Fungos Endofíticos De Folhas E Caule De Lippia Sidoides Cham

Total Page:16

File Type:pdf, Size:1020Kb

Fungos Endofíticos De Folhas E Caule De Lippia Sidoides Cham UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE MICOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA DE FUNGOS Virgínia Medeiros de Siqueira Fungos endofíticos de folhas e caule de Lippia sidoides Cham. e avaliação da atividade antimicrobiana Recife-PE 2008 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE MICOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA DE FUNGOS Virgínia Medeiros de Siqueira Fungos endofíticos de folhas e caule de Lippia sidoides Cham. e avaliação da atividade antimicrobiana Dissertação de Mestrado submetida ao Programa de Pós-graduação em Biologia de Fungos do Departamento de Micologia do Centro de Ciências Biológicas da Universidade Federal de Pernambuco em cumprimento da exigência para obtenção do grau de Mestre em Biologia de Fungos. Orientadora: Profa Dra Cristina Maria Souza Motta Co-orientadora: Profa Dra Janete Magali de Araújo Recife-PE 2008 Siqueira, Virgínia Medeiros de Fungos endofíticos de folhas e caule de Lippia sidoides Cham. e avaliação da atividade antimicrobiana./ Virgínia Medeiros de Siqueira. – Recife: A Autora, 2008. 94 fls. .: il. Dissertação (Mestrado: Biologia de Fungos) – UFPE. CCB 1.Fungos endofíticos 2.Lippia sidoides 3.Atividade antimicrobiana I.Título 582.28 CDU (2ª. Ed.) UFPE 579 CDD (22ª. Ed.) CCB – 2008 – 06 O objetivo da vida não é ser feliz. É ser útil, honrado, compassivo, fazendo com que nossa vida, bem vivida, faça alguma diferença. Dedico à Kátia, Érika e Murilo. AGRADECIMENTOS À minha mãe, Kátia Maria Medeiros de Siqueira, por ser amorosa, honesta, serena e compreensiva. É meu porto seguro e minha referência de vida. Obrigada pelo amor, mimos, confiança e compreensão. Ao meu pai, Raimundo Nonato, por sempre me incentivar a estudar. Aos meus irmãos, Érika e Murilo, pela amizade, pelos momentos de descontração e pelo apoio em todas as horas. Em especial para Érika, além de irmã, uma verdadeira amiga. Quando temos irmãos ao nosso lado, tudo fica mais fácil. À minha avó Gilda Medeiros de Albuquerque (in memorian) pelo acolhimento cheio de mimos e preocupações desde minha chegada em Recife e à minha tia Magnólia Medeiros (in memorian), ser humano de alma superior e de coração único. Obrigada pelos momentos de suas vidas dedicados a mim. A Bidu (in memorian) e Nzinga, pelo amor incondicional indispensável ao meu bem estar. À professora Dra. Cristina Maria Souza Motta, minha orientadora, pelos conhecimentos transmitidos e pela confiança depositada em mim. À professora Dra. Janete Magali, minha co-orientadora, pelos conhecimentos transmitidos e pelo acolhimento sem restrições no Departamento de Antibióticos. Às professoras Débora Maria Massa Lima e Maria José dos Santos Fernandes, pela colaboração na identificação de muitos dos meus fungos isolados. Ao professor Dr. Uwe Braun, da Universidade Martin Luther, Alemanha, pela co- autoria de um dos artigos que compõe esta dissertação. Obrigada pela sua colaboração e disponibilidade. Às minha amigas, Ludmila Lima, Evanilza Moura, Ana Josephina, Lucimary Araújo e Pamela Simoa, pelos grandes momentos de amizade vividos juntos, desde nossa infância até os tempos de hoje. A nossa verdadeira amizade eternizou o amor que tenho por vocês. À Judith Advíncula e Alexandra Muniz, pelos conselhos, pelos momentos de estudos e pelas muitas alegrias compartilhadas. A todos os meus colegas do X Curso de Especialização em Micologia, onde dei início aos meus estudos micológicos, pelos ótimos momentos, aulas, trabalhos e seminários. Nesta turma não havia lugar para vaidade ou competição e sim para algo precioso: a simplicidade. Como