Welfare and Distributional Implications of Shale Gas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Briefing on Carbon Dioxide Specifications for Transport 1St Report of the Thematic Working Group On: CO2 Transport, Storage
Briefing on carbon dioxide specifications for transport 1st Report of the Thematic Working Group on: CO2 transport, storage and networks Release Status: FINAL Author: Dr Peter A Brownsort Date: 29th November 2019 Filename and version: Briefing-CO2-Specs-FINAL-v1.docx EU CCUS PROJECTS NETWORK (No ENER/C2/2017-65/SI2.793333) This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 1 About the CCUS Projects Network The CCUS Projects Network comprises and supports major industrial projects underway across Europe in the field of carbon capture and storage (CCS) and carbon capture and utilisation (CCU). Our Network aims to speed up delivery of these technologies, which the European Commission recognises as crucial to achieving 2050 climate targets. By sharing knowledge and learning from each other, our project members will drive forward the delivery and deployment of CCS and CCU, enabling Europe’s member states to reduce emissions from industry, electricity, transport and heat. http://www.ccusnetwork.eu/ © European Union, 2019 No third-party textual or artistic material is included in the publication without the copyright holder’s prior consent to further dissemination by other third parties. Reproduction is authorised provided the source is acknowledged. This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 2 (Intentionally blank) This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 3 Executive summary There are two types of specification generally relevant to carbon dioxide (CO2) transport, the product specification for end use and the requirement specification for transport. -
How Is Industrial Nitrogen Gas (N2) Produced/Generated?
www.IFSolutions.com 1 What is Nitrogen and How is it Produced Nitrogen (N2) is a colorless, odorless gas which makes up roughly 78% of the earth’s atmosphere. Nitrogen is defined as a simple asphyxiant having an inerting quality which is utilized in many applications where oxidation is not desired. Nitrogen gas is an industrial gas produced by one of the following means: !! Fractional distillation of liquid air (Praxair, Air Liquide, Linde, etc) !! By mechanical means using gaseous air "! Polymeric Membrane "! Pressure Swing Adsorption or PSA www.IFSolutions.com 2 Fractional Distillation (99.999%) Pure gases can be separated from air by first cooling it until it liquefies, then selectively distilling the components at their various boiling temperatures. The process can produce high purity gases but is very energy-intensive. www.IFSolutions.com 3 Pressure Swing Adsorption (99 – 99.999%) Pressure swing adsorption (PSA) is a technology used to separate some gas species from a mixture of gases under pressure according to the species' molecular characteristics and affinity for an adsorbent material. It operates at near-ambient temperatures and differs significantly from cryogenic distillation techniques of gas separation. Specific adsorptive materials (e.g., zeolites, activated carbon, molecular sieves, etc.) are used as a trap, preferentially adsorbing the target gas species at high pressure. www.IFSolutions.com 4 Membrane (90 – 99.9%) Membrane Technology utilizes a permeable fiber which selectively separates the air depending on the speeds of the molecules of the constituents. This process requires a conditioning of the Feed air due to the clearances in the fiber which are the size of a human hair. -
Industrial Gases and Advanced Technologies for Non-Ferrous Mining and Refining Tell Me More Experience, Understanding and Solutions
Industrial gases and advanced technologies for non-ferrous mining and refining tell me more Experience, understanding and solutions When a need for reliable gas supply or advanced technologies for your processes occurs, Air Products has the experience to help you be more successful. Working side-by-side with non-ferrous metals mining and refining facilities, we have developed in-depth knowledge and understanding of extractive and refining processes. You can leverage our experience to help increase yield, improve production, decrease harmful fugitive emissions, and reduce energy consumption and fuel cost throughout your operations. As a leading global industrial gas supplier, we offer a full range of supply modes for industrial gases, including oxygen, nitrogen, argon and hydrogen for small and large volume users, state-of-the-art equipment and a broad range of technical services based on our comprehensive global engineering experience in many critical gas applications. Our products range from packaged gases, such as portable cryogenic dewars, all the way up to energy-efficient cryogenic air separation plants and enabling equipment, such as burners and flow controls. Beyond products and services, customers count on us for over 60 years of technical knowledge and experience. As an owner and operator of over 800 air separation plants worldwide, with an understanding of current and future industry needs, we can develop and implement technical solutions that are right for your process and production challenges. It’s our goal to match your needs with a comprehensive and cost-effective industrial gas system and innovative technologies. “By engaging Air Products at an early stage in our Zambian [Kansanshi copper-gold mining] project, we were able to explore oxygen supply options and determine what we believed to be the best system for our specific process requirements. -
