Global Gas Report 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unconventional Gas and Oil in North America Page 1 of 24
Unconventional gas and oil in North America This publication aims to provide insight into the impacts of the North American 'shale revolution' on US energy markets and global energy flows. The main economic, environmental and climate impacts are highlighted. Although the North American experience can serve as a model for shale gas and tight oil development elsewhere, the document does not explicitly address the potential of other regions. Manuscript completed in June 2014. Disclaimer and copyright This publication does not necessarily represent the views of the author or the European Parliament. Reproduction and translation of this document for non-commercial purposes are authorised, provided the source is acknowledged and the publisher is given prior notice and sent a copy. © European Union, 2014. Photo credits: © Trueffelpix / Fotolia (cover page), © bilderzwerg / Fotolia (figure 2) [email protected] http://www.eprs.ep.parl.union.eu (intranet) http://www.europarl.europa.eu/thinktank (internet) http://epthinktank.eu (blog) Unconventional gas and oil in North America Page 1 of 24 EXECUTIVE SUMMARY The 'shale revolution' Over the past decade, the United States and Canada have experienced spectacular growth in the production of unconventional fossil fuels, notably shale gas and tight oil, thanks to technological innovations such as horizontal drilling and hydraulic fracturing (fracking). Economic impacts This new supply of energy has led to falling gas prices and a reduction of energy imports. Low gas prices have benefitted households and industry, especially steel production, fertilisers, plastics and basic petrochemicals. The production of tight oil is costly, so that a high oil price is required to make it economically viable. -
Assessment of Contaminants Associated with Coal Bed Methane
Contaminant Report Number: R6/721C/05 U.S. FISH & WILDLIFE SERVICE REGION 6 CONTAMINANTS PROGRAM Assessment of Contaminants Associated with Coal Bed Methane-Produced Water and Its Suitability for Wetland Creation or Enhancement Projects USFWS - Region 6 - EC Report - R6/721C/05 ABSTRACT Extraction of methane gas from coal seams has become a significant energy source in the Powder River Basin of northeastern Wyoming. In Wyoming, coalbed methane (CBM) gas is extracted by drilling wells into coal seams and removing water to release the gas. Each CBM well produces an average of 10 gallons per minute (gpm) of water and a maximum of 100 gpm. Disposal of CBM produced water is accomplished by direct discharge to surface drainages, and also by a variety of other treatment and disposal methods. Untreated CBM produced water discharged to surface drainages is the primary method of disposal provided that the CBM produced water meets Wyoming water quality standards. Water failing to meet water quality standards cannot legally be discharged into surface drainages and is alternately discharged into closed containment ponds for soil-ground water infiltration and evaporation. In 2000 and 2001, we collected and analyzed water from CBM discharges and receiving waters and sediment and biota from CBM produced water impoundments. In 2002, we collected and analyzed water from CBM closed containment impoundments. All the samples were analyzed for trace elements. The biota included pondweed (Potamogeton vaginatus), aquatic invertebrates, fish, and tiger salamanders (Ambystoma tigrinum). One CBM produced water discharge exceeded the chronic criterion for iron and several CBM produced water discharges exceeded the acute criterion for copper. -
200 LNG-Powered Vessels Planned in Chongqing by 2020