foi bom conviver com vocês. À Adriana, Ivana e Raphael, um muito obrigado pelo apoio dado em todos os momentos. A companhia de vocês foi essencial para a mim. Vocês são tão especiais que se tornaram minha segunda família, além de serem amigos extraordinários. Obrigado também a todos os meus colegas do Departamento de Antibióticos: a disposição que cada um tem de ajudar o outro é uma riqueza única. Ao CNPq, pela bolsa de estudos concedida durante os dois anos dos meus estudos e pelo apoio financeiro essencial para a realização deste trabalho através do projeto RENNEBRA. A todos que direta ou indiretamente contribuíram de alguma forma para a realização deste trabalho. Toda a nossa ciência, comparada com a realidade, é primitiva e infantil – e, no entanto, é a coisa mais preciosa que temos. Albert Einstein (1879-1955) RESUMO Fungos endofíticos vivem por todo ou uma parte do seu ciclo de vida no interior de tecidos vegetais, sem causar sintomas de doença. Desde que foram devidamente estudados despertaram grande interesse biotecnológico em virtude da aplicabilidade de seus metabólitos secundários na medicina, indústria e agricultura. Lippia sidoides Cham,. planta medicinal popularmente conhecida como alecrim-pimenta, é encontrada no Nordeste brasileiro e utilizada principalmente como antisséptico. Folhas e caule foram superficialmente desinfectados e fragmentados. Os fragmentos dos tecidos vegetais foram distribuídos na superfície dos meios Batata dextrose agar e Sabouraud agar acrescidos de tetraciclina e cloranfenicol (100µL/mL) contidos em placas de Petri e cultivados a 30o C por até 30 dias. Todos os isolados foram submetidos ao ensaio antimicrobiano primário em meio sólido (bloco de gelose) e aqueles que se mostraram ativos a algum microrganismo teste foram então submetidos ao teste de atividade microbiana em meio líquido (fermentação). Os microrganismos teste utilizados foram Staphylococcus aureus (ATCC-6538), Bacillus subtilis (UFPEDA-16), Escherichia coli (ATCC-25922), Klebsiella pneumoniae (ATCC- 29665), Pseudomonas aeruginosa (ATCC-27853), Candida albicans (UFPEDA-1007), Malassezia furfur (URM-5436) e Trichophyton rubrum (URM-4350). Um total de 207 fungos endofíticos pertencentes a quatorze espécies foram isolados: 125 (52%) de folhas e 82 (34,1%) de caule. Colletotrichum gloeosporioides foi a espécie mais freqüente, seguida de Alternaria alternata, Guignardia bidwelli e Phomopsis archeri. No bloco de gelose, 8% (16) se mostraram ativos a pelo menos um dos microrganismos teste. Destes, 10 apresentaram atividade nos ensaios em meio líquido, com os melhores halos de inibição de 25mm, 18mm e 13mm contra S. aureus, B. subtillis e K. pneumonie, respectivamente. Palavras-chave: Fungos endofíticos; Diversidade; Atividade antimicrobiana; Lippia sidoides ABSTRACT Endophytic fungi colonize healthy living tissue of the host plant, typically causing no apparent symptoms of disease. Since they were truly studied they called great attention to the biotechnological interesting because of the applicability of they secondary metabolites in medicine, industry and agricultural. Lippia sidoides Cham., a medicinal plant popularly known as “alecrim-pimenta”, is founded at Brazilian northeast and used mostly as antiseptic. Leaves and stem were superficially disinfected and fragmented. The fragments were placed on the surface of the media Potato dextrose agar and Sabouraud agar supplemented with tetraciclin (100µg/mL) and chloramphenicol (100µg/mL) on Petri dishes and cultivated at 30o C up to 30 days. All the strains were submitted to the agar plug screening assay (“bloco de gelose”) and those who showed antimicrobial activity were submitted to the fermentation assay. The microorganisms test were