics has sparked. According to the petrochemical market information provider ICIS, ‘‘The emergence of bio-feedstocks and bio-based commodity polymers production, in tandem with increasing oil prices, rising consumer consciousness and improving economics, has ushered in a new and exciting era of bioplastics commercialization. However, factors such as economic viability, product quality and scale of operation will still play important roles in determining a bioplastic’s place on the commer- cialization spectrum’’ (1). The annual production of synthetic polymers (‘‘plastics’’), most of which are derived from petrochemicals, exceeds 300 million tons (2), having replaced traditional materials such as wood, stone, horn, ceramics, glass, leather, steel, concrete, and others. They are multitalented, durable, cost effective, easy to process, impervious to water, and have enabled applications that were not possible before the materials’ availability. Plastics, which consist of polymers and additives, are defined by their set of properties such as hardness, density, thermal insulation, electrical isolation, and primarily their resistance to heat, organic solvents, oxidation, and microorgan- isms. There are hundreds of different plastics; even within one type, various grades exist (eg, low viscosity polypropylene (PP) for injection molding, high viscosity PP for extrusion, and mineral-filled grades). Applications for polymeric materials are virtually endless; they are used as construction and building material, for packaging, appliances, toys, and furniture, in cars, as colloids in paints, and in medical applications, to name but a few.
    [Show full text]
  • Examining the Technology for a Sustainable Environment Grant Program
    Examining the Technology for a Sustainable Environment Grant Program An Interactive Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTIUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science Submitted to: Professor James Demetry Professor Joseph Petruccelli Worcester Polytechnic Institute: Washington, D.C. Project Center By: Eddie Diaz _____________________ Melissa Hinton _____________________ Mark Stevenson _____________________ December 13, 2004 In Cooperation with the Environmental Protection Agency Diana Bauer, Ph.D April Richards, PE National Center of National Center of Environmental Research Environmental Research Environmental Protection Environmental Protection Agency Agency Washington, DC 20005 Washington, DC 20005 This report is submitted in partial fulfillment of the degree requirements of Worcester Polytechnic Institute. The views and opinions expressed herein are those of the authors and do not necessarily reflect the positions or opinions of the Environmental Protection Agency or Worcester Polytechnic Institute. Abstract This project was performed with the support of the Environmental Protection Agency and involved the examination of the Technology for a Sustainable Environment (TSE) grants program. We selected ten researchers funded by the TSE program, interviewed them, and reviewed their research in terms of qualitative and quantitative academic, industrial, and potential environmental impacts. For each of the ten researchers, we wove this information together
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,858,244 Tang Et Al
    USOO5858244A United States Patent (19) 11 Patent Number: 5,858,244 Tang et al. (45) Date of Patent: Jan. 12, 1999 54 USE OF BIODEGRADABLE POLYMERS IN 4,868,287 9/1989 Sikes et al.. PREVENTION SCALE BUILD-UP 4,906,383 3/1990 Chen et al. ............................. 210/697 5,041,291 8/1991 Bader et al. ............................ 424/426 75 Inventors: Jiansheng Tang, Naperville; Ronald V. 5,051,401 9/1991 Sikes. Davis, Geneva, both of Ill. 5,116,513 5/1992 Koskan et al. 5,247,068 9/1993 Donachy et al.. 73 Assignee: Nalco Chemical Company, Naperville, 5,284.9365,260,272 11/19932/1994 Donachy et al.. III. 5,328,690 7/1994 Sikes. 5,496,914 3/1996 Wood et al. ............................ 528/328 21 Appl. No.: 944,281 5,506,335 4/1996 Uhr et al. ................................ 528/322 5,527,863 6/1996 Wood et al. ............................ 525/432 22 Filed: Oct. 6, 1997 5,658,464 8/1997 Hann et al. ............................. 210/697 5,776,875 7/1998 Tang et al. .............................. 510/247 Related U.S. Application Data Primary Examiner Peter A. Hruskoci 62) Division of Ser. No. 683,001, Jul 16, 1996, Pat. No. Attorney, Agent, Or Firm Hill & Simpson 5,776.875. 57 ABSTRACT (51)52 U.S.Int. Cl.Cl. .................................................................... 210,698. 252/180: CO2F5/12 210,700 Albiodegradable scale inhibitor- - - - - and dispersant is provided. 58 Field of Search ..................................... 210/698-701; The scale inhibitor includes a copolymer comprising at least 252/180, 181,510/24. one of N-oxygenated hydrocarbonamide monomers and at s s least one of amino acid monomers.