Number #110 April 2016 2016, APRIL 1 Asian NGV Communications is a publication of AltFuels Communications Group. China: 200 LNG-powered vessels planned in Chongqing by 2020 India Emirates 15,000 vehicles MAN showcases converted to CNG natural gas buses in Delhi this year in Dubai 2 ASIAN NGV COMMUNICATIONS 2016, APRIL 3 Summary April 2016 #110 COPIES DISTRIBUTION We print and mail to 24 Asian countries around 4,000 hard copies addressed to conversion pag 04 China: 200 LNG-powered vessels planned in Chongqing by 2020 centres, Oil & Gas companies, OEM NGVs, governmental related offices, filling station 11. MAN showcases natural owners, equipment suppliers, gas buses in Dubai related associations and industries. In addition, the 12. New collaboration electronic version of the magazine is sent to more than boosts LNG use as 15,000 global NGV contacts in marine fuel in Middle 94 countries. East pag 06 New LNG terminal project begins commercial This e-version is also available 13. Pioneer dual fuel engine for free download to all visitors operations in Beihai of www.ngvjournal.com. demonstrated in Korea Below is the list of hard copy 14. Korean scientists develop receivers. Armenia, Australia, engine operating with Azerbaijan, Bangladesh, China, Egyp, India, Indonesia, Iran, hydrogen and CNG Israel, Japan, Kazakhstan, Korea, Malaysia, Myanmar (Burma), 15. Japan: first hydrogen New Zealand, Pakistan, The refuelling station will Philippines, Russia, Singapore, open in Tohoku Taiwan, Thailand, Turkey, United pag 08 India: 15,000 vehicles Arab Emirates, Vietnam, If your 16. New venture will NGV business is in Asia, the converted to CNG in Delhi Pacific, and the Middle East, promote hydrogen fuel since January advertise with us! cell technologies in Japan Asian NGV Communications 1400 - PMB 174, 300-5, Changchon –Ri, Namsan- 17. -
Natural Gas in the US Economy
Natural Gas in the U.S. Economy: Opportunities for Growth Robert Pirog Specialist in Energy Economics Michael Ratner Specialist in Energy Policy November 6, 2012 Congressional Research Service 7-5700 www.crs.gov R42814 CRS Report for Congress Prepared for Members and Committees of Congress Natural Gas in the U.S. Economy: Opportunities for Growth Summary Due to the growth in natural gas production, primarily from shale gas, the United States is benefitting from some of the lowest prices for natural gas in the world and faces the question of how to best use this resource. Different segments of the U.S. economy have different perspectives on the role natural gas can play. Suppliers, which have become the victims of their own production success, are facing low prices that are forecast to remain low. Some companies that have traditionally produced only natural gas have even turned their attention to oil in order to improve their financial situation. Smaller companies are having a difficult time continuing operations and larger companies, including international companies, have bought into many shale gas assets. Prices have remained low even as consumption has increased, in part, because producers have raised production to meet the demand and because companies have improved efficiency and extraction techniques. Some companies, many with large production operations, have applied for permits to export natural gas. This has raised concerns from consumers of natural gas that domestic prices will rise. The debate regarding exports is ongoing. Industries that consume natural gas have seen input costs drop, and some have heralded low natural gas prices as the impetus for a manufacturing revolution in the United States. -
CLIMATE ACTION PLAN Websites
CLIMATE ACTION PLAN Websites Climate action cuts across all sectors of our economy and is being addressed in multiple ways. Information on government actions related to climate action are also found in the following: h LiveSmart BC http://www.livesmartbc.ca/ h The BC Energy Plan: A Vision for Clean Energy Leadership http://www.energyplan.gov.bc.ca/ h The BC Bioenergy Strategy http://www.energyplan.gov.bc.ca/bioenergy/ h The Agriculture Plan: Growing a Healthy Future for BC Farmers http://www.al.gov.bc.ca/Agriculture_Plan/ h The Mountain Pine Beetle Action Plan http://www.for.gov.bc.ca/hfp/mountain_pine_beetle/ h Living Water Smart: British Columbia's Water Plan http://www.livingwatersmart.ca./ h The BC Air Action Plan http://www.bcairsmart.ca/ h The BC Transit Plan http://www.th.gov.bc.ca/Transit_Plan/index.html h Energy Efficient Building Strategy http://www.energyplan.gov.bc.ca/efficiency/ h BC Green Building Code http://www.housing.gov.bc.ca/building/green/ h Pacific Institute for Climate Solutions http://www.pics.uvic.ca/ h Towns for Tomorrow http://www.townsfortomorrow.gov.bc.ca/ h Climate Action Secretariat http://www.climateactionsecretariat.gov.bc.ca/ BRITISH COLUMBIA’S Contents Message from the B.C. Government 1 Highlights 2 The Challenge 6 The Opportunity 10 The B.C. Climate Action Plan – Phase One 12 Section One: Setting the Course 13 Section Two: Acting in Every Sector 25 Acting in Every Sector: Transportation 26 Acting in Every Sector: Buildings 36 Acting in Every Sector: Waste 41 Acting in Every Sector: Agriculture 43 Acting -
