List of Figures

Total Page:16

File Type:pdf, Size:1020Kb

List of Figures List of Figures Pauliinhismostusualposition:writingletters.......... 8 PauliasMephistopheles....................... 15 PauliasBuudha........................... 16 BohrshowingPaulithe‘tippetopp’................. 108 NielsBohr’sCoatofArms...................... 110 PauliatthetimeforhisfirstmeetingwithJung.......... 144 Thedivineandthewordlytriangle................. 184 TetractysofthePythagoreans.................... 185 Mandala picture by a seven year old ................ 186 Title page from Fludd’s ‘Utriosque cosmi. historia’ . ...... 187 MandalaofVajrabhairava,theconquerorofdeath......... 188 Pauli’sworldclock......................... 189 Thestagesofalchemyportrayed.................. 201 Jung’sviewofreality........................ 228 The relationship between psyche, body, matter and spirit ..... 229 Westernexplanationofcorrelation................. 278 Chineseexplanationofcorrelation................. 278 Riemann surface .......................... 281 Thecorrespondenceprinciple................... 286 Orderthroughquantity....................... 287 Synchronicity............................ 291 Orderthroughquality........................ 294 Causality,acausalityandsynchronicity............... 296 Pauli’sandJung’sworldviewquaternio............... 297 DNA.................................308 Theworldviewquaterrnioasautomorphism............ 311 Pauli’sdreamsquare........................ 322 Pauli’sTitian............................. 333 Kabbalah.............................. 333 List of Tables Thealchemicstages......................... 199 Pauli’s comparison of subject and object inphysicsandpsychology.................. 208 Pauli’s comparison of quantum physics andJung’sdepthpsychology................. 212 Comparison of scientific discovery and the therapeutic process . 270 Subject Index absolute knowledge 304, 306 – as doll woman 153 acausal correspondence 294 – as ligamentum corporis et acausal order spiritus 229 – general 291 –asmother235 acausal orderedness 295 – as pagan 235 – reproducible 295 – as problem in science 181, 320 acausality 59, 60, 62, 112, 197 – birth of Pauli’s 13 –Bohron63 – definition of 142 – general 283, 293, 296 – development of Pauli’s 152 active imagination 171, 207 – Pauli’s 142, 150 – definition 149 – Pauli’s as Chinese woman 153, – Pauli’s 149 319, 321, 342 acts of creation 289 Anima Mundi 153, 183, 260, 341 affect 157, 282 anima terrae 179, 183 alchemical position anima/animus 241 – as symmetrical 323 Anschaulichkeit alchemists – translation of the term 68 – andthephysicistsofmodern anthropology 52 times 203 anti-intellectualism 26, 46, 57, – describe processes of depth 59, 67 psychology 258 anti-matter 260 – mistake of 257 anti-metaphysical 163 alchemy 57, 337, 338 anti-Semitism 12 – as individuation 203 antinomic thinking 111, 262 – basic idea 199 Aphrodite 149 – Jung’s view 198 Apollo 172 – symmetry between spirit and aqua permanens 200 matter 256 archetypal basis of the physical ambulatory automatism 242 concepts 205 amo, ergo sum 318, 347 archetype 116, 162, 166, 177, 203, analysis and synthesis 63, 199 221 anima – and automorphism 310 – and mysteries of existence 342 – and autonomous existences 352 Subject Index 313 346 – and consciousness 214 – Pauli’s view of 173, 207, 221, –anddeterminism215 343 – and ethics 214 – probability model 292 – and hermetic/gnostic tradition – transgressivity of 313 180 archetype of numbers 309 – and information 244 archetype theory – and instinct 215, 216, 305 – evidence of 267 – and mathematics 314, 347 archetypes – and microphysics 292 –andphysics345 – and natural law 293 – Kepler’s view 313 –andnumbers312 – Pauli’s relation to theory of – and platonism 290 215 – and probability 292 ascertainable 219, 220, 224 – as hereditary deposits 