    [Show full text]
  • Stimuli-Responsive Poly(Aspartamide) Derivatives and Their Applications As Drug Carriers
    International Journal of Molecular Sciences Review Stimuli-Responsive Poly(aspartamide) Derivatives and Their Applications as Drug Carriers Guangyan Zhang 1,2,* , Hui Yi 1 and Chenhui Bao 1 1 School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; [email protected] (H.Y.); [email protected] (C.B.) 2 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China * Correspondence: [email protected] Abstract: Poly(aspartamide) derivatives, one kind of amino acid-based polymers with excellent biocompatibility and biodegradability, meet the key requirements for application in various areas of biomedicine. Poly(aspartamide) derivatives with stimuli-responsiveness can usually respond to external stimuli to change their chemical or physical properties. Using external stimuli such as tem- perature and pH as switches, these smart poly(aspartamide) derivatives can be used for convenient drug loading and controlled release. Here, we review the synthesis strategies for preparing these stimuli-responsive poly(aspartamide) derivatives and the latest developments in their applications as drug carriers. Keywords: poly(aspartamide) derivatives; stimuli-responsive; drug carrier; nanoparticles; hydrogel; polymer-drug conjugate; drug-loading; controlled drug release Citation: Zhang, G.; Yi, H.; Bao, C. Stimuli-Responsive Poly(aspartamide) Derivatives and 1. Introduction Their Applications as Drug Carriers. Though the carbon-carbon backbone is conducive to the stability of polymers, it also Int. J. Mol. Sci. 2021, 22, 8817. limits the applications of these polymers in biomedical fields due to its low biocompat- http://doi.org/10.3390/ijms22168817 ibility and non-biodegradability. In the past decades, the interest in amino acid-based biodegradable polymers has increased significantly in biomedicine due to their good Academic Editors: Ádám Juhász and biocompatibility, biodegradability and non-toxicity of their degradation products.
    [Show full text]
  • Global Top Picks
    Equity Research 29 March 2015 1Q 2015 Global Top Picks Equity Research Team Barclays Capital Inc. and/or one of its affiliates does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. Investors should consider this report as only a single factor in making their investment decision. This research report has been prepared in whole or in part by equity research analysts based outside the US who are not registered/qualified as research analysts with FINRA. PLEASE SEE ANALYST CERTIFICATION(S) AND IMPORTANT DISCLOSURES BEGINNING ON PAGE 153. Barclays | 1Q 2015 Global Top Picks 29 March 2015 2 Barclays | 1Q 2015 Global Top Picks FOREWORD A lot has changed since we published our last Global Top Picks in December. The plunge in oil prices and the rise in the US dollar have produced clear beneficiaries in the euro area and Japan, where monetary policy continues to be extremely supportive, providing support for further upside in stock prices. As we argue in our Global Outlook: Oil, the dollar and monetary policy: it’s all (or at least mostly) good , lower inflation as a result of lower oil prices, combined with a stronger dollar, also argues for the Fed to be more cautious about raising rates than it otherwise would have been, allowing risk assets to continue to perform well. Against this continued accommodative backdrop, we raise our price targets for continental European and Japanese equities, forecasting an additional 13% and 9% of total returns from current levels to the end of 2015, respectively.
    [Show full text]
  • Llllllllllllli|||Ll|||Ll|L|L||||L|L|||Lll|||||Lllllllllilllllllllllllllllll US005478919A United States Patent [19] [11] Patent Number: 5,478,919 Koskan Et Al
    llllllllllllli|||ll|||ll|l|l||||l|l|||lll|||||lllllllllilllllllllllllllllll US005478919A United States Patent [19] [11] Patent Number: 5,478,919 Koskan et al. [45] Date of Patent: Dec. 26, 1995 v [54] ASPARTIC ACID COPOLYMERS AND THEIR 3,846,380 10/1972 Fujimoto et a1. ..................... .. 528/363 PREPARATION 5,292,858 3/1994 Wood .................... .. 528/345 5,357,004 10/1994 Calton m1. ......................... .. 525/435 [75] Inventors: Larry P. Koskan, Orland Park; James Primary Examiner_sheney A Dodson F. Kneller, LaGrange Park; Daniel A. A t F _P ' R Bah Batzel, Skokie, all 01:111. Attorney’ gen’ or m" cm ' n [57] ' ABSTRACT [ 73 ] A’Sslgnee :Dlon ar Corporatlon’‘ Bed fPk,I11.0rd aI Aspartic.. acld precursors such as mono and diammomum. maleate, maleamic acid, ammonium maleamate, ammonium [21] Appl' No‘: 283’268 malate and mixtures of these and other precursors are [22] Filed; JuL 29’ 1994 copolycondensed thermally with a variety of mono, di and multifunctional monomers containing amino, hydroxyl and Int. Cl-6 ................................................... .. carboxyl functional groups_ The resulting condensation [52] US. Cl. ........................ .. 528/363; 525/418; 525/419; copolymers and terpolymers contain succinimide units 525/420; 528/328; 528/332; 528/335; 528/345 derived from aspartic acid precursors, condensed with other [58] Field of Search ................................... .. 525/418, 419, functional group monomers usually though amide and ester 525/420; 528/328, 363, 332, 335, 345 linkages. Hydrolysis of the polysuccinimide copolymers and 7 terpolymers with alkali, alkaline earth and ammonium [56] References Cited ' hydroxide produces aspartic acid copolymer and terpolymer U.s. PATENT DOCUMENTS Salts‘ 2,306,918 2/1940 Weiss et a1.