Chapter L—Coal-Bed Methane Gas-In-Place Resource Estimates
Chapter L National Coal Resource Coal-Bed Methane Gas-In-Place Resource Assessment Estimates Using Sorption Isotherms and Burial History Reconstruction: An Example from the Ferron Sandstone Member Click here to return to Disc 1 Volume Table of Contents of the Mancos Shale, Utah By Todd A. Dallegge1 and Charles E. Barker1 Chapter L of Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah Edited by M.A. Kirschbaum, L.N.R. Roberts, and L.R.H. Biewick U.S. Geological Survey Professional Paper 1625–B* 1 U.S. Geological Survey, Denver, Colorado 80225 * This report, although in the USGS Professional Paper series, is available only on CD-ROM and is not available separately U.S. Department of the Interior U.S. Geological Survey Contents Overview ...................................................................................................................................................... L1 What Is Coal-Bed Methane? ...................................................................................................................... 2 Importance of Coal-Bed Methane Production ........................................................................................ 2 How Much Coal-Bed Methane is Available?........................................................................................... 3 How Do Coal Beds Generate and Store Methane? ................................................................................ 4 Details About Coal Cleat.................................................................................................................... -
Shale Gas and the Environment
Shale Gas and the Environment: Critical Need for a Government–University–Industry Research Initiative POLICYMAKER GUIDE Shale gas production is increasing at a rapid rate and is expected to become half of the U.S. natural gas supply by 2040. A government– university–industry research initiative is needed to fill critical gaps in knowledge at the interface of shale gas development and environmental protection so the nation can better prepare for its energy future. CONTENTS 4 OVERVIEW 4 What Is Shale Gas? 4 Where Is Shale Gas Located in the United States? 5 How Is Shale Gas Extracted? 5 Are All Shale Gas Plays the Same? 6 How Much Shale Gas Production Is Expected in the United States? 6 What Are the Potential Benefits from Shale Gas? 8 What Does the Public Think about Shale Gas Development and the Environment? 10 SHALE GAS DEVELOPMENT AND THE ENVIRONMENT 10 How Might Shale Gas Development Impact Water Resources? 12 What Have Carnegie Mellon University Researchers Found about Shale Gas Development and Water Resources? 13 What Key Questions about Shale Gas and Water Resources Are Unanswered? 14 How Might Shale Gas Development Impact Air Quality? 15 What Have Carnegie Mellon University Researchers Found about Shale Gas Development and Air Quality? 16 What Key Questions about Shale Gas and Air Quality Are Unanswered? 16 How Might Shale Gas Development Impact Greenhouse Gas Emissions? 17 What Have Carnegie Mellon University Researchers Found about Shale Gas Development and Greenhouse Gas Emissions? 18 What Key Questions about Shale Gas and Greenhouse -
Coal Mine Methane Recovery: a Primer
Coal Mine Methane Recovery: A Primer U.S. Environmental Protection Agency July 2019 EPA-430-R-09-013 ACKNOWLEDGEMENTS This report was originally prepared under Task Orders No. 13 and 18 of U.S. Environmental Protection Agency (USEPA) Contract EP-W-05-067 by Advanced Resources, Arlington, USA and updated under Contract EP-BPA-18-0010. This report is a technical document meant for information dissemination and is a compilation and update of five reports previously written for the USEPA. DISCLAIMER This report was prepared for the U.S. Environmental Protection Agency (USEPA). USEPA does not: (a) make any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe upon privately owned rights; (b) assume any liability with respect