304 ascertainment – as instincts of apprehension – in science 221 174 Assumption of the Virgin Mary – as Kantian 214 320 – as pattern of behavior 293 astrological experiment –aspsychoid217 – Jung’s 285, 295, 298 – as reflector 327 astrology 59, 251, 298 – as self-portrait of the instinct asymmetry 328 215 atom – as self-reproducing form 267 –assymbol272 –asspirit217 atomic bomb 19, 21, 23, 321 – as stimulus structure 304 automorphism 212, 283, 310, 311, – as transcendental autonomous 322 existences 225 – and self-organization 310 – determinism and indetermin- Autopator 236 ism of 311 Avatara 248 – extension of concept 213 a priori synthetic judgement 174 – history of concept 37 – identification with 204, 205 background physics 178, 205, – Jung’s contradictory view of 206, 211, 259, 346 242 baptism – Kepler’s view 180, 183, 192 – antimetaphysical 74 – numinosity of 280 Bauhaus 32 – origin of concept 180 becoming 261 – Pauli’s contribution to concept – theory of 262 Subject Index 353 being 261 Bohr Institute 14, 54, 55 – and non-being 218, 259 Bohr’s Coat of Arms 110 – Jung’s view of concept 219 Bohr-Festspiele 17, 55 – potential 219, 261 biology 97, 98, 109, 244 causality – and quantum physics see –Jungon246 physics and biology CERN 4, 145, 146 – Pauli’s interest in 300 chance 275 Bohr – Pauli’s critique of concept 300 – and antinomic thinking 87, Chance-Religion 301 262 chaos theory 310, 312 – and Høffding 61 – and synchronicity 296 – and James 103 circulation of light 185 – and Jung 112 classical idea of the objective – and Kierkegaard 62, 64 reality of the cosmos 245 – and link between quantum Clausian heat death 39 physics and classical physics cognition 134 – and feeling 181, 317, 318 – and Møller 65 – and symbol 272 – and Rubin 104 – Pauli’s view 209 – as instrumentalist 83 – process of 171 – as non-Platonic thinker 262 coincidence 282 – as opposed to Heisenberg 83 communism 152 –asopposedtoPauli83 comparative method 158 – as phenomenalist 83 compensation 195 – cane analogy 49, 105, 176 – mechanism of 232 –Copenhagenspirit54,55 compensatory perspective 238 – epistemological position 109 complementarity 83, 94–96, 101, – on epistemology 253 102, 107, 109, 110, 138, 170, 176, –onmysticism253 195, 208, 286 – on objective description 132 – and anthropology 53 – on parapsychology 98 –andbiology109 – on positivism 81 – and detached observers 131 – personality 55, 111 – and ethnology 109 – philosophy of 56, 61 – and positivism 99 – preference for the wave picture – and repression 101 68 – and synchronicity 280 – unmathematical thinking of – as general epistemological 85 principle 109 354 Subject Index –Bohr’swayto63,68 constellation 290 – of clarity and truth 28, 67 constructive method 119, 156, – of metaphysics and antimeta- 158, 269 physics 74 constructivism 32 – philosophy of 171 contextofdiscovery 336 –theoryof87 conventionalism 50, 314 – versus classical physics 250 Copenhagen interpretation 64 complementarity of physics – definition 69 –rolemodel211 Copenhagen School 15, 17, 26, complementarity principle 253, 52, 54, 60, 78, 80, 85, 197, 250, 273, 342 266 – history of 104 – a compromise 56 complex 157 – and mysticism 250 – autonomous 223, 239 – and positivism 67, 82 – as mysticism 57 complexio oppositorum 38 – as positivism 57 conceptualization – Einstein’s view 43 – preconscious stage of 204 – Pauli and 69 – scientific 204 – philosophy of 105 – sensory impressions and 203 Corpus Hermeticum 256 confusion of the egos 128 correspondence 283, 291 Coniunctio 199, 211, 212, 255, – of meaning 284, 287 257, 261, 322 – principle of 273, 287 – for opposing pairs 237 – statistical 286 – of psyche and matter 197 correspondentia 274 – of wave and particle 197 CPT theorem 324, 328, 329 consciousness creatio continua 296 – and ethics 248 creation myth 208, 238 – and violent