    [Show full text]
  • D 2.1 Background Information and Biorefinery Status, Potential and Sustainability
    Project no.: 241535 – FP7 Project acronym: Star-COLIBRI Project title: Strategic Targets for 2020 – Collaboration Initiative on Biorefineries Instrument: Specific Support Action Thematic Priority: Coordination and support actions D 2.1 Background information and biorefinery status, potential and Sustainability – Task 2.1.2 Market and Consumers; Carbohydrates – Due date of deliverable: March 31, 2010 Start date of project: 01.11.2009 Duration: 24 months Organisation name of lead contractor for this deliverable: UoY Version: 1.0 Project co-funded by the European Commission within the Seventh Framework Programme (2007-2011) Dissemination level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Star-COLIBRI - Deliverable 2.1 D 2.1 Background information and biorefinery status, potential and Sustainability – Task 2.1.2 Market and Consumers; Carbohydrates – H.L. Bos, P.F.H. Harmsen & E. Annevelink Wageningen UR – Food & Biobased Research Version 18/03/10 Task 2.1.2 Market and Consumers; Carbohydrates 2 Star-COLIBRI - Deliverable 2.1 Content Management summary ............................................................................................................... 4 1 Introduction ........................................................................................................................ 5 1.1 Task description
    [Show full text]
  • Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion
    Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion Randal L. Shogren,1 J. L. Willett,1 David Westmoreland,2 Sergio O. Gonzalez,1* Kenneth M. Doll,1 Graham Swift2 1Plant Polymer Unit, National Center for Agricultural Utilization Research, USDA/ARS, Peoria, Illinois 2Folia, Inc., Birmingham, Alabama Received 30 April 2008; accepted 24 June 2008 DOI 10.1002/app.28944 Published online 10 September 2008 in Wiley InterScience (www.interscience.wiley.com). ABSTRACT: Aspartic acid is prepared chemically or only about 5 min. Mw generally increased with aspartic/ by the fermentation of carbohydrates. Currently, low mo- diacid ratio but melt viscosities became very high and lecular weight polyaspartic acids are prepared commer- processing became difficult at ratios >16. Most of the cially by heating aspartic acid at high temperatures copolymers exhibited inhibition of calcium carbonate (>220C) for several hours in the solid state. In an effort precipitation at concentrations similar to that of pure to develop a more rapid, continuous, melt polymeriza- polyaspartic acid and thus may find application as anti- tion scheme, aspartic acid was copolymerized with scalants. VC 2008 Wiley Periodicals, Inc. J Appl Polym Sci 110: adipic, azelaic, sebacic, and dodecanedioic acids using a 3348–3354, 2008 vented twin-screw extruder. Copolymers having ratios of aspartic/diacid 16 and Mw up to 9100 were prepared Key words: biodegradable; copolymerization; extrusion; at temperatures of 240–260C and residence times of polyamides INTRODUCTION to the high temperatures and long times required for such a solid state polyamidation. Recently, the use of biobased products to replace To accelerate the reaction, a number of different those made from increasingly costly imported petro- solvents such as toluene, mesitylene, DMF, sulfolane, leum has gained momentum.1–4 For example, there tetralin12 and catalysts such as phosphoric acid, sul- is considerable interest in replacing polyacrylic acid, furic acid, and salts thereof13 have been studied.
