People and Things
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Des Origines Du Programme Nucléaire Français À Nos Jours
Résistance et Dissuasion Des originesRésistance du programme et nucléaire Dissuasion français à nos jours Des originesRésistance du programme et nucléaire Dissuasion français à nos jours Des origines du programme nucléaire français à nos jours EXPOSITION Résistance et Dissuasion Des origines du programme nucléaire français à nos jours © D.R. – ECPAD/Défense / Archives historiques CEA / Archives © D.R. – ECPAD/Défense Résistance et Dissuasion Des origines du programme nucléaire français à nos jours LE RÔLE PIONNIER DE LA FRANCE DANS LE DOMAINE DE L’éNERGIE NUCLÉAIRE De la découverte de la radioactivité naturelle à celle de la radioactivité artificielle Extrait du discours de réception du prix Nobel de physique, le 6 juin 1905, par Pierre Curie « (…) On peut concevoir encore que dans des mains criminelles le radium puisse devenir très dangereux, ès la fin du XIXe siècle, la France exerce un rôle majeur dans la Ci-dessus : Henri Becquerel dans son laboratoire, 1903 – D.R. et ici on peut se demander si l’humanité a avantage découverte de l’énergie atomique. C’est ainsi que le physicien Henri à connaître les secrets de la nature, si elle est mûre Becquerel découvre en 1896 le rayonnement émis par les sels À gauche : Pierre et Marie Curie dans leur laboratoire, vers 1898 pour en profiter ou si cette connaissance ne lui sera D Musée Curie (coll. ACJC) d’uranium ; c’est une découverte considérable car il vient de mettre en pas nuisible. Ci-dessous : Frédéric Joliot et Irène Curie dans leur laboratoire, évidence le phénomène de la radioactivité naturelle. L’étape suivante vers 1934 – Musée Curie (coll. -
Courier Volume 45 Number 6 July/August 2005
INTERNATIONACERL JOURNAL OF HIGH-ENERGNY PHYSIC S COURIER VOLUME 45 NUMBER 6 JULY/AUGUST 2005 LABORATORIES FREDHOYLE LAKE BAIKAL SLAC reorganizes The life of a pioneer in The next step towards forthe future p6 nuclear astrophysics pl5 higher energies p24 Linde Kryotechnik AG & Linde BOC Process Plants LLC 4.5K Helium Coldbox for the Spallation Neutron Source at ORNL Coldbox in final stage of fabrication at the Linde shop in Coldbox ready to load on special the Port of Catoosa, Oklahoma, USA low clearance trailer Coldbox in operation at the SNS Central Helium Liquefier Linde KyotechnikAG Phone:+41 (0)52 304 05 55 Linde BOC Process Plants LLC Phone:+1 918 250 8522 DaettlikonerstrasseS Fax: +41 (0)52 304 05 50 Cryogenic Plants and Services Fax: +1 918 250 6915 CH-8422 Pfungen Email: [email protected] 3522 East 61st Street [email protected] Switzerland www.linde-kryotechmk.ch Tulsa, OK 74133-1923/USA www.lindebocpp.com X-ftaqr Oefecfor Digital Puke Processor XR-tOOCR at 149 eV FWHM Resolution No Liquid Nitrogen PX4 Solid State Design Digital Pulse Processor Power Supply Easy to Use Shaping Amplifier Low Cost MCA Features APPLICATIONS • Trapezoidal shaping to reduce • Nuclear Physics ballistic deficit • Synchroton Radiation • Wide range of shaping time settings • High Energy Physics • High count rate capability • Neutron Experiments • High throughput • Astrophysics • MCA with 8 k channels • Research & Teaching • High energy resolution • Nuclear Medicine • Excellent pile-up rejection • X-Ray Fluorescence • Enhanced stability • USB interface XR100CR X~Ray Detector XR100CR fitted for vacuum • Software instrument control, data with P;X4 Digital Pulse applications Visit Us Now Processor, Power Supply, www.amptek.com acquisition and analysis Shaping Amplifier & MCA • Oscilloscope mode available AMPTEK Inc. -
Kant, Schlick and Friedman on Space, Time and Gravity in Light of Three Lessons from Particle Physics