act 233 – gnostic 325 – collective 213 cubism 32 – inflation of 202, 203 – Jung’s view 232, 242 dadaism 33 – lowering of 204 dance 152 –multiple243 das noch Ältere ist immer das – Pauli’s critique of Jung’s use of Neue 195 concept 243 decline effect 285, 291, 306 – Pauli’s view 234, 242 devil 183, 235, 330 consciousness in the unconscious diagnostic labels 118 243 Diana 235 Subject Index 355 Dionysius 172 – Pauli’s from 15 March 1957 326 dissociationist school 157 – Pauli’s from 27 November 1954 DNA 307 324 doctors – Pauli’s from 28 September 1952 – as gurus 214 153 – as sectarians 214 – Pauli’s of November 1957 331 dreams 100, 164, 232, 270, 337 – Pauli’s of October 1946 180 – and mathematical-physical –precognitive307 symbol language 310 – research into 168 – and motif in dublicated form Durée, la 279 207 Dynamic system theory 282, 290 – and physics terminology 202 –aspieceofnature312 eidola 173, 174 –Bohr’sview129 Einstein – Chinese view 129 – and Born 263 – Jung’s view 117 – and determinism 263 –Machon45 – and Spinoza 263 – mirror motif in 325 – on Freud 101 – misuse of the terminology of –onMach80 physics in 203–205 – on Pauli 16, 21 – motifs in Pauli’s 151, 206, 283 – view of the cosmos 254 – motifs in Pauli’s, Chinese Ekliptika circle 61 woman 319 emergent property – motifs in Pauli’s, Dark Woman – theory of 290 324, 327 energetic – motifs in Pauli’s: the blond – approach 156 180 Enlightenment 34 – motifs in Pauli’s: the Persian ennoia 175 180 entartete Kunst 136 – motifs in Pauli’s: the stranger entropy 180, 234 – and psyche 216 – of Descartes 181 episteme 175 – Pauli’s 13, 18, 145, 151, 164, 171, epistemological revolution 95 179, 202 epistemology – Pauli’s attempt at a translation – and psychology 92 207 –Bohr’s65,67 – Pauli’s criticism of Jung’s inter- – Jung’s view 113 pretation 161 – logical positivists’ view 50 – Pauli’s from 12 March 1957 326 –Pauli’s3,73 356 Subject Index – positivist 80, 99 – religious 280 Eranos conference 152 – returning to 27 Ermüdungseffekt
Recommended publications
  • Kant, Schlick and Friedman on Space, Time and Gravity in Light of Three Lessons from Particle Physics
    Erkenn DOI 10.1007/s10670-017-9883-5 ORIGINAL RESEARCH Kant, Schlick and Friedman on Space, Time and Gravity in Light of Three Lessons from Particle Physics J. Brian Pitts1 Received: 28 March 2016 / Accepted: 21 January 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Kantian philosophy of space, time and gravity is significantly affected in three ways by particle physics. First, particle physics deflects Schlick’s General Relativity-based critique of synthetic a priori knowledge. Schlick argued that since geometry was not synthetic a priori, nothing was—a key step toward logical empiricism. Particle physics suggests a Kant-friendlier theory of space-time and gravity presumably approximating General Relativity arbitrarily well, massive spin- 2 gravity, while retaining a flat space-time geometry that is indirectly observable at large distances. The theory’s roots include Seeliger and Neumann in the 1890s and Einstein in 1917 as well as 1920s–1930s physics. Such theories have seen renewed scientific attention since 2000 and especially since 2010 due to breakthroughs addressing early 1970s technical difficulties. Second, particle physics casts addi- tional doubt on Friedman’s constitutive a priori role for the principle of equivalence. Massive spin-2 gravity presumably should have nearly the same empirical content as General Relativity while differing radically on foundational issues. Empirical content even in General Relativity resides in partial differential equations, not in an additional principle identifying gravity and inertia. Third, Kant’s apparent claim that Newton’s results could be known a priori is undermined by an alternate gravitational equation.