    [Show full text]
  • BIO-BASED SUCCINIC ACID by Sudeep Vaswani (December 2010)
    PEP Review 2010-14 BIO-BASED SUCCINIC ACID By Sudeep Vaswani (December 2010) ABSTRACT In a U.S. Department of Energy report published in 2004, succinic acid was identified as one of the top twelve building-block chemicals that could be produced from renewable feedstocks. Currently, succinic acid uses a petroleum-derived maleic anhydride route for its production, which is both costly and environmentally unfriendly. As a result, there is a growing interest towards discovering a more economical and environmentally cleaner way for its production. One methodology that has been receiving increased attention is the use of bacterial microorganisms. This technology takes advantage of the fermentative capabilities of various microorganisms and utilizes a renewable substrate as a carbon source for acid formation. Succinic acid production from microbial organisms has tremendous potential as a building block for commodity chemicals with applications in several industries. Some of the succinic acid derivatives include: tetrahydrofuran (THF), 1,4-butanediol (BDO), succindiamide, succinonitrile, dimethylsuccinate, N-methyl-pyrrolidone, 2-pyrrolidone, and 1,4-diaminobutane. This PEP Review discusses and provides a detailed techno-economic analysis for bio-based succinic acid production with a capacity of 82.7 million lb/year (37,500 mt/yr). Additionally, it covers information regarding genetic engineering mechanisms, regulation of specific enzymes, and purification of succinic acid to provide a cost-competitive alternative to fossil fuels. © SRI Consulting PEP Review 2010-14 A private report by the Process Economics Program Review No. 2010-14 BIO-BASED SUCCINIC ACID by Sudeep Vaswani December 2010 Menlo Park, California 94025 SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards.
    [Show full text]
  • Synthesis of Indocyanine Green Functionalized Comblike Poly(Aspartic Acid) Derivatives for Enhanced Cancer Cell Ablation by Targeting Endoplasmic Reticulum
    Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2018 Synthesis of indocyanine green functionalized comblike poly(aspartic acid) derivatives for enhanced cancer cell ablation by targeting endoplasmic reticulum Jiaxun Wan,a Luyan Sun,a Pan Wu,a Fang Wang,a Jia Guo,a Jianjun Cheng,b and Changchun Wang*a †State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China., §Department of Materials Science and Engineering, University of Illinois at Urbana– Champaign, Urbana, Illinois 61801, USA. S1 Materials. Phosphoric acid, sulfolane, L-aspartic acid, 2-(2-chloroethoxy)ethanol, sodium hydride, triphenylphosphine, methoxypoly(ethylene glycol) (Mn~1000), p- toluenesulfonyl, ethyl iodide, 1-Bromo-6-chlorohexane, sodium iodide and Cremophor® EL were obtained from Aladdin (Shanghai, China). NaCl, Na2SO4, MgSO4, NH4Cl, sodium hydroxide, HCl, diethyl ether, methanol, ethanol, ethyl acetate, tetrahydrofuran, dichloromethane, pyridine, trimethylamine, acetone, dimethyl formamide, acetonitrile, acetic anhydride were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Mesitylene and 1,1,2-trimethylbenz[e]indole were purchased from Energy Company (Shanghai, China). Propargyl bromide was purchased from Tokyo Chemical Industry (Shanghai, China). Glutaconaldehyde dianil hydrochloride was purchased from J&K Chemical Ltd. (Shanghai, China). Paclitaxel (PTX) was purchased from Adamas Reagent, Ltd.
    [Show full text]
  • Green Chemistry As a Tool for Understanding the Toxic Substances Control Act: a Lecture Module for Undergraduate Students Molly R
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program 5-1-2015 Green Chemistry as a Tool for Understanding the Toxic Substances Control Act: A Lecture Module for Undergraduate Students Molly R. Blessing University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Analytical Chemistry Commons, Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, Environmental Chemistry Commons, Environmental Policy Commons, Inorganic Chemistry Commons, Materials Chemistry Commons, Medicinal- Pharmaceutical Chemistry Commons, Organic Chemistry Commons, Other Chemistry Commons, Physical Chemistry Commons, Polymer Chemistry Commons, Radiochemistry Commons, Science and Mathematics Education Commons, and the Science and Technology Policy Commons Recommended Citation Blessing, Molly R., "Green Chemistry as a Tool for Understanding the Toxic Substances Control Act: A Lecture Module for Undergraduate Students" (2015). Honors Scholar Theses. 449. https://opencommons.uconn.edu/srhonors_theses/449 Green Chemistry as a Tool for Understanding the Toxic Substances Control Act: A Lecture Module for Undergraduate Students Molly Blessing Honors Scholar Thesis Department of Chemistry, University of Connecticut Storrs, CT 06269, United States May 2015 2 Abstract The Toxic Substances Control Act (TSCA) is the central form of chemical regulation existent in the United States today, yet scientists are often unaware or uncertain of its provisions. Violations of TSCA by unknowing chemists set industry and government unnecessarily at odds. A lecture on TSCA was developed for undergraduate students that uses the concept of green chemistry to promote interest and incentivize learning. Green chemistry methods are cleaner and less wasteful than traditional chemical ones, and many companies using them are at the forefront of technological innovation.
    [Show full text]