Erkenn DOI 10.1007/s10670-017-9883-5 ORIGINAL RESEARCH Kant, Schlick and Friedman on Space, Time and Gravity in Light of Three Lessons from Particle Physics J. Brian Pitts1 Received: 28 March 2016 / Accepted: 21 January 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Kantian philosophy of space, time and gravity is significantly affected in three ways by particle physics. First, particle physics deflects Schlick’s General Relativity-based critique of synthetic a priori knowledge. Schlick argued that since geometry was not synthetic a priori, nothing was—a key step toward logical empiricism. Particle physics suggests a Kant-friendlier theory of space-time and gravity presumably approximating General Relativity arbitrarily well, massive spin- 2 gravity, while retaining a flat space-time geometry that is indirectly observable at large distances. The theory’s roots include Seeliger and Neumann in the 1890s and Einstein in 1917 as well as 1920s–1930s physics. Such theories have seen renewed scientific attention since 2000 and especially since 2010 due to breakthroughs addressing early 1970s technical difficulties. Second, particle physics casts addi- tional doubt on Friedman’s constitutive a priori role for the principle of equivalence. Massive spin-2 gravity presumably should have nearly the same empirical content as General Relativity while differing radically on foundational issues. Empirical content even in General Relativity resides in partial differential equations, not in an additional principle identifying gravity and inertia. Third, Kant’s apparent claim that Newton’s results could be known a priori is undermined by an alternate gravitational equation. -
List of Figures
List of Figures Pauliinhismostusualposition:writingletters.......... 8 PauliasMephistopheles....................... 15 PauliasBuudha........................... 16 BohrshowingPaulithe‘tippetopp’................. 108 NielsBohr’sCoatofArms...................... 110 PauliatthetimeforhisfirstmeetingwithJung.......... 144 Thedivineandthewordlytriangle................. 184 TetractysofthePythagoreans.................... 185 Mandala picture by a seven year old ................ 186 Title page from Fludd’s ‘Utriosque cosmi. historia’ . ...... 187 MandalaofVajrabhairava,theconquerorofdeath......... 188 Pauli’sworldclock......................... 189 Thestagesofalchemyportrayed.................. 201 Jung’sviewofreality........................ 228 The relationship between psyche, body, matter and spirit ..... 229 Westernexplanationofcorrelation................. 278 Chineseexplanationofcorrelation................. 278 Riemann surface .......................... 281 Thecorrespondenceprinciple................... 286 Orderthroughquantity....................... 287 Synchronicity............................ 291 Orderthroughquality........................ 294 Causality,acausalityandsynchronicity............... 296 Pauli’sandJung’sworldviewquaternio............... 297 DNA.................................308 Theworldviewquaterrnioasautomorphism............ 311 Pauli’sdreamsquare........................ 322 Pauli’sTitian............................. 333 Kabbalah.............................. 333 List of Tables Thealchemicstages......................... 199 Pauli’s -
V.Y. Glaser SOME RETROSPECTIVE REMARKS by Ph. Blanchard
V.Y. Glaser SOME RETROSPECTIVE REMARKS by Ph. Blanchard OPENINGS MATHEMATICS IN PHYSICS GREAT ENCOUNTERS ALONG THE WAY Zagreb, Göttingen, Copenhagen, Geneva, Strasbourg, Bures sur Yvette USING MATHEMATICS WITH CLARITY AND ELEGANCE Quantum Mechanics, Quantum Field Theory O P E N I N G S I am happy to have been asked to speak about Yurko Glaser, his thinking and its actions. It is an honor for me to pay tribute to the brilliant achievements of this leading mathematical physicist, gifted teacher and exceptional friend. It was in Strasbourg at the spring meeting of the RCP 25, where we first met 1967. At this time I was in Zürich at the ETH, working on the Paul-Fierz model of the infrared catastrophe under the direction of Res Jost. Yurko was born on April 21, 1924 just before the discovery by Schrödinger, Heisenberg, Dirac, Born … of modern Quantum Theory in the mid 1920’s. Carlo Rubbia was also born in Gorizia, Görz, Friaul – Julisch Venetien. Quantum Theory before 1925 – the Old Quantum Theory (Planck, Einstein, Bohr, Sommerfeld …) – was part craft part art. Old principles had been founded wanting, new ones had not yet been discovered. Modern Quantum Theory was a real revolution of our understanding of physical process. Compared with this change, Einstein’s relativity, born in 1905, seem not much more than very interesting variations on nevertheless classical themes. Yurko studied at the University of Zagreb, where he received his Diploma in 1950 and his Ph.D in 1953 under the supervision of W. Heisenberg. He moved to Göttingen in 1951-1952 and made his first important contributions to physics, a book of QED published 1955 in Zagreb and outstanding results on QFT, the attempt to clarify the compatibility of special relativity theory with Quantum Theory. -
LIST of PUBLICATIONS Jürg Fröhlich 1. on the Infrared Problem in A
LIST OF PUBLICATIONS J¨urgFr¨ohlich 1. On the Infrared Problem in a Model of Scalar Electrons and Massless Scalar Bosons, Ph.D. Thesis, ETH 1972, published in Annales de l'Inst. Henri Poincar´e, 19, 1-103 (1974) 2. Existence of Dressed One-Electron States in a Class of Persistent Models, ETH 1972, published in Fortschritte der Physik, 22, 159-198 (1974) 3. with J.-P. Eckmann : Unitary Equivalence of Local Algebras in the Quasi-Free Represen- tation, Annales de l'Inst. Henri Poincar´e 20, 201-209 (1974) 4. Schwinger Functions and Their Generating Functionals, I, Helv. Phys. Acta, 47, 265-306 (1974) 5. Schwinger Functions and Their Generating Functionals, II, Adv. of Math. 23, 119-180 (1977) 6. Verification of Axioms for Euclidean and Relativistic Fields and Haag's Theorem in a Class of P (φ)2 Models, Ann. Inst. H. Poincar´e 21, 271-317 (1974) 7. with K. Osterwalder : Is there a Euclidean field theory for Fermions? Helv. Phys. Acta 47, 781 (1974) 8. The Reconstruction of Quantum Fields from Euclidean Green's Functions at Arbitrary Temperatures, Helv. Phys. Acta 48, 355-369 (1975); (more details are contained in an unpublished paper, Princeton, Dec. 1974) 9. The Pure Phases, the Irreducible Quantum Fields and Dynamical Symmetry Breaking in Symanzik-Nelson Positive Quantum Field Theories, Annals of Physics 97, 1-54 (1975) 10. Quantized "Sine-Gordon" Equation with a Non-Vanishing Mass Term in Two Space-Time Dimensions, Phys. Rev. Letters 34, 833-836 (1975) 11. Classical and Quantum Statistical Mechanics in One and Two Dimensions: Two-Compo- nent Yukawa and Coulomb Systems, Commun. -
Karl Rawer's Life and the History of IRI
Available online at www.sciencedirect.com ADVANCES IN SCIENCE d EDIRECT@ SPACE RESEARCH (a COSPAR publication) ELSEVIER Advances in Space Research 34 (2004) 1845-1850 www.elsevier.com/locate/asr Karl Rawer's life and the history of IRI Bodo W. Reinisch a,*, Dieter Bilitza b a Department of Environmental Earth and Atmospheric Sciences, Center for Atmospheric Research, University of Massachusetts Lowell, 600 Suffolk Street, Lowell, MA 01854, USA b Raytheon ITSSISSD00, GSFC, Code 632, Greenbelt, MD 20771, USA Received 12 September 2004; accepted 13 September 2004 Abstract This laudation is given in honor of the 90th birthday of Prof. Karl Rawer that coincides with the 35th anniversary of the Inter- national Reference Ionosphere (IRI). The ionosphere was discovered during Karl Rawer's life, and he has dedicated his life to the exploration of this part of Earth's environment. The horrible events of world wars I and II shaped his early life, but they also launched his career as one of the eminent geophysical scientists of the twentieth century. The paper looks back at Karl's life and the 35 years of research and development in the framework of the IRI project. K. Rawer initiated this international modeling effort and was the first chairman of the IRI Working Group. IRI is a joint project of the Committee on Space Research (COSPAR) and the International Union of Radio science (URSI) that has the goal to establish an international standard model of the ionospheric densities temperatures, and drifts. © 2004 COSPAR. Published by Elsevier Ltd. All rights reserved. Keywords: Karl Rawer; International Reference Ionosphere; Ionosphere 1. -
Constructive Jűrg a Personal Overview of Constructive Quantum Field Theory
Constructive Jűrg A Personal Overview of Constructive Quantum Field Theory by Arthur Jaffe Dedicated to Jürg Fröhlich 3 July 2007 E.T.H. Zürich “Ich heisse Ernst, aber ich bin fröhlich; er heisst Fröhlich, aber er is ernst!” Richard Ernst 1977 @ 31 29 June 2007 @ 61 - e HAPPY Birthday!!! Jürg: over 285 publications with over 114 co-authors Quantum Field Theory Two major pedestals of 20th century physics: Quantum Theory and Special Relativity Are they compatible? Motivated by Maxwell, Dirac Quantum Electrodynamics (QED): light interacting with matter. Rules of Feynman fl Lamb shift in hydrogen and magnetic moment μ of the electron. calculation: Bethe, Weisskopf, Schwinger, Tomonaga, Kinoshita,…. measurement: Kusch,…, Dehmelt, Gabrielse (1947-2007) now 60! Agreement of calculation with experiment: 1 part in 1012 Strange, but Apparently True Classical mechanics, classical gravitation, classical Maxwell theory, fluid mechanics, non-relativistic quantum theory, statistical mechanics,…, all have a logical foundation. They all are branches of mathematics. But: Most physicists believe that QED on its own is mathematically inconsistent. Reason: It is not “asymptotically free” (1973). Physical explanation: “need other forces.” Axiomatic Quantum Field Theory Effort begun in the 1950’s to give a mathematical framework for quantum field theory and special relativity. Wightman, Jost, Haag Lehmann, Symanzik, Zimmermann Constructive Quantum Field Theory Attempt begun in the 1960’s: find examples (within this framework) having non-trivial interaction. 1. Construct non-linear examples. 2. Find the symmetries of the vacuum, spectrum of particles and bound states (mass eigenvalues), compute scattering, etc. 3. Work exactly (non-perturbatively), although with motivation from perturbation theory. -
A Bibliography of Publications By, and About, Edward Teller
A Bibliography of Publications by, and about, Edward Teller Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 17 March 2021 Version 1.177 Title word cross-reference + [KT48, TT35a]. $100 [Smi85b]. $12.95 [Edg91]. $19.50 [Oli69]. $24.95 [Car91]. $3.50 [Dys58]. $30.00 [Kev03]. $32.50 [Edg91]. $35 [Cas01b, Cas01a]. $35.00 [Dys02a, Wat03]. $39.50 [Edg91]. $50 [Ano62]. − 7 $8.95 [Edg91]. = [TT35a]. [BJT69]. [CT41]. 2 [SST71, ST39b, TT35a]. 3 [HT39a]. 4 [TT35a]. 6 [TT35a]. β [GT36, GT37, HS19]. λ2000 [MT42]. SU(3) [GT85]. -Disintegration [GT36]. -Mesons [BJT69]. -Transformation [GT37]. 0 [Cas01b, Cas01a, Dys02a]. 0-7382-0532-X [Cas01b, Cas01a, Dys02a]. 0-8047-1713-3 [Edg91]. 0-8047-1714-1 [Edg91]. 0-8047-1721-4 [Edg91]. 0-8047-1722-2 [Edg91]. 1 [Har05]. 1-86094-419-1 [Har05]. 1-903985-12-9 [Tho03]. 100th 1 2 [KRW05, Tel93d]. 17.25 [Pei87]. 1930 [BW05]. 1930/41 [Fer68]. 1939 [Sei90]. 1939-1945 [Sei90]. 1940 [TT40]. 1941 [TGF41]. 1942 [KW93]. 1945 [Sei90]. 1947 [Sei90]. 1947-1977 [Sei90]. 1948 [Tel49a]. 1950s [Sei90]. 1957 [Tel57b]. 1960s [Mla98]. 1963 [Szi87]. 1973 [Kur73]. 1977 [Sei90]. 1979 [WT79]. 1990s [AB88, CT90a, Tel96b]. 1991 [MB92]. 1992 [GER+92]. 1995 [Tel95a]. 20 [Goe88]. 2003 [Dys09, LBB+03]. 2008 [LV10]. 20th [Mar10, New03d]. 28 [Tel57b]. 3 [Dic79]. 40th [MKR87]. 411-415 [Ber03b]. -
Philanthropist Pledges $70 M to Homestake Underground Lab
CCESepFaces43-51 16/8/06 15:07 Page 43 FACES AND PLACES LABORATORIES Philanthropist pledges $70 m to Homestake Underground Lab South Dakota governor Mike Rounds (third from right) and philanthropist T Denny Sanford (fourth from right) prepare to cut the ribbon at the official dedication of the Sanford Underground Science and Engineering Laboratory in the former Homestake gold mine. At the official dedication of the Homestake 4200 m water equivalent). In November 2005 donation in South Dakota, including major Underground Laboratory on 26 June, South the Homestake Collaboration issued a call for contributions to a children’s hospital centred Dakota resident, banker and philanthropist letters of interest from scientific at the University of South Dakota, and other T Denny Sanford created a stir by pledging collaborations that were interested in using educational and child-oriented endeavours. $70 m to help develop the multidisciplinary the interim facility. The 85 letters received His gift expands the alliance supporting the laboratory in the former Homestake gold comprised 60% proposals from earth science Sanford Underground Science and mine. The mine is one of two finalists for the and 25% from physics, with the remainder for Engineering Laboratory at Homestake US National Science Foundation effort to engineering and other uses. (SUSEL), joining the State of South Dakota, establish a Deep Underground Science and The second installment of $20 m by 2009 the US National Science Foundation (NSF) Engineering Laboratory (DUSEL), which will be will create the Sanford Center for Science through its competitive site selection process, a national laboratory for underground Education – a 50 000 ft2 facility in the historic the Homestake Scientific Collaboration and experimentation in nuclear and particle mine buildings. -
Arxiv:1812.11847V2 [Physics.Hist-Ph] 22 Nov 2019
LNF ISTITUTO NAZIONALE DI FISICA NUCLEARE Laboratori Nazionali di Frascati INFN-18/12/LNF December 31, 2018 Bruno Touschek with AdA in Orsay: The first direct observation of electron-positron collisions Giulia Pancheri1, Luisa Bonolis2 1)INFN, Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati, Italy 2)Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany Abstract We describe how the first direct observation of electron-positron collisions took place in 1963-1964 at the Laboratoire de l’Accel´ erateur´ Lineaire´ d’Orsay, in France, with the storage ring AdA, which had been proposed and constructed in the Italian National Lab- oratories of Frascati in 1960, under the guidance of Bruno Touschek. The obstacles and successes of the two and a half years during which the feasibility of electron-positron col- liders was proved will be illustrated using archival and forgotten documents, in addition to transcripts from interviews with Carlo Bernardini, Peppino Di Giugno, Mario Fascetti, Franc¸ois Lacoste, and Jacques Ha¨ıssinski. arXiv:1812.11847v2 [physics.hist-ph] 22 Nov 2019 Drawing by Bruno Touschek (Amaldi 1981). Authors’ ordering in this and related works alternates to reflect that this work is part of a joint collaboration project with no principal author. Contents 1 Introduction1 1.1 Sources and outline . .6 2 Prequel8 2.1 Electron-positron collisions from Kiev to Rome and Frascati . 10 2.2 July 1961: a visit from Orsay . 17 3 AdA’s arrival and installation in Orsay: Summer 1962 19 3.1 First experiments: weekends and long nights or sixty hours in row . -
1950-1960: Age D'or Des Laboratoire? La Physique À L'ecole Normale
1950-1960 : Age d’or des laboratoire ? La physique à l’Ecole Normale Supérieure Pierre Baruch To cite this version: Pierre Baruch. 1950-1960 : Age d’or des laboratoire ? La physique à l’Ecole Normale Supérieure. Jahrbuch für Computerphilologie, Hg. v. Karl Eibl, Volker Deubel, Fotis Jannidis, 1999, pp.17. hal-00159479 HAL Id: hal-00159479 https://hal.archives-ouvertes.fr/hal-00159479 Submitted on 3 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reflet N°3 9/05/07 13:23 Page 17 1950-1960 : Âge d’or des laboratoires ? et société La physique à l’École normale supérieure Science Pierre Baruch Professeur émérite à l’Université Denis-Diderot Paris 7 ([email protected]) Pierre Baruch a connu le laboratoire de physique de l’Ecole normale supérieure en 1946, quand il y est entré comme élève. Il y a fait sa thèse sous la direction d’Yves Rocard et de Pierre Aigrain, et y a exercé jusqu’en 1968. Il rappelle, comment, de 1946 à 1960, ont pu être réunies les condi- tions de la renaissance de la science dans un Le laboratoire de physique de l'ENS, vu de la rue Lhomond en 1950 (archives de l'ENS).