Natural Gas in the US Economy
Natural Gas in the U.S. Economy: Opportunities for Growth Robert Pirog Specialist in Energy Economics Michael Ratner Specialist in Energy Policy November 6, 2012 Congressional Research Service 7-5700 www.crs.gov R42814 CRS Report for Congress Prepared for Members and Committees of Congress Natural Gas in the U.S. Economy: Opportunities for Growth Summary Due to the growth in natural gas production, primarily from shale gas, the United States is benefitting from some of the lowest prices for natural gas in the world and faces the question of how to best use this resource. Different segments of the U.S. economy have different perspectives on the role natural gas can play. Suppliers, which have become the victims of their own production success, are facing low prices that are forecast to remain low. Some companies that have traditionally produced only natural gas have even turned their attention to oil in order to improve their financial situation. Smaller companies are having a difficult time continuing operations and larger companies, including international companies, have bought into many shale gas assets. Prices have remained low even as consumption has increased, in part, because producers have raised production to meet the demand and because companies have improved efficiency and extraction techniques. Some companies, many with large production operations, have applied for permits to export natural gas. This has raised concerns from consumers of natural gas that domestic prices will rise. The debate regarding exports is ongoing. Industries that consume natural gas have seen input costs drop, and some have heralded low natural gas prices as the impetus for a manufacturing revolution in the United States. -
Investment Opportunities in China's Industrial Gas Market
Executive Insights Volume XIX, Issue 31 Investment Opportunities in China’s Industrial Gas Market Due to their wide-ranging downstream • Gas production: air separation gas, synthetic air and applications and impact on the overall market, specialty gas, etc. industrial gases have been dubbed the “blood • Gas supply: on-site pipeline, bulk transport of liquefied gas, gas cylinders, etc. of the industrials market” and hence play an • Downstream applications: mainly metallurgy, chemicals, important role in China’s national economy. electronics, etc. Industrial gases are widely used in metallurgy, Over half of the global value share of the industrial gas market petroleum, petrochemicals, chemicals, is made up of air separation gases (e.g., nitrogen, oxygen and mechanical, electronics and aerospace and are of argon). The remaining market share is split between industrial synthetic gas (e.g., hydrogen, carbon dioxide and acetylene) great importance to a country’s national defense, and specialty gases (e.g., ultra-high-purity gases and electronics construction and healthcare sectors. However, gases), with 35% and 8–10% of the market share, respectively. given the current economic downturn, slowdown Each of the three main downstream applications focuses on different raw materials: metallurgy favors the use of air in growth and excess capacity reduction, investors separation gases, chemical processes primarily consume synthetic may be hard-pressed to determine where new gases and electronics makes use of specialty gases. investment opportunities and growth prospects Three main supply models exist to provide different levels of lie. In this Executive Insights, L.E.K. Consulting flexibility to customers. On-site gas pipelines are suitable for the assesses investment opportunities in this market. -
Shale Gas and the Environment
Shale Gas and the Environment: Critical Need for a Government–University–Industry Research Initiative POLICYMAKER GUIDE Shale gas production is increasing at a rapid rate and is expected to become half of the U.S. natural gas supply by 2040. A government– university–industry research initiative is needed to fill critical gaps in knowledge at the interface of shale gas development and environmental protection so the nation can better prepare for its energy future. CONTENTS 4 OVERVIEW 4 What Is Shale Gas? 4 Where Is Shale Gas Located in the United States? 5 How Is Shale Gas Extracted? 5 Are All Shale Gas Plays the Same? 6 How Much Shale Gas Production Is Expected in the United States? 6 What Are the Potential Benefits from Shale Gas? 8 What Does the Public Think about Shale Gas Development and the Environment? 10 SHALE GAS DEVELOPMENT AND THE ENVIRONMENT 10 How Might Shale Gas Development Impact Water Resources? 12 What Have Carnegie Mellon University Researchers Found about Shale Gas Development and Water Resources? 13 What Key Questions about Shale Gas and Water Resources Are Unanswered? 14 How Might Shale Gas Development Impact Air Quality? 15 What Have Carnegie Mellon University Researchers Found about Shale Gas Development and Air Quality? 16 What Key Questions about Shale Gas and Air Quality Are Unanswered? 16 How Might Shale Gas Development Impact Greenhouse Gas Emissions? 17 What Have Carnegie Mellon University Researchers Found about Shale Gas Development and Greenhouse Gas Emissions? 18 What Key Questions about Shale Gas and Greenhouse -