    [Show full text]
  • V.Y. Glaser SOME RETROSPECTIVE REMARKS by Ph. Blanchard
    V.Y. Glaser SOME RETROSPECTIVE REMARKS by Ph. Blanchard OPENINGS MATHEMATICS IN PHYSICS GREAT ENCOUNTERS ALONG THE WAY Zagreb, Göttingen, Copenhagen, Geneva, Strasbourg, Bures sur Yvette USING MATHEMATICS WITH CLARITY AND ELEGANCE Quantum Mechanics, Quantum Field Theory O P E N I N G S I am happy to have been asked to speak about Yurko Glaser, his thinking and its actions. It is an honor for me to pay tribute to the brilliant achievements of this leading mathematical physicist, gifted teacher and exceptional friend. It was in Strasbourg at the spring meeting of the RCP 25, where we first met 1967. At this time I was in Zürich at the ETH, working on the Paul-Fierz model of the infrared catastrophe under the direction of Res Jost. Yurko was born on April 21, 1924 just before the discovery by Schrödinger, Heisenberg, Dirac, Born … of modern Quantum Theory in the mid 1920’s. Carlo Rubbia was also born in Gorizia, Görz, Friaul – Julisch Venetien. Quantum Theory before 1925 – the Old Quantum Theory (Planck, Einstein, Bohr, Sommerfeld …) – was part craft part art. Old principles had been founded wanting, new ones had not yet been discovered. Modern Quantum Theory was a real revolution of our understanding of physical process. Compared with this change, Einstein’s relativity, born in 1905, seem not much more than very interesting variations on nevertheless classical themes. Yurko studied at the University of Zagreb, where he received his Diploma in 1950 and his Ph.D in 1953 under the supervision of W. Heisenberg. He moved to Göttingen in 1951-1952 and made his first important contributions to physics, a book of QED published 1955 in Zagreb and outstanding results on QFT, the attempt to clarify the compatibility of special relativity theory with Quantum Theory.
    [Show full text]
  • LIST of PUBLICATIONS Jürg Fröhlich 1. on the Infrared Problem in A
    LIST OF PUBLICATIONS J¨urgFr¨ohlich 1. On the Infrared Problem in a Model of Scalar Electrons and Massless Scalar Bosons, Ph.D. Thesis, ETH 1972, published in Annales de l'Inst. Henri Poincar´e, 19, 1-103 (1974) 2. Existence of Dressed One-Electron States in a Class of Persistent Models, ETH 1972, published in Fortschritte der Physik, 22, 159-198 (1974) 3. with J.-P. Eckmann : Unitary Equivalence of Local Algebras in the Quasi-Free Represen- tation, Annales de l'Inst. Henri Poincar´e 20, 201-209 (1974) 4. Schwinger Functions and Their Generating Functionals, I, Helv. Phys. Acta, 47, 265-306 (1974) 5. Schwinger Functions and Their Generating Functionals, II, Adv. of Math. 23, 119-180 (1977) 6. Verification of Axioms for Euclidean and Relativistic Fields and Haag's Theorem in a Class of P (φ)2 Models, Ann. Inst. H. Poincar´e 21, 271-317 (1974) 7. with K. Osterwalder : Is there a Euclidean field theory for Fermions? Helv. Phys. Acta 47, 781 (1974) 8. The Reconstruction of Quantum Fields from Euclidean Green's Functions at Arbitrary Temperatures, Helv. Phys. Acta 48, 355-369 (1975); (more details are contained in an unpublished paper, Princeton, Dec. 1974) 9. The Pure Phases, the Irreducible Quantum Fields and Dynamical Symmetry Breaking in Symanzik-Nelson Positive Quantum Field Theories, Annals of Physics 97, 1-54 (1975) 10. Quantized "Sine-Gordon" Equation with a Non-Vanishing Mass Term in Two Space-Time Dimensions, Phys. Rev. Letters 34, 833-836 (1975) 11. Classical and Quantum Statistical Mechanics in One and Two Dimensions: Two-Compo- nent Yukawa and Coulomb Systems, Commun.
