Prognostic Value of the Overexpression of Fatty Acid Metabolism-Related Enzymes in Squamous Cell Carcinoma of the Head and Neck

Total Page:16

File Type:pdf, Size:1020Kb

Prognostic Value of the Overexpression of Fatty Acid Metabolism-Related Enzymes in Squamous Cell Carcinoma of the Head and Neck International Journal of Molecular Sciences Article Prognostic Value of the Overexpression of Fatty Acid Metabolism-Related Enzymes in Squamous Cell Carcinoma of the Head and Neck Ying-Wen Su 1, Pao-Shu Wu 2,3,* , Sheng-Hsiang Lin 4,5, Wen-Yu Huang 6, Yu-Shao Kuo 7 and Hung-Pin Lin 3,8,* 1 Division of Hematology and Medical Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan; [email protected] 2 Department of Pathology, MacKay Memorial Hospital, Tamsui Branch, New Taipei City 25160, Taiwan 3 MacKay Junior College of Medicine, Nursing, and Management, Taipei 25245, Taiwan 4 Institute of Clinical Medicine and Department of Public Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; [email protected] 5 Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan 6 Laboratory of Good Clinical Research Center, MacKay Memorial Hospital, Tamsui Branch, New Taipei City 25160, Taiwan; [email protected] 7 School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; [email protected] 8 Division of Oral Pathology, Department of Stomatology, MacKay Memorial Hospital, Taipei 10449, Taiwan * Correspondence: [email protected] (P.-S.W.); [email protected] (H.-P.L.) Received: 28 June 2020; Accepted: 16 September 2020; Published: 18 September 2020 Abstract: Reprogramming of cellular energy metabolism, such as lipid metabolism, is a hallmark of squamous cell carcinoma of the head and neck (SCCHN). However, whether protein expression related to fatty acid oxidation (FAO) affects survival in SCCHN remains unclear. We aimed to investigate FAO-related enzyme expression and determine its correlation with clinicopathological variables in SCCHN patients. Immunohistochemical analysis (IHC) of FAO-related protein expression, including carnitine palmitoyltransferase 1 (CPT1), the acyl-CoA dehydrogenase family, and fatty acid synthase (FAS), was performed using tissue microarrays from 102 resected SCCHN tumors. Expressions were categorized according to IHC scores, and the statistical association with clinicopathological factors was determined. Moderate-to-high expression of long-chain acyl-CoA dehydrogenase (LCAD) had a protective role against cancer-related death (adjusted hazard ratio (HR), 0.2; 95% confidence interval (CI), 0.05–0.87) after covariate adjustment. Age and clinical stage remained independent predictors of survival (adjusted HR, 1.75; 95% CI, 1.22–2.49 for age; adjusted HR, 14.33; 95% CI, 1.89–108.60 for stage III/IV disease). Overexpression of medium-chain acyl-CoA dehydrogenase and FAS correlated with advanced tumor stage (T3/T4); however, none of these factors were independent predictors of survival. Several FAO-related enzymes were upregulated and LCAD overexpression had a protective effect on overall survival in advanced SCCHN patients. FAO-related-enzyme expression might have a prognostic impact on survival outcomes in SCCHN. Keywords: fatty acid metabolism; head and neck; squamous cell carcinoma; long-chain acyl-CoA dehydrogenase 1. Introduction Squamous cell carcinoma of the head and neck (SCCHN) is one of the leading causes of cancer-related death globally [1]. One of the hallmarks of SCCHN is the reprogramming of cellular Int. J. Mol. Sci. 2020, 21, 6851; doi:10.3390/ijms21186851 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 6851 2 of 13 energy