The Impact of the Covid-19 Pandemic on the Us Shale Industry: an (Expert) Review
THE IMPACT OF THE COVID-19 PANDEMIC ON THE US SHALE INDUSTRY: AN (EXPERT) REVIEW by Nikolai Albishausen A capstone submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Science in Energy Policy and Climate Baltimore, Maryland December 2020 © 2020 Nikolai Albishausen All Rights Reserved Abstract The US shale industry turned the world-wide energy landscape upside down in less than a decade and put the US (back) atop the global energy hierarchy. At the beginning of 2020, the Covid-19 pandemic shocked the global energy markets and led to an unprecedented economic downturn. US shale oil & gas demand plummeted, prices collapsed, and bankruptcies were announced at exceptional rates. This paper aims to assess the impact of the virus and its repercussions on US unconventionals. For that, this study focuses on six central drivers highly relevant for the industry and its future viability. These are: First, crude oil and natural gas prices. Second, Break-Even (BE) prices for fracking operations. Third, financial and technical constraints within the industry. Fourth, global hydrocarbon demand development. Fifth, political and regulatory factors in the US. Sixth, environmental and societal sustainability. Those drivers were initially assessed through a literature review whose results were then examined by an expert survey. It was comprised of 83 senior professionals from various backgrounds engaged with the US shale industry. From a synthesis of both examinations, the results show that some drivers, in particular demand and commodity prices, are shaping the industry’s future more distinctly than others. It further seems that while those drivers are also impacted substantially by the pandemic, they positively influence the future of the industry. -
Natural Gas Liquids
Brookings energy security initiative natural gas task Force natural gas BrieFing Document #1: Natural Gas Liquids march 2013 charles k. ebinger govinda avasarala Brookings natural g as task Force Issue Brief 1: Natural Gas Liquids 1 PREFACE n may 2011, the Brookings institution energy security initiative (ESI) assembled a task Force of independent natural-gas experts, whose expertise and insights provided inform its research on various issues regarding Ithe u.s. natural gas sector. in may 2012, Brookings released its first report, analyzing the case and prospects for exports of liquefied natural gas (lng) from the united states. the task Force now continues to meet pe- riodically to discuss important issues facing the sector. With input from the task Force, Brookings will release periodic issue briefs for policymakers. the conclusions and recommendations of this report are those of the authors and do not necessarily reflect the views of the members of the task force. members of the Brookings institution natural gas task Force JOHN BANKS, Brookings institution KELLY BENNETT, Bentek energy, LLC JASON BORDOFF, columbia university KEVIN BOOK, clearview energy Partners, LLC TOM CHOI, Deloitte CHARLES EBINGER, Brookings institution, task Force co-chair DAVID GOLDWYN, goldwyn global strategies, LLC, task Force co-chair SHAIA HOSSEINZADEH, Wl ross JAMES JENSEN, Jensen associates ROBERT JOHNSTON, eurasia group MELANIE KENDERDINE, massachusetts institute of technology energy initiative VELLO KUUSKRAA, advanced resources international MICHAEL LEVI, council on Foreign relations ROBERT MCNALLY, the rapidan group KENNETH MEDLOCK, rice university’s James a. Baker iii institute for Public Policy LOU PUGLIARESI, energy Policy research Foundation, inc. BENJAMIN SCHLESINGER, Benjamin schlesinger & associates, LLC JAMIE WEBSTER, PFc energy non-participating observers to task Force meetings included officials from the energy information adminis- tration and the congressional research service. -
Industrial Gas Solutions for the Aerospace Industry
Industrial Gas Solutions for the Aerospace Industry Air Products supplied hydrogen to the American space program from 1957 to the final shuttle launch in 2011. Today, we continue to supply hydrogen for NASA’s testing facilities. Air Products has been serving the aerospace industry since the 1950s when we began supplying hydrogen to a budding American space program. Today our special capabilities for aerospace manufacturers and their suppliers have expanded much further. We continue to develop products, services and technologies to meet the industry’s ever-changing needs. Total solutions Specific capabilities But we don’t stop there. Our Based on serving customers worldwide, business relationships are based on Air Products has developed an array a collaborative approach that starts of global capabilities specific to the with a thorough understanding of your aerospace industry: business and your needs. We focus on finding ways to help improve your Full range of gases operation and lower your overall costs. • World’s largest supplier of delivered For example, our account managers, and on-site hydrogen engineers and technicians have worked with customers to lower their cost of • World’s largest producer and supplier use for gases and have uncovered of liquid and gaseous helium ways to improve processes that rely • A global leading manufacturer of on industrial gases. Our goal is to help nitrogen, oxygen, and argon you in as many ways as we can with your gas applications—so you can • Global supplier of other essential concentrate on your core -
Decarbonization and Industrial Demand for Gas in Europe
May 2019 Decarbonization and industrial demand for gas in Europe OIES PAPER: NG 146 Anouk Honoré The contents of this paper are the author's sole responsibility. They do not necessarily represent the views of the Oxford Institute for Energy Studies or any of its members. Copyright © 2019 Oxford Institute for Energy Studies (Registered Charity, No. 286084) This publication may be reproduced in part for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the Oxford Institute for Energy Studies. ISBN 978-1-78467-139-6 DOI: https://doi.org/10.26889/9781784671396 2 Acknowledgements My grateful thanks to my colleagues at the Oxford Institute for Energy Studies (OIES) for their support, and in particular James Henserson and Jonathan Stern for their helpful comments. A big thank you to all the sponsors of the Natural Gas Research Programme (OIES) for their constructive observations during our meetings, and a special thank you to Vincenzo Conforti (ENI) and his colleagues, who kindly read and commented on a previous version of this paper. I would also like to thank Catherine Gaunt for her careful reading and final editing of the paper. Last but certainly not least, many thanks to Kate Teasdale who made all the arrangements for the production of this paper. The contents of this paper do not necessarily represent the views of the OIES, of the sponsors of the Natural Gas Research Programme or of the people I have thanked in these acknowledgments. -
Of Liquefied Natural Gas (LNG) and Its Environmental Impact As a Low Carbon Energy Source
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Southern Queensland ePrints i University of Southern Queensland Faculty of Engineering and Surveying Life Cycle Assessment (LCA) of Liquefied Natural Gas (LNG) and its environmental impact as a low carbon energy source Dissertation submitted by Paul Jonathan Barnett In fulfilment of the requirements of Courses ENG4111 and 4112 Research Project towards the degree of Bachelor of Engineering (Environmental) Submitted: October, 2010 ii Abstract A life cycle assessment is an environmental management methodology documented by the International Standards Organization (ISO2006) for researching the impact a product has on the environment. Liquefied natural gas is a product contributing to the emission of greenhouse gases such as carbon dioxide, methane and nitrous oxide. These emissions can be minimized by analysis of its source and adopting appropriate process technology throughout the product lifecycle. Natural gas for many years was regarded as a volatile waste product within the oil and coal industries, and was subsequently vented into the atmosphere resulting in pollution. Natural gas is now accepted as a source of low carbon energy assisting the transition from heavy fuels to renewable energy. Liquefying the natural gas has proved to be an economic method for transporting this energy to the market place where pipeline infrastructure is unavailable. Australia has large resources of natural gas in conventional off-shore wells and underground coal-seams. Demand for energy security has positioned Australia to capitalize on its natural resources and supply low carbon energy to fuel economic growth in Asia. -
Industrial Gas Company Augments In-House Security Team Capabilities Manufacturer Overcomes Cyber Security Talent Shortage with Mandiant Expertise on Demand
customer story Industrial Gas Company Augments In-House Security Team Capabilities Manufacturer Overcomes Cyber Security Talent Shortage with Mandiant Expertise On Demand FACTS AT A GLANCE INDUSTRY Manufacturing SOLUTIONS • Mandiant Expertise On Demand BENEFITS • Immediate access to world-class tactical, operational and proactive capabilities • Ability to flexibly match skills to a dynamic set of needs and priorities As a world-leading industrial gas company, the company manages multiple • Quality threat intelligence assists business operations, from food production to oil refining and electronics internal team in defining and manufacturing. A critical link in the supply chain of thousands of customers, managing cyber risk safely and reliably meeting the worldwide demand for specialty gases requires rigorously protecting the company’s extensive IT/OT infrastructure. • Conveniently circumvent industry-wide cyber security staffing challenges The company’s international footprint includes hundreds of manufacturing facilities, over 15,000 computers, nearly 3,000 industrial PCs and over 1,500 miles of industrial gas pipeline. In addition to its process control systems, CUSTOMER PROFILE interfaces, instrumentation and associated sensors. the manufacturer’s The company supplies gases, equipment success has been based on the continuous pursuit of operational excellence, and services to multiple industries, commitment to safety and focus on sustainability and the environment. including refining, chemical, metal, electronics, manufacturing and food and Safeguarding its infrastructure from cyber attack ensures the company beverage. The manufacturer operates in can sustain the responsibility it has undertaken to meet the world’s need dozens of countries utilizing hundreds of for industrial gas while providing for the wellbeing of its employees and production facilities.