    [Show full text]
  • Constructive Jűrg a Personal Overview of Constructive Quantum Field Theory
    Constructive Jűrg A Personal Overview of Constructive Quantum Field Theory by Arthur Jaffe Dedicated to Jürg Fröhlich 3 July 2007 E.T.H. Zürich “Ich heisse Ernst, aber ich bin fröhlich; er heisst Fröhlich, aber er is ernst!” Richard Ernst 1977 @ 31 29 June 2007 @ 61 - e HAPPY Birthday!!! Jürg: over 285 publications with over 114 co-authors Quantum Field Theory Two major pedestals of 20th century physics: Quantum Theory and Special Relativity Are they compatible? Motivated by Maxwell, Dirac Quantum Electrodynamics (QED): light interacting with matter. Rules of Feynman fl Lamb shift in hydrogen and magnetic moment μ of the electron. calculation: Bethe, Weisskopf, Schwinger, Tomonaga, Kinoshita,…. measurement: Kusch,…, Dehmelt, Gabrielse (1947-2007) now 60! Agreement of calculation with experiment: 1 part in 1012 Strange, but Apparently True Classical mechanics, classical gravitation, classical Maxwell theory, fluid mechanics, non-relativistic quantum theory, statistical mechanics,…, all have a logical foundation. They all are branches of mathematics. But: Most physicists believe that QED on its own is mathematically inconsistent. Reason: It is not “asymptotically free” (1973). Physical explanation: “need other forces.” Axiomatic Quantum Field Theory Effort begun in the 1950’s to give a mathematical framework for quantum field theory and special relativity. Wightman, Jost, Haag Lehmann, Symanzik, Zimmermann Constructive Quantum Field Theory Attempt begun in the 1960’s: find examples (within this framework) having non-trivial interaction. 1. Construct non-linear examples. 2. Find the symmetries of the vacuum, spectrum of particles and bound states (mass eigenvalues), compute scattering, etc. 3. Work exactly (non-perturbatively), although with motivation from perturbation theory.
    [Show full text]
  • Philanthropist Pledges $70 M to Homestake Underground Lab
    CCESepFaces43-51 16/8/06 15:07 Page 43 FACES AND PLACES LABORATORIES Philanthropist pledges $70 m to Homestake Underground Lab South Dakota governor Mike Rounds (third from right) and philanthropist T Denny Sanford (fourth from right) prepare to cut the ribbon at the official dedication of the Sanford Underground Science and Engineering Laboratory in the former Homestake gold mine. At the official dedication of the Homestake 4200 m water equivalent). In November 2005 donation in South Dakota, including major Underground Laboratory on 26 June, South the Homestake Collaboration issued a call for contributions to a children’s hospital centred Dakota resident, banker and philanthropist letters of interest from scientific at the University of South Dakota, and other T Denny Sanford created a stir by pledging collaborations that were interested in using educational and child-oriented endeavours. $70 m to help develop the multidisciplinary the interim facility. The 85 letters received His gift expands the alliance supporting the laboratory in the former Homestake gold comprised 60% proposals from earth science Sanford Underground Science and mine. The mine is one of two finalists for the and 25% from physics, with the remainder for Engineering Laboratory at Homestake US National Science Foundation effort to engineering and other uses. (SUSEL), joining the State of South Dakota, establish a Deep Underground Science and The second installment of $20 m by 2009 the US National Science Foundation (NSF) Engineering Laboratory (DUSEL), which will be will create the Sanford Center for Science through its competitive site selection process, a national laboratory for underground Education – a 50 000 ft2 facility in the historic the Homestake Scientific Collaboration and experimentation in nuclear and particle mine buildings.
    [Show full text]
  • General Relativity and Cosmology: Unsolved Questions and Future Directions
    Article General Relativity and Cosmology: Unsolved Questions and Future Directions Ivan Debono 1,∗,† and George F. Smoot 1,2,3,† 1 Paris Centre for Cosmological Physics, APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris CEDEX 13, France 2 Physics Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, 94720 CA, USA; [email protected] 3 Helmut and Anna Pao Sohmen Professor-at-Large, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, China * Correspondence: [email protected]; Tel.: +33-1-57276991 † These authors contributed equally to this work. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 21 August 2016; Accepted: 14 September 2016; Published: 28 September 2016 Abstract: For the last 100 years, General Relativity (GR) has taken over the gravitational theory mantle held by Newtonian Gravity for the previous 200 years. This article reviews the status of GR in terms of its self-consistency, completeness, and the evidence provided by observations, which have allowed GR to remain the champion of gravitational theories against several other classes of competing theories. We pay particular attention to the role of GR and gravity in cosmology, one of the areas in which one gravity dominates and new phenomena and effects challenge the orthodoxy. We also review other areas where there are likely conflicts pointing to the need to replace or revise GR to represent correctly observations and consistent theoretical framework. Observations have long been key both to the theoretical liveliness and viability of GR.