to the use of, or damages resulting from the use of, any information, apparatus, method, or process disclosed in this report; or (c) imply endorsement of any technology supplier, product, or process mentioned in this report. ABSTRACT This Coal Mine Methane (CMM) Recovery Primer is an update of the 2009 CMM Primer, which reviewed the major methods of CMM recovery from gassy mines. [USEPA 1999b, 2000, 2001a,b,c] The intended audiences for this Primer are potential investors in CMM projects and project developers seeking an overview of the basic technical details of CMM drainage methods and projects. The report reviews the main pre-mining and post-mining CMM drainage methods with associated costs, water disposal options and in-mine and surface gas collection systems. -
Promotion Effects of Microwave Heating on Coalbed Methane
www.nature.com/scientificreports OPEN Promotion efects of microwave heating on coalbed methane desorption compared with conductive heating Zhijun Wang1,2,3* & Xiaojuan Wang1,2 As a clean energy resource, coalbed methane (CBM) has drawn worldwide attention. However, the CBM reservoir has strong adsorption capacity and low permeability and thus requires stimulation. As a means to stimulate coalbed methane recovery, thermal injection faces geological and economic challenges because it uses conventional conductive heating (CH) to transfer heat. Realized by the conversion of the electromagnetic energy into the thermal energy, microwave heating (MH) may be a sound stimulation method. Although previous research suggested that MH had potential as a stimulation method for coalbed methane recovery, it is not clear if MH is superior to CH for enhancing coalbed methane recovery. This paper compares the efect of MH and CH on methane desorption from coal using purpose-built experimental equipment. To compare the MH and CH experimental results, the desorption temperature for each CH desorption test was set to the maximum temperature reached in the correlative MH desorption test. The results show that although the cumulative desorbed volume (CDV) of methane under MH was less than that desorbed by CH in the initial desorption stage, the fnal total CDV under MH for the three diferent power settings was ~ 12% to ~ 21% more than that desorbed by CH at the same temperatures. CH and MH both change the sample’s microstructure but MH enlarges the pores, decreases methane adsorption, promotes methane difusion, and improves permeability more efectively than CH. Rapid temperature rise and the changes in the coal’s microstructure caused by MH were the main reasons for its superior performance. -
Natural Gas Liquids
Brookings energy security initiative natural gas task Force natural gas BrieFing Document #1: Natural Gas Liquids march 2013 charles k. ebinger govinda avasarala Brookings natural g as task Force Issue Brief 1: Natural Gas Liquids 1 PREFACE n may 2011, the Brookings institution energy security initiative (ESI) assembled a task Force of independent natural-gas experts, whose expertise and insights provided inform its research on various issues regarding Ithe u.s. natural gas sector. in may 2012, Brookings released its first report, analyzing the case and prospects for exports of liquefied natural gas (lng) from the united states. the task Force now continues to meet pe- riodically to discuss important issues facing the sector. With input from the task Force, Brookings will release periodic issue briefs for policymakers. the conclusions and recommendations of this report are those of the authors and do not necessarily reflect the views of the members of the task force. members of the Brookings institution natural gas task Force JOHN BANKS, Brookings institution KELLY BENNETT, Bentek energy, LLC JASON BORDOFF, columbia university KEVIN BOOK, clearview energy Partners, LLC TOM CHOI, Deloitte CHARLES EBINGER, Brookings institution, task Force co-chair DAVID GOLDWYN, goldwyn global strategies, LLC, task Force co-chair SHAIA HOSSEINZADEH, Wl ross JAMES JENSEN, Jensen associates ROBERT JOHNSTON, eurasia group MELANIE KENDERDINE, massachusetts institute of technology energy initiative VELLO KUUSKRAA, advanced resources international MICHAEL LEVI, council on Foreign relations ROBERT MCNALLY, the rapidan group KENNETH MEDLOCK, rice university’s James a. Baker iii institute for Public Policy LOU PUGLIARESI, energy Policy research Foundation, inc. BENJAMIN SCHLESINGER, Benjamin schlesinger & associates, LLC JAMIE WEBSTER, PFc energy non-participating observers to task Force meetings included officials from the energy information adminis- tration and the congressional research service. -
Welfare and Distributional Implications of Shale Gas
BPEA Conference Draft, March 19–20, 2015 Welfare and Distributional Implications of Shale Gas Catherine Hausman, Ford School of Public Policy, University of Michigan Ryan Kellogg, Department of Economics, University of Michigan and National Bureau of Economic Research We thank Steve Cicala, David Lagakos, David Romer, and Justin Wolfers for valuable comments; Timothy Fitzgerald, Joshua Hausman, Lutz Kilian, Tom Lyon, Lucija Muehlenbachs, Barry Rabe, and Daniel Raimi for helpful feedback; and Sarah Johnston for excellent research assistance. Welfare and Distributional Implications of Shale Gas Catherine Hausman Ryan Kellogg∗ March 2015 Abstract Technological innovations in horizontal drilling and hydraulic fracturing have en- abled tremendous amounts of natural gas to be extracted profitably from underground shale formations that were long thought to be uneconomical. In this paper, we provide the first estimates of broad-scale welfare and distributional implications of this supply boom. We provide new estimates of supply and demand elasticities, which we use to estimate the drop in natural gas prices that is attributable to the supply expansion. We calculate large, positive welfare impacts for four broad sectors of gas consumption (residential, commercial, industrial, and electric power), and a negative impact for producers, with variation across regions. We then examine the evidence for a gas-led \manufacturing renaissance" and for pass-through to prices of products such as retail natural gas, retail electricity, and commodity chemicals. We conclude with a discussion of environmental externalities from unconventional natural gas, including limitations of the current regulatory environment. Overall, we find that the shale gas revolution has led to an increase in welfare for natural gas consumers and producers of $48 billion per year, but more data are needed on the extent and valuation of the environmental costs of shale gas production. -
Coalbed Methane--A Non- Conventional Energy Source
COALBEDCOALBED METHANEMETHANE----AA NONNON-- CONVENTIONALCONVENTIONAL ENERGYENERGY SOURCESOURCE WHAT IS IT AND WHY IS IT IMPORTANT ROBERT A. LAMARRE LAMARRE GEOLOGICAL ENTERPRISES Fueling The Future 25th Annual North American Conference of the USAEE/IAEE Sept. 20, 2005 Natural Gas Production, Consumption, and Imports, 1970 - 2025 (trillion cubic feet) 35 History Projections 30 Net Imports 25 Consumption 20 Natural Gas Net Imports, 2001 and 2025 (trillion cubic feet) 15 Production 6 5 4 10 3 2025 2 2001 1 5 0 Pipeline Liquefied Natural Gas 0 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 (EIA) Major Growth in Production from Unconventional Resources 12,000 Tight Gas 10,000 CBM Approx. 42% growth Conventional Gas expected across the 8,000 Rockies 6,000 4,000 2005 - 2010 Gas Production (mmcfd) Production Gas 2,000 CBM offers the greatest potential 0 with 116% volume growth 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 • Tight Gas - 2.3 bcfd in 2004 to 4.1 bcfd in 2010 • CBM - 1.8 bcfd in 2004 to 3.9 bcfd in 2010 • Conventional Gas - 2.5 bcfd in 2004 to 2.3 bcfd in 2010 Wood Mackenzie Woodmac.com Scott Tinker, Director Bureau of Economic Geology August 4, 2003 Why Natural Gas? Efficiency Scott Tinker, Director Bureau of Economic Geology August 4, 2003 QAd1023 NATURAL GAS IS A CLEAN BURNING FUEL PREFERRED ENERGY SOURCE COAL-FUELED ELECTRICITY-GENERATING PLANT AND CBM WELL IN UTAH METHANE GAS PRODUCED FROM UNDERGROUND COAL BEDS COALBEDCOALBED METHANEMETHANE ISIS FORMEDFORMED DURINGDURING THETHE CONVERSIONCONVERSION OFOF PEATPEAT TOTO COALCOAL Coal is formed from peat over time by heat and pressure Expelled By-Products • Water • Methane Pressure It all starts with • Carbon Dioxide (CO2) Organic Debris or • Peat in a Swamp Residual Products • Coal Coal • Methane Heat • CO2 TimeTime PEAT SWAMP ALL Consulting 2/04 PRESERVED TREE TRUNK COAL GAS CONTENTS OF VARIOUS ROCKY MTN.