Staphylococcus aureus (ATCC-6538), Bacillus subtilis (UFPEDA-16), Escherichia coli (ATCC-25922), Klebsiella pneumoniae (ATCC-29665), Pseudomonas aeruginosa (ATCC-27853), Candida albicans (UFPEDA-1007), Malassezia furfur (URM-5436) and Trichophyton rubrum (URM-4350). A total of 207 endophytic fungi were isolated, 125 (52%) from leaves and 82 (34,1%) from stem, belonging to fourteen species. Colletotrichum gloeosporioides was the mostly frequently specie, fallowed by Alternaria alternata, Guignardia bidwelli and Phomopsis archeri. At the agar plug screening assay, 8% (16) endophytic fungi showed antimicrobial activity to at least one microorganism test. From these, ten showed antimicrobial activity during the fermentation. The bests inhibition zone were 25mm, 18mm e 13mm against S. aureus, B. subtillis e K. pneumonie, respectively. Keywords: Endophytic fungi; diversity, antimicrobial activity; Lippia sidoides. LISTA DE FIGURAS Figura 1. Equilíbrio antagônico entre virulência fúngica e defesa da planta. Adaptado de SCHULZ et al. 2002. 05 Pág. Figura 2. Cryptocandin A e Criptocin (LI et al. 2000). 12 Figura 3. Colletotric Acid (ZOU et al. 2000). 13 Figura 4. 2,4-diidroxi-5,6-dimetil benzoato de etila e phomopsilactona (SILVA et al. 2005). 13 Figura 5. Brefeldin A (WANG et al. 2006). 14 Figura 6. Planta medicinal Lippia sidoides Cham. 16 Figura 7. Estrutura Química do Carvacrol (A) e Timol (B) (COSTA et al. 16 2001). Primeiro Capítulo: Fungos Endofíticos de Folhas e Caule de Lippia sidoides Cham. Figura 1. Percentagem de fungos endofíticos de diferentes grupos. 37 Figura 2 Diferenças em número e especificidade de fungos endofíticos de Lippia sidoides nos tecidos vegetais 37 Terceiro Capítulo: Corynespora subcylindrica sp. nov. – uma nova espécie de Hyphomycete do Brasil e uma discussão sobre a taxonomia de gêneros “corynespora- like” Figura 1. Corynespora subcylindrica sp. nov. – Cultura em BDA (Diâmetro da 71 placa de Petri: 90mm). Figura 2. Corynespora subcylindrica sp. nov. Conidióforo surgindo 71 lateralmente de uma hifa em cultura em BDA, com conídio primário (conídio secundário da cadeia já formado). – Bar = 10 µm. Figura 3. Corynespora subcylindrica sp. nov. – A. Hifa. – B. conidioforos.
Recommended publications
  • AR TICLE Recommended Names for Pleomorphic Genera In
    IMA FUNGUS · 6(2): 507–523 (2015) doi:10.5598/imafungus.2015.06.02.14 Recommended names for pleomorphic genera in Dothideomycetes ARTICLE Amy Y. Rossman1, Pedro W. Crous2,3, Kevin D. Hyde4,5, David L. Hawksworth6,7,8, André Aptroot9, Jose L. Bezerra10, Jayarama D. Bhat11, Eric Boehm12, Uwe Braun13, Saranyaphat Boonmee4,5, Erio Camporesi14, Putarak Chomnunti4,5, Dong-Qin Dai4,5, Melvina J. D’souza4,5, Asha Dissanayake4,5,15, E.B. Gareth Jones16, Johannes Z. Groenewald2, Margarita Hernández-Restrepo2,3, Sinang Hongsanan4,5, Walter M. Jaklitsch17, Ruvishika Jayawardena4,5,12, Li Wen Jing4,5, Paul M. Kirk18, James D. Lawrey19, Ausana Mapook4,5, Eric H.C. McKenzie20, Jutamart Monkai4,5, Alan J.L. Phillips21, Rungtiwa Phookamsak4,5, Huzefa A. Raja22, Keith A. Seifert23, Indunil Senanayake4,5, Bernard Slippers3, Satinee Suetrong24, Kazuaki Tanaka25, Joanne E. Taylor26, Kasun M. Thambugala4,5,27, Qing Tian4,5, Saowaluck Tibpromma4,5, Dhanushka N. Wanasinghe4,5,12, Nalin N. Wijayawardene4,5, Saowanee Wikee4,5, Joyce H.C. Woudenberg2, Hai-Xia Wu28,29, Jiye Yan12, Tao Yang2,30, Ying Zhang31 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; corresponding author e-mail: amydianer@ yahoo.com 2CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 3Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa 4Center of Excellence in Fungal Research, School of Science, Mae Fah
    [Show full text]
  • Endophytic Fungi of Olive Tree and Their Exploitation in the Biological