    [Show full text]
  • FIFTY YEARS THAT CHANGED OUR PHYSICS 1 Introduction Going
    FIFTY YEARS THAT CHANGED OUR PHYSICS Jean Iliopoulos ENS, Paris As seen through the Moriond meetings 1 Introduction Going through the Proceedings of the Moriond meetings, from 1966 to 2016, we have a panoramic view of the revolution which took place in our understanding of the fundamental interactions. As we heard from J. Lefran¸cois, these meetings started as a gathering among a group of friends who loved physics and loved skiing. Through the years they became a major International Conference, still trying to keep part of the original spirit. The driving force behind this evolution has been our friend Jean Tran Than Van and this Conference is one of his many children. In 1966 Jean was fifty years younger and for a young man of that age fifty years is eternity. These years brought to each one of us their load of disappointments and sorrows, but also that of achievements and successes. We witnessed the birth and rise of the Standard Model and our greatest joy is to be able to say I was there! Four years ago you discovered the last piece of this Model and, hopefully, this will open the way to new and greater discoveries. I wish all the young people in this room to be able to say, fifty years from now, I was there! The twentieth century was the century of revolutions in Physics. Just to name a few: Relativity, Special and General – Atoms and atomic theory – Radioactivity – The atomic nucleus – Quantum Mechanics – Particles and Fields – Gauge theories and Geometry. Each one involved new physical concepts, new mathematical tools and new champions.
    [Show full text]
  • Putting the Pauli Exclusion Principle on Trial
    CERN Courier March 2018 CERN Courier March 2018 ALPHA experiment Exclusion principle improving the precision of the antihydrogen hyperfine measure- ment, and the ASACUSA collaboration at the AD hopes to measure 60 data simulation the same quantity to the ppm level using a challenging antihydro- Putting the Pauli exclusion gen-beam technique; an analogous experiment on hydrogen was 40 recently reported (CERN Courier December 2017 p23). counts 20 The antihydrogen atom still holds many structural secrets to be explored. Near-term perspectives in ALPHA include the Lyman- 0 alpha (1S–2P) transition, with its notoriously difficult-to-produce principle on trial –1.2 0 1.2 2.4 3.6 1419.2 1421.6 1424.0 121.5 nm wavelength in the vacuum ultraviolet. We are currently relative frequency (MHz) attempting to address this with a pulsed laser, with the ultimate PAULI-ARCHIVE-PHO-011-1 goal to laser-cool antihydrogen for studies in gravitation and for The exclusion principle is part of the bedrock of Fig. 5. The number of detected annihilation events plotted versus improved resolution in spectroscopy. To give a flavour of the pace microwave frequency. The two spectral lines represent the c to b of activities, a recent daily run meeting saw ALPHA collabora- physics, but that hasn’t stopped experimentalists (left) and the d to a transitions (see main text and figure 4). tors actually debate which of the three antihydrogen transitions we should study that day, which was somewhat surreal. In the longer from devising cunning ways to test it. nance trials) out of 2.5 × 1015 Hz.
    [Show full text]
  • Cambray.Indb
    Number Fifteen Carolyn and Ernest Fay Series in Analytical Psychology David H. Rosen, General Editor The Carolyn and Ernest Fay edited book series, based initially on the annual Fay Lecture Series in Analytical Psychology, was established to further the ideas of C. G. Jung among students, faculty, therapists, and other citizens and to enhance scholarly activities related to analytical psychology. The Book Series and Lecture Series address topics of im- portance to the individual and to society. Both series were generously endowed by Carolyn Grant Fay, the founding president of the C. G. Jung Educational Center in Houston, Texas. The series are in part a memorial to her late husband, Ernest Bel Fay. Carolyn Fay has plant- ed a Jungian tree carrying both her name and that of her late hus- band, which will bear fruitful ideas and stimulate creative works from this time forward. Texas A&M University and all those who come in contact with the growing Fay Jungian tree are extremely grateful to Carolyn Grant Fay for what she has done. The holder of the McMillan Professorship in Analytical Psychology at Texas A&M functions as the general editor of the Fay Book Series. Synchronicity Synchronicity Nature and Psyche in an Interconnected Universe joseph cambray Foreword by David H. Rosen Texas A&M University Press College Station Copyright © 2009 by Joseph Cambray Manufactured in the United States of America All rights reserved First edition This paper meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). Binding materials have been chosen for durability. Library of Congress Cataloging-in-Publication Data Cambray, Joseph.