metabolism [2,3]. SCCHN tumors expressing a high level of phosphorylated acetyl-CoA carboxylase 1 (pACC1) or ACC2 are associated with decreased survival [4,5]. The major cellular function of ACC is to produce malonyl-CoA from acetyl-CoA for fatty acid synthesis [6]. Phosphorylation of ACC inhibits catabolic functions such as lipid storage and causes cellular metabolism to switch to fatty acid oxidation (FAO) [7]. FAO is a catabolic process by which fatty acid molecules are broken down enzymatically. In mammalian cells, FAO primarily occurs in mitochondria except for the oxidation of very-long-chain fatty acids, which occurs in peroxisomes [8]. The major enzymes involved in FAO include carnitine palmitoyltransferase (CPT), the acyl-CoA dehydrogenase family, and hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (HADHA). The acyl-CoA dehydrogenase (ACAD) family includes very-long-chain, long-chain, medium-chain, and short-chain acyl-CoA dehydrogenases (VLCAD, LCAD, MCAD, and SCAD, respectively) [9]. In addition to useful intermediates, the final product of FAO is acetyl-CoA, which enters the citric acid cycle in the mitochondrion for energy generation. Despite the negative correlation of pACC1 or ACC2 expression with clinical outcome [4,5], it remains unclear whether the expression of the enzymes involved in FAO is associated with cancer progression in SCCHN. Therefore, this study aimed to retrospectively examine the expressions of major enzymes involved in FAO in patients with resected SCCHN and determine the correlation with clinicopathological variables. 2. Results 2.1. Incidence of Expression of Fao-Related Proteins in Scchn Tumors and Patient Characteristics According to Survival Status, Age, and Clinical Stage A total of 102 patients with SCCHN were included in the study between 1 January 2011, and 31 December 2012. The median follow-up time was 5.1 years (interquartile range (IQR), 2.6–6.1). Twenty-nine patients died during the study period. The clinicopathological characteristics of the patients are listed in Table1. Table 1. Characteristics of patients (n = 102). Patient Characteristics Number (%) Age, median (range) 51.96 (30.3–86.5) <60 years 74 (72.5%) >60 years 28 (27.5%) Gender Female 7 (6.9%) Male 95 (93.1%) Adjuvant treatment None 17 (16.7%) Yes 85 (83.3%) Site Non-oral cavity 13 (12.7%) Oral cavity 89 (87.3%) T 1 13 (12.7%) 2 31 (30.4%) 3 23 (22.5%) 4 35 (34.3%) Int. J. Mol. Sci. 2020, 21, 6851 3 of 13 Table 1. Cont. Patient Characteristics Number (%) N 0 49 (48.0%) 1 19 (18.6%) 2 31 (30.4%) 3 3 (2.9%) Stage I 8 (7.84%) II 15 (14.71%) III 25 (24.51%) IV 54 (52.94%) HPV P16 Positive 13 (12.7%) Negative 89 (87.3%) T: tumor; N: node; HPV: Human papillomavirus. Compared with patients who died during the study period, patients who survived were significantly younger (50.64 vs. 56.09 years, p = 0.026, Mann–Whitney U test), did not have lymph node involvement (54.79% vs. 31.03%, p = 0.032, χ2 test), and were more likely to experience stage I/II disease (30.14% vs. 3.45%, p = 0.004, χ2 test) (Table2). Table 2. Correlations between the survival status and patients’ characteristics (n = 102). Factor Alive (n = 73) Dead (n = 29) p-Value a n (%) n (%) Age median (IQR) 50.64 (45.13, 57.02) 56.09 (48.61, 67.05) 0.026 * Pretreatment fasting sugar <100 mg/dL 42 (57.53) 15 (51.72) 0.755 100 mg/dL 31 (42.47) 14 (48.28) ≥ median (IQR) 97.00 (91.00, 105.00) 96.00 (87.00, 118.00) 0.807 Pretreatment cholesterol <200 mg/dL 49 (67.12) 20 (68.97) 1.000 200 mg/dL 24 (32.88) 9 (31.03) ≥ 183.00 (156.00, 172.00 (150.00, median (IQR) 0.404 208.00) 202.00) Pretreatment triglyceride <150 mg/dL 58 (79.45) 22 (75.86) 0.896 150 mg/dL 15 (20.55) 7 (24.14) ≥ median (IQR) 109.00 (84.00, 132.00) 98.00 (84.00, 129.00) 0.722 Stage I/II 22 (30.14) 1 (3.45) 0.004 * III/IV 51 (69.86) 28 (96.55) T 1–2 35 (47.95) 9 (31.03) 0.120 3–4 38 (52.05) 20 (68.97) N 0 40 (54.79) 9 (31.03) 0.032 * 1–3 33 (45.21) 20 (68.97) FAS Negative or low expression 61 (83.56) 27 (93.10) 0.207 (0~1+) Moderate or strong 12 (16.44) 2 (6.90) expression (2~3+) CPT1 Negative to moderate 63 (86.30) 25 (86.21) 0.990 expression (0~2+) Strong expression (3+) 10 (13.70) 4 (13.79) Int. J. Mol. Sci. 2020, 21, 6851 4 of 13 Table 2. Cont. Factor Alive (n = 73) Dead (n = 29) p-Value a n (%) n (%) MCAD Negative to moderate 51 (69.86) 16 (55.17) 0.159 expression (0~2+) Strong expression (3+) 22 (30.14) 13 (44.83) LCAD Negative or low expression 59 (80.82) 27 (93.10) 0.124 (0~1+) Moderate or strong 14 (19.18) 2 (6.90) expression (2~3+) VLCAD Negative or low expression 65 (89.04) 23 (79.31) 0.198 (0~1+) Moderate or strong 8 (10.96) 6 (20.69) expression (2~3+) HADHA Negative to moderate 66 (90.41) 24 (82.76) 0.279 expression (0~2+) Strong expression (3+) 7 (9.59) 5 (17.24) a χ2 test or Fisher’s exact test for categorical variables/Mann–Whitney U test for continuous variables. * p < 0.05; n: number; IQR: interquartile range; T: tumor; N: node; FAS: fatty acid synthase; CPT1: carnitine palmitoyl transferase 1; MCAD: medium-chain acyl-CoA dehydrogenase; LCAD: long-chain acyl-CoA dehydrogenase; VLCAD: very-long-chain acyl-CoA dehydrogenase; HADHA: hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase. We next examined the expressions of FAO-related proteins according to age. None (0%) of the 28 patients aged 60 years showed a high expression of CPT1A (3+ score), whereas 14 (18.92%) out ≥ of 74 patients aged <60 years exhibited a high expression of CPT1A (3+ score) (p = 0.01, Fischer’s exact test). However, the negative correlation between CPT1A and age was not further demonstrated by the Spearman correlation analysis (Spearman coefficient for CPT1A and age: 0.09, p = 0.35).
Recommended publications
  • Diapositiva 1
    ns 10 A Unmethylated C Methylated ) 8 Normal Normal Tissue Cervix Esophagus 4 cervical esophageal a.u. * *** * *** ( 6 TargetID MAPINFO Position Ca-Ski HeLa SW756 tissue COLO-680N KYSE-180 OACM 5.1C tissue cg04255070 22851591 TSS1500 0.896 0.070 0.082 0.060 0.613 0.622 0.075 0.020 2 (log2) 4 cg01593340 22851587 TSS1500 0.826 0.055 0.051 0.110 0.518 0.518 0.034 0.040 cg16113692 22851502 TSS200 0.964 0.073 0.072 0.030 0.625 0.785 0.018 0.010 2 0 cg26918510 22851422 TSS200 0.985 0.019 0.000 0.000 0.711 0.961 0.010 0.060 expression cg26821579 22851416 TSS200 0.988 0.083 0.058 0.000 0.387 0.955 0.021 0.050 TRMT12 mRNA Expression mRNA TRMT12 0 cg01129966 22851401 TSS200 0.933 0.039 0.077 0.020 0.815 0.963 0.078 0.010 -2 cg25421615 22851383 TSS200 0.958 0.033 0.006 0.000 0.447 0.971 0.037 0.020 mRNA cg17953636 22851321 1stExon 0.816 0.092 0.099 0.080 0.889 0.750 0.136 0.030 -4 Methylated SVIP Unmethylated SVIP relative expression (a.u.) expression relative SVIP D Cervix Esophagus HNC Meth ) HNC Unmeth Cervix Meth 3.0 *** Cervix Unmeth *** Esophagus Meth a.u. ( 2.5 CaCaEsophagus-Ski-Ski Unmeth COLO-680N Haematological Meth TSS B TSS Haematological Unmeth 2.0 -244 bp +104 bp 244 bp +104 bp 1.5 ** * expression -SVIP 1.0 HeLa KYSE-180 HeLa TSS TSS 0.5 -ACTB 244 bp +104 bp - 244 bp +104 bp mRNA 0.0 HeLa SW756 Ca-Ski SW756 SW756 OACM 5.1C TSS KYSE-180 TSS COLO-680NOACM 5.1 C - 244 bp +104 bp 244 bp +104 bp E ) 3.0 * Ca-Ski COLO-680N WT TSS TSS 2.0 a.u.
    [Show full text]
  • Altered Expression and Function of Mitochondrial Я-Oxidation Enzymes
    0031-3998/01/5001-0083 PEDIATRIC RESEARCH Vol. 50, No. 1, 2001 Copyright © 2001 International Pediatric Research Foundation, Inc. Printed in U.S.A. Altered Expression and Function of Mitochondrial ␤-Oxidation Enzymes in Juvenile Intrauterine-Growth-Retarded Rat Skeletal Muscle ROBERT H. LANE, DAVID E. KELLEY, VLADIMIR H. RITOV, ANNA E. TSIRKA, AND ELISA M. GRUETZMACHER Department of Pediatrics, UCLA School of Medicine, Mattel Children’s Hospital at UCLA, Los Angeles, California 90095, U.S.A. [R.H.L.]; and Departments of Internal Medicine [D.E.K., V.H.R.] and Pediatrics [R.H.L., A.E.T., E.M.G.], University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, U.S.A. ABSTRACT Uteroplacental insufficiency and subsequent intrauterine creased in IUGR skeletal muscle mitochondria, and isocitrate growth retardation (IUGR) affects postnatal metabolism. In ju- dehydrogenase activity was unchanged. Interestingly, skeletal venile rats, IUGR alters skeletal muscle mitochondrial gene muscle triglycerides were significantly increased in IUGR skel- expression and reduces mitochondrial NADϩ/NADH ratios, both etal muscle. We conclude that uteroplacental insufficiency alters of which affect ␤-oxidation flux. We therefore hypothesized that IUGR skeletal muscle mitochondrial lipid metabolism, and we gene expression and function of mitochondrial ␤-oxidation en- speculate that the changes observed in this study play a role in zymes would be altered in juvenile IUGR skeletal muscle. To test the long-term morbidity associated with IUGR. (Pediatr Res 50: this hypothesis, mRNA levels of five key mitochondrial enzymes 83–90, 2001) (carnitine palmitoyltransferase I, trifunctional protein of ␤-oxi- dation, uncoupling protein-3, isocitrate dehydrogenase, and mi- Abbreviations tochondrial malate dehydrogenase) and intramuscular triglycer- CPTI, carnitine palmitoyltransferase I ides were quantified in 21-d-old (preweaning) IUGR and control IUGR, intrauterine growth retardation rat skeletal muscle.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Isocitrate Dehydrogenase Activity Assay Kit (MAK062)
    Isocitrate Dehydrogenase Activity Assay Kit Catalog Number MAK062 Storage Temperature –20 C TECHNICAL BULLETIN Product Description Developer 1 vl Isocitrate dehydrogenase (IDH) catalyzes the Catalog Number MAK062E conversion of isocitrate to -ketoglutarate. In eukaryotes, there are three isozymes of IDH, the IDH Positive Control (NADP+) 20 L mitochondrial IDH2 and IDH3, and the cytoplasmic/ Catalog Number MAK062F peroxisomal IDH1. All three IDH family members require the presence of a divalent cation (Mg2+ or Mn2+) NADH Standard, 0.5 mole 1 vl and either the electron-accepting cofactor NADP+ (IDH1 Catalog Number MAK062G and IDH2) or NAD+ (IDH3) for their enzymatic activity. IDH1 and IDH2 mutations resulting in neomorphic Reagents and Equipment Required but Not enzymatic activity are found in certain cancers such as Provided. glioblastoma, acute myeloid leukemia, and colon 96 well flat-bottom plate – It is recommended to use cancer. This neoactivity shows a change in the clear plates for colorimetric assays. substrate specificity resulting in the conversion of Spectrophotometric multiwell plate reader -ketoglutarate to 2-hydroxyglutarate. Mutations in IDH family members are also associated with Ollier disease Precautions and Disclaimer and Maffucci syndrome. This product is for R&D use only, not for drug, household, or other uses. Please consult the Material The Isocitrate Dehydrogenase Activity Assay kit Safety Data Sheet for information regarding hazards provides a simple and direct procedure for measuring and safe handling practices. + + + NADP -dependent, NAD -dependent, or both NADP + and NAD -dependent IDH activity in a variety of Preparation Instructions samples. IDH activity is determined using isocitrate as Briefly centrifuge vials before opening.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Role of De Novo Cholesterol Synthesis Enzymes in Cancer Jie Yang1,2, Lihua Wang1,2, Renbing Jia1,2
    Journal of Cancer 2020, Vol. 11 1761 Ivyspring International Publisher Journal of Cancer 2020; 11(7): 1761-1767. doi: 10.7150/jca.38598 Review Role of de novo cholesterol synthesis enzymes in cancer Jie Yang1,2, Lihua Wang1,2, Renbing Jia1,2 1. Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 2. Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China. Corresponding authors: Renbing Jia, [email protected] and Lihua Wang, [email protected]. Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai 200011, China © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.07.21; Accepted: 2019.11.30; Published: 2020.01.17 Abstract Despite extensive research in the cancer field, cancer remains one of the most prevalent diseases. There is an urgent need to identify specific targets that are safe and effective for the treatment of cancer. In recent years, cancer metabolism has come into the spotlight in cancer research. Lipid metabolism, especially cholesterol metabolism, plays a critical role in membrane synthesis as well as lipid signaling in cancer. This review focuses on the contribution of the de novo cholesterol synthesis pathway to tumorigenesis, cancer progression and metastasis. In conclusion, cholesterol metabolism could be an effective target for novel anticancer treatment. Key words: metabolic reprogramming, de novo cholesterol synthesis, cancer progress Introduction Over the past few decades, numerous published that cholesterol plays a critical role in cancer studies have focused on cancer cell metabolism and progression15-19.
    [Show full text]
  • Isocitrate Dehydrogenase 1 (NADP+) (I5036)
    Isocitrate Dehydrogenase 1 (NADP+), human recombinant, expressed in Escherichia coli Catalog Number I5036 Storage Temperature –20 °C CAS RN 9028-48-2 IDH1 and IDH2 have frequent genetic alterations in EC 1.1.1.42 acute myeloid leukemia4 and better understanding of Systematic name: Isocitrate:NADP+ oxidoreductase these mutations may lead to an improvement of (decarboxylating) individual cancer risk assessment.6 In addition other studies have shown loss of IDH1 in bladder cancer Synonyms: IDH1, cytosolic NADP(+)-dependent patients during tumor development suggesting this may isocitrate dehydrogenase, isocitrate:NADP+ be involved in tumor progression and metastasis.7 oxidoreductase (decarboxylating), Isocitric Dehydrogenase, ICD1, PICD, IDPC, ICDC, This product is lyophilized from a solution containing oxalosuccinate decarboxylase Tris-HCl, pH 8.0, with trehalose, ammonium sulfate, and DTT. Product Description Isocitrate dehydrogenase (NADP+) [EC 1.1.1.42] is a Purity: ³90% (SDS-PAGE) Krebs cycle enzyme, which converts isocitrate to a-ketoglutarate. The flow of isocitrate through the Specific activity: ³80 units/mg protein glyoxylate bypass is regulated by phosphorylation of isocitrate dehydrogenase, which competes for a Unit definition: 1 unit corresponds to the amount of 1 common substrate (isocitrate) with isocitrate lyase. enzyme, which converts 1 mmole of DL-isocitrate to The activity of the enzyme is dependent on the a-ketoglutarate per minute at pH 7.4 and 37 °C (NADP formation of a magnesium or manganese-isocitrate as cofactor). The activity is measured by observing the 2 complex. reduction of NADP to NADPH at 340 nm in the 7 presence of 4 mM DL-isocitrate and 2 mM MnSO4.
    [Show full text]
  • RESEARCH COMMUNICATION HADHA Is a Potential Predictor Of
    HADHA is a Potential Predictor of the Response to Platinum-based Chemotherapy RESEARCH COMMUNICATION HADHA is a Potential Predictor of Response to Platinum-based Chemotherapy for Lung Cancer Taihei Kageyama1, Ryo Nagashio1, 2, Shinichiro Ryuge 3, Toshihide Matsumoto1,5, Akira Iyoda4, Yukitoshi Satoh4, Noriyuki Masuda3, Shi-Xu Jiang5, Makoto Saegusa5, Yuichi Sato1, 2* Abstract To identify a cisplatin resistance predictor to reduce or prevent unnecessary side effects, we firstly established four cisplatin-resistant sub-lines and compared their protein profiles with cisplatin-sensitive parent lung cancer cell lines using two-dimensional gel electrophoresis. Between the cisplatin-resistant and -sensitive cells, a total of 359 protein spots were differently expressed (>1.5 fold), and 217 proteins (83.0%) were identified. We focused on a mitochondrial protein, hydroxyl-coenzyme A dehydrogenase/3-ketoacyl-coenzyme A thiolase/enoyl-coenzyme A hydratase alpha subunit (HADHA), which was increased in all cisplatin-resistant cells. Furthermore, pre- treated biopsy specimens taken from patients who showed resistance to platinum-based treatment showed a significantly higher positive rate for HADHA in all cases (p=0.00367), including non-small cell lung carcinomas (p=0.002), small-cell lung carcinomas (p=0.038), and adenocarcinomas (p=0.008). These results suggest that the expression of HADHA may be a useful marker to predict resistance to platinum-based chemotherapy in patients with lung cancer. Keywords: Cisplatin - HADHA - lung cancer - two-dimensional gel electrophoresis Asian Pacific J Cancer Prev, 12, 3457-3463 Introduction cisplatin resistance rose due to a decrease of blood flow in the tumor and increased DNA repair (Stewart, 2007), Lung cancer is the leading cause of cancer-related the mechanisms underlying cisplatin resistance have not death in the world, and the five-year overall survival rate yet been clarified, and an effective cisplatin resistance is still below 16% (Jemal et al., 2009).
    [Show full text]
  • Fatty Acid Biosynthesis
    BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism Anaplerotic reactions Biosynthesis of Fatty Acids and Lipids Fatty Acids contrasts Diversification of fatty acids location & transport Eicosanoids Synthesis Prostaglandins and Thromboxane acetyl-CoA carboxylase Triacylglycerides fatty acid synthase ACP priming Membrane lipids 4 steps Glycerophospholipids Control of fatty acid metabolism Sphingolipids Isoprene lipids: Cholesterol ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1 ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Assembly of fatty acids into triacylglycerol and phospholipids 4. Metabolism of isoprenes a. Ketone bodies and Isoprene biosynthesis b. Isoprene polymerization i. Cholesterol ii. Steroids & other molecules iii. Regulation iv. Role of cholesterol in human disease ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Degradation Synthesis Ketone body Isoprene Utilization Biosynthesis 2 Catabolism Fatty Acid Biosynthesis Anabolism • Contrast with Sugars – Lipids have have hydro-carbons not carbo-hydrates – more reduced=more energy – Long-term storage vs short-term storage – Lipids are essential for structure in ALL organisms: membrane phospholipids • Catabolism of fatty acids –produces acetyl-CoA –produces reducing
    [Show full text]
  • (LCHAD) Deficiency / Mitochondrial Trifunctional Protein (MTF) Deficiency
    Long chain acyl-CoA dehydrogenase (LCHAD) deficiency / Mitochondrial trifunctional protein (MTF) deficiency Contact details Introduction Regional Genetics Service Long chain acyl-CoA dehydrogenase (LCHAD) deficiency / mitochondrial trifunctional Levels 4-6, Barclay House protein (MTF) deficiency is an autosomal recessive disorder of mitochondrial beta- 37 Queen Square oxidation of fatty acids. The mitochondrial trifunctional protein is composed of 4 alpha London, WC1N 3BH and 4 beta subunits, which are encoded by the HADHA and HADHB genes, respectively. It is characterized by early-onset cardiomyopathy, hypoglycemia, T +44 (0) 20 7762 6888 neuropathy, and pigmentary retinopathy, and sudden death. There is also an infantile F +44 (0) 20 7813 8578 onset form with a hepatic Reye-like syndrome, and a late-adolescent onset form with primarily a skeletal myopathy. Tandem mass spectrometry of organic acids in urine, Samples required and carnitines in blood spots, allows the diagnosis to be unequivocally determined. An 5ml venous blood in plastic EDTA additional clinical complication can occur in the pregnant mothers of affected fetuses; bottles (>1ml from neonates) they may experience maternal acute fatty liver of pregnancy (AFLP) syndrome or Prenatal testing must be arranged hypertension/haemolysis, elevated liver enzymes and low platelets (HELLP) in advance, through a Clinical syndrome. Genetics department if possible. The genes encoding the HADHA and HADHB subunits are located on chromosome Amniotic fluid or CV samples 2p23.3. The pathogenic
    [Show full text]
  • Lipid Metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives
    cancers Review Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives 1, 1, 1 2 1 Laurence Pellerin y, Lorry Carrié y , Carine Dufau , Laurence Nieto , Bruno Ségui , 1,3 1, , 1, , Thierry Levade , Joëlle Riond * z and Nathalie Andrieu-Abadie * z 1 Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, tgrCS 53717, 31037 Toulouse CEDEX 1, France; [email protected] (L.P.); [email protected] (L.C.); [email protected] (C.D.); [email protected] (B.S.); [email protected] (T.L.) 2 Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Toulouse III Paul-Sabatier, UMR 5089, 205 Route de Narbonne, 31400 Toulouse, France; [email protected] 3 Laboratoire de Biochimie Métabolique, CHU Toulouse, 31059 Toulouse, France * Correspondence: [email protected] (J.R.); [email protected] (N.A.-A.); Tel.: +33-582-7416-20 (J.R.) These authors contributed equally to this work. y These authors jointly supervised this work. z Received: 15 September 2020; Accepted: 23 October 2020; Published: 27 October 2020 Simple Summary: Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids.
    [Show full text]