    ESCUELA SUPERIOR Y TÉCNICA DE INGENIERÍA AGRARIA INGENIERÍA DE BIOSISTEMAS Endophytic fungi of olive tree and their exploitation in the biological control of olive anthracnose Doctoral Thesis Maria de Fátima Tomé Martins Director: Professora Doutora Paula Cristina Santos Baptista León 2020 ESCUELA SUPERIOR Y TÉCNICA DE INGENIERÍA AGRARIA INGENIERÍA DE BIOSISTEMAS Hongos endofíticos del olivo y su aprovechamiento para el control biológico de la antracnosis del olivo Tesis Doctoral Maria de Fátima Tomé Martins Director: Profesora Doctora Paula Cristina Santos Baptista León 2020 This research was supported by FEDER funds through the COMPETE (Operational Programme for Competitiveness Factors) and by the Foundation for Science and Technology (FCT, Portugal) within the POCI-01-0145-FEDER-031133 project and FCT/MCTES to CIMO (UIDB/00690/2020), as well as the Horizon 2020, the European Union’s Framework Programme for Research and Innovation, for financial support the project PRIMA/0002/2018. Fátima Martins also thanks the individual research grant ref. SFRH / BD / 112234/2015 award by FCT. The studies presented in this thesis were performed at the AgroBioTechnology Laboratory, at the Mountain Research Centre (CIMO), School of Agriculture Polytechnic Institute of Bragança. Às minhas filhas Acknowledgements Neste momento, é com enorme gosto e satisfação que agradeço a todos aqueles que direta ou indiretamente contribuíram para a realização e conclusão deste trabalho. Em primeiro lugar gostaria de agradecer em especial à minha orientadora. À Professora Doutora Paula Cristina dos Santos Baptista, da Escola Superior Agrária, por toda a orientação prestada durante a realização do trabalho ao nível laboratorial e escrito, bem como, por todo o conhecimento transmitido, paciência, disponibilidade e acima de tudo pela amizade e carinho demonstrados ao longo destes anos.
    [Show full text]
  • A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
    Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA.
    [Show full text]
  • Fungal Pathogens of Proteaceae
    Persoonia 27, 2011: 20–45 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158511X606239 Fungal pathogens of Proteaceae P.W. Crous 1,3,8, B.A. Summerell 2, L. Swart 3, S. Denman 4, J.E. Taylor 5, C.M. Bezuidenhout 6, M.E. Palm7, S. Marincowitz 8, J.Z. Groenewald1 Key words Abstract Species of Leucadendron, Leucospermum and Protea (Proteaceae) are in high demand for the interna- tional floriculture market due to their brightly coloured and textured flowers or bracts. Fungal pathogens, however, biodiversity create a serious problem in cultivating flawless blooms. The aim of the present study was to characterise several cut-flower industry of these pathogens using morphology, culture characteristics, and DNA sequence data of the rRNA-ITS and LSU fungal pathogens genes. In some cases additional genes such as TEF 1- and CHS were also sequenced. Based on the results of ITS α this study, several novel species and genera are described. Brunneosphaerella leaf blight is shown to be caused by LSU three species, namely B. jonkershoekensis on Protea repens, B. nitidae sp. nov. on Protea nitida and B. protearum phylogeny on a wide host range of Protea spp. (South Africa). Coniothyrium-like species associated with Coniothyrium leaf systematics spot are allocated to other genera, namely Curreya grandicipis on Protea grandiceps, and Microsphaeropsis proteae on P. nitida (South Africa). Diaporthe leucospermi is described on Leucospermum sp. (Australia), and Diplodina microsperma newly reported on Protea sp. (New Zealand). Pyrenophora blight is caused by a novel species, Pyrenophora leucospermi, and not Drechslera biseptata or D.
    [Show full text]
  • Characterising Plant Pathogen Communities and Their Environmental Drivers at a National Scale
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Characterising plant pathogen communities and their environmental drivers at a national scale A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Andreas Makiola Lincoln University, New Zealand 2019 General abstract Plant pathogens play a critical role for global food security, conservation of natural ecosystems and future resilience and sustainability of ecosystem services in general. Thus, it is crucial to understand the large-scale processes that shape plant pathogen communities. The recent drop in DNA sequencing costs offers, for the first time, the opportunity to study multiple plant pathogens simultaneously in their naturally occurring environment effectively at large scale. In this thesis, my aims were (1) to employ next-generation sequencing (NGS) based metabarcoding for the detection and identification of plant pathogens at the ecosystem scale in New Zealand, (2) to characterise plant pathogen communities, and (3) to determine the environmental drivers of these communities. First, I investigated the suitability of NGS for the detection, identification and quantification of plant pathogens using rust fungi as a model system.
    [Show full text]
  • <I>Dothideomycetes</I>
    IMA FUNGUS · 6(2): 507–523 (2015) doi:10.5598/imafungus.2015.06.02.14 Recommended names for pleomorphic genera in Dothideomycetes ARTICLE Amy Y. Rossman1, Pedro W. Crous2,3, Kevin D. Hyde4,5, David L. Hawksworth6,7,8, André Aptroot9, Jose L. Bezerra10, Jayarama D. Bhat11, Eric Boehm12, Uwe Braun13, Saranyaphat Boonmee4,5, Erio Camporesi14, Putarak Chomnunti4,5, Dong-Qin Dai4,5, Melvina J. D’souza4,5, Asha Dissanayake4,5,15, E.B. Gareth Jones16, Johannes Z. Groenewald2, Margarita Hernández-Restrepo2,3, Sinang Hongsanan4,5, Walter M. Jaklitsch17, Ruvishika Jayawardena4,5,12, Li Wen Jing4,5, Paul M. Kirk18, James D. Lawrey19, Ausana Mapook4,5, Eric H.C. McKenzie20, Jutamart Monkai4,5, Alan J.L. Phillips21, Rungtiwa Phookamsak4,5, Huzefa A. Raja22, Keith A. Seifert23, Indunil Senanayake4,5, Bernard Slippers3, Satinee Suetrong24, Kazuaki Tanaka25, Joanne E. Taylor26, Kasun M. Thambugala4,5,27, Qing Tian4,5, Saowaluck Tibpromma4,5, Dhanushka N. Wanasinghe4,5,12, Nalin N. Wijayawardene4,5, Saowanee Wikee4,5, Joyce H.C. Woudenberg2, Hai-Xia Wu28,29, Jiye Yan12, Tao Yang2,30, Ying Zhang31 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; corresponding author e-mail: amydianer@ yahoo.com 2CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 3Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa 4Center of Excellence in Fungal Research, School of Science, Mae Fah
    [Show full text]
  • A Highly Diverse Fungal Community Associated with Leaves of the Mangrove Plant Acanthus Ilicifolius Var
    A highly diverse fungal community associated with leaves of the mangrove plant Acanthus ilicifolius var. xiamenensis revealed by isolation and metabarcoding analyses Wei-Chiung Chi1,2, Weiling Chen1, Chih-Chiao He1, Sheng-Yu Guo1, Hyo-Jung Cha1, Ling Ming Tsang3, Tsz Wai Ho4 and Ka-Lai Pang1 1 Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan 2 Institute of Food Science, National Quemoy University, Kinmen, Taiwan 3 School of Biological Science, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 4 School of Biological Sciences, University of Western Australia, Perth, Australia ABSTRACT A high diversity of culturable foliar endophytic fungi is known from various mangrove plants, and the core taxa include species from Colletotrichum, Pestalotiopsis, Phoma, Phomopsis, Sporomiella, among others. Since a small fraction of fungi is able to grow in culture, this study investigated the diversity of fungi associated with leaves of Acanthus ilicifolius var. xiamenensis using both isolation and metabarcoding approaches. A total of 203 isolates were cultured from surface-sterilized leaves, representing 47 different fungal species: 30 species from the winter samples (104 isolates), and 26 species from the summer samples (99 isolates). Ascomycota was dominant in both types of leaf samples, while Basidiomycota was isolated only from the summer samples. Drechslera dema- tioidea (10.58%, percentage of occurrence), Colletotrichum sp. 3 (7.69%) and Alternaria sp. (7.69%) were dominant in the winter samples; Fusarium oxysporum (13.13%), Diaporthe endophytica (10.10%) and Colletotrichum sp. 1 (9.09%) in the summer Submitted 1 February 2019 Accepted 12 June 2019 samples.
    [Show full text]
  • Mycotoxins: Producing Fungi and Mechanisms of Phytotoxicity
    Agriculture 2015, 5, 492-537; doi:10.3390/agriculture5030492 OPEN ACCESS agriculture ISSN 2077-0472 www.mdpi.com/journal/agriculture Review Mycotoxins: Producing Fungi and Mechanisms of Phytotoxicity Ahmed A. Ismaiel 1,* and Jutta Papenbrock 2 1 Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt 2 Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannover D-30419, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +2-012-2711-2912; Fax: +2-055-230-8213. Academic Editor: Anna Andolfi Received: 19 May 2015 / Accepted: 16 July 2015 / Published: 23 July 2015 Abstract: Mycotoxins are secondary fungal metabolites, toxic to humans, animals and plants. Among the hundreds of known mycotoxins, aflatoxins, citrinin, patulin, penicillic acid, tenuazonic acid, ochratoxin A, cytochalasins, deoxynivalenol, fumonisins, fusarin C, fusaric acid, and zearalenone are considered the types that most contaminate cereal grain. The majority of the mycotoxins in these groups are produced by three fungal genera: Aspergillus, Penicillium and Fusarium. These metabolites primarily affect the seed quality, germination, viability, seedling vigour, growth of root and cleoptile. Additionally, since the fungi responsible for the production of these mycotoxins are often endophytes that infect and colonize living plant tissues, accumulation of mycotoxins in the plant tissues may at times be associated with development of plant disease symptoms. The presence of mycotoxins, even in the absence of disease symptoms, may still have subtle biological effects on the physiology of plants. Several studies highlight the toxic effects of mycotoxins on animals and cell lines but little is known about the mode of action of most of these metabolites on plant cells.
    [Show full text]
  • Isolation and Identification of Fungal Endophytes from Grasses Along the Oregon Coast
    American Journal of Plant Sciences, 2015, 6, 3216-3230 Published Online December 2015 in SciRes. http://www.scirp.org/journal/ajps http://dx.doi.org/10.4236/ajps.2015.619313 Isolation and Identification of Fungal Endophytes from Grasses along the Oregon Coast Ruth C. Martin*, James E. Dombrowski USDA ARS Forage Seed and Cereal Research Unit, Corvallis, USA Received 30 September 2015; accepted 13 December 2015; published 16 December 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Fungal endophytes have been shown to improve abiotic and biotic stress response in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Endophytic fungi were isolated from thirty-four grass plants representing eight different grass species at four different locations along the Oregon coast. The ITS-1, 5.8S, and ITS-2 regions of each isolate were amplified, sequenced, and used to perform a BLAST search against the nucleotide database collection at National Center for Biotechnology Information. One-hundred-eleven different fungal isolates were classified into thirty- nine genera with two isolates that did not show a match greater than 95%. These endophytes will be investigated to determine their potential for improving the adaptability of grasses and other crop plants to grow in diverse environments where they are subjected to multiple biotic and abi- otic stresses. Keywords Fungi, Endophytes, Abiotic Stress, Grass, Biotic Stress, Salt Stress 1.
    [Show full text]
  • View of Phytopathology 53: 246–267
    IMA FUNGUS · 6(2): 507–523 (2015) doi:10.5598/imafungus.2015.06.02.14 Recommended names for pleomorphic genera in Dothideomycetes ARTICLE Amy Y. Rossman1, Pedro W. Crous2,3, Kevin D. Hyde4,5, David L. Hawksworth6,7,8, André Aptroot9, Jose L. Bezerra10, Jayarama D. Bhat11, Eric Boehm12, Uwe Braun13, Saranyaphat Boonmee4,5, Erio Camporesi14, Putarak Chomnunti4,5, Dong-Qin Dai4,5, Melvina J. D’souza4,5, Asha Dissanayake4,5,15, E.B. Gareth Jones16, Johannes . Groenewald2, Margarita Hernández-Restrepo2,3, Sinang Hongsanan4,5, Walter M. Jaklitsch17, Ruvishika Jayawardena4,5,12, Li Wen Jing4,5, Paul M. Kirk18, James D. Lawrey19, Ausana Mapook4,5, Eric H.C. McKenzie20, Jutamart Monkai4,5, Alan J.L. Phillips21, Rungtiwa Phookamsak4,5, Huzefa A. Raja22, Keith A. Seifert23, Indunil Senanayake4,5, Bernard Slippers3, Satinee Suetrong24, Kazuaki Tanaka25, Joanne E. Taylor26, Kasun M. Thambugala4,5,27, Qing Tian4,5, Saowaluck Tibpromma4,5, Dhanushka N. Wanasinghe4,5,12, Nalin N. Wijayawardene4,5, Saowanee Wikee4,5, Joyce H.C. Woudenberg2, Hai-Xia Wu28,29, Jiye Yan12, Tao Yang2,30, Ying hang31 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; corresponding author e-mail: amydianer@ yahoo.com 2CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 3Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa 4Center of Excellence in Fungal Research, School of Science, Mae Fah
    [Show full text]
  • Bioassay-Guided Isolation of Secondary Metabolites
    Biological and Chemical Investigations of Indonesian Marine-Derived Fungi and their Secondary Metabolites Inauguraldissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald Vorgelegt von Kustiariyah Tarman geboren am 18.08.1975 in Malang, Indonesien Greifswald, März 2011 Dekan : Prof. Dr. Klaus Fesser 1. Gutachter : Prof. Dr. Ulrike Lindequist 2. Gutachter : Prof. Dr. Ludger A. Wessjohann Tag der Promotion : 21. Februar 2011 Gedruckt mit der Unterstützung des Deutschen Akademischen Austauschdienstes (DAAD) Dedicated to my parents and to commemorate my late grandmother Table of Contents List of Tables ............................................................................................v List of Figures ...........................................................................................vi List of abbreviations and symbols...............................................................................x 1. INTRODUCTION ............................................................................................1 1.1. Marine Natural Products .................................................................................1 1.2. Fungi as a Source of Natural Products............................................................2 1.2.1. Biology of Marine Fungi ......................................................................3 1.2.2. Biosynthesis of Marine Fungal Secondary Metabolites .......................5
    [Show full text]
  • Metabolites from the Dark Septate Endophyte Drechslera Sp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Article Type: Full Paper Corresponding author mail id: [email protected] Metabolites from the dark septate endophyte Drechslera sp. Evaluation by LC/MS and principal component analysis of culture extracts with histone deacetylase inhibitors Article a,b a c,d a,b Gastón Siless , Gabriela L. Gallardo , M. Alejandra Rodriguez , Yuliet A. Rincón , Alicia M. Godeasc,d, Gabriela M. Cabreraa,b* aDepartamento de Química Orgánica, bFacultad de Ciencias Exactas y Naturales, CONICET- Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR). Ciudad Universitaria, Pabellón II, 3° piso, C1428EHA, Buenos Aires, Argentina. cDepartamento de Biodiversidad y Biología Experimental, dFacultad de Ciencias Exactas y Naturales, CONICET- Universidad de Buenos Aires, INBA. Ciudad Universitaria, Pab. II, 4° piso, C1428EHA, Buenos Aires, Argentina. Secondary metabolites from the cultures of the dark septate fungal endophyte (DSE) Drechslera sp., isolated from the roots of rye grass (Lollium sp.) and cultured under different experimental conditions, are described here for the first time. The use of suberoylanilide hydroxamic acid (SAHA) and other histone deacetylase inhibitors as epigenetic modifiers in the culture medium was evaluated by LC/MS and LC/MS/MS. Several differences in the metabolite production were detected by means of supervised principal component analysis (PCA) of LC/MS data. The presence of the compounds in the culture medium or in the mycelium was compared. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may Accepted lead to differences between this version and the Version of Record.
    [Show full text]