    [Show full text]
  • Notas De Física CBPF-NF-016/96 April 1996
    / • CBPF - CENTRO BRASILEIRO DE PESQUISAS FÍSICAS Rio de Janeiro Notas de Física CBPF-NF-016/96 April 1996 Weak Interaction Physics: From its Origin to the Electroweak Model J. Leite Lopes CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico n 2 - CBPF-NF-016/96 1 Weak Interaction Physics: From its Origin to the Electroweak Model J. Leite Lopes Centro Brasileiro de Pesquisas Físicas - CBPF Rua Dr. Xavier Sigaud, 150 22290-180 - Rio de Janeiro-RJ, Brazil and Universidade Federal do Rio de Janeiro - UFRJ 1 Introduction: The beta-ray continuous spectrum The purpose of this paper is to give a brief account of the development of the theory of weak interactions and the electroweak model.] This theory dates from 1934 and after about forty years contributed with quantum electrodynamics to the first successful model of unification of interactions - the so-called electroweak model. Together with quantum chromodynamics - the theory of strong interactions - the electroweak model constitutes the standard model of basic forces in the grand unification model - waiting for the in- corporation of a quantum theory of gravity which would then hopefully afford a unified picture of the world fundamental interactions. This cannot clearly be a complete history of weak interactions physics. These notes of course reflect my view of the subject after many years of work in this field - and after having had the privilege of speding some time in laboratories where eminent physicists actively worked such as W. Pauli and J.M. Jauch and Ning Hu, J.R. Oppenheimer, C.N. Yang, F.J. Dyson and Abraham Pais, Oskar Klein and H.
    [Show full text]
  • Mathematics, Relativity, and Quantum Wave Equations
    Karl-Heinz Schlote, Martina Schneider (eds.) Mathematics meets physics A contribution to their interaction in the 19th and the first half of the 20th century Mathematics, Relativity, and Quantum Wave Equations Helge Kragh 1 Introduction ............................ 352 2 Schrödinger and his equation .................. 352 3 The Klein-Gordon equation ................... 356 4 The spinning electron ....................... 358 5 A beautiful exercise in pure reason ............... 359 6 Dirac, physics, and mathematical beauty ............ 364 7 Postscripts ............................. 368 8 Bibliography ............................ 368 352 Part IV. Entwicklung von Konzepten | Development of concepts 1 Introduction Mathematical considerations played an important role in the new physics that emerged in the early decades of the twentieth century. This may be best known from the general theory of relativity, but the role of mathematics was no less important in the case of the other revolutionary theory of the period, quantum mechanics. In this paper I exemplify the relationship between mathematics and physics by looking at the development that in the late 1920s led to a relativistic theory of the electron, as described by the Dirac wave equation. The problem that faced the new generation of quantum physicists was to establish a theory that was consistent with the general principles of both quantum mechanics and special relativity; in addition the theory would have to incorporate the spin of the electron which was discovered in 1925 and at first seemed foreign to quantum mechanics. In this process, as it unfolded in the years 1926 – 28, contributions from mathematics were of considerable importance. Likewise, some of the concepts and quantities introduced by the physicists turned out to be of great interest to the pure mathematicians.
    [Show full text]
  • Econtents of No 4 the "CERN COURIER" Referendum Markus E
    eContents Who's Who in CERN of No 4 Markus E. FIERZ Last month at CERN ... p. 1 24 GeV 1 Director of Theoretical Studies Markus E. Fierz 2 Referendum "CERN COURIER" 2 Safety at CERN 3 Soon after young Markus' birth in Basel, on June 6th 1912, his father was appointed Brookhaven National Lab. 4 professor of organic chemistry at the Eidgenossische Technische Hochschule, the Four months to success ... 6 Federal Institute of Technology, Zurich. Commemorative plaques . 6 And ever since it seems that all the life of Markus E. Fierz has revolved around Conference proceedings . 6 this town, the largest of Switzerland. However far Markus Fierz's academic duties or likings took him, a universal attraction appeared to draw him back to the place where PS cables 7 he first saw his father teaching. Fundamental nuclear research 8 When he entered Gottingen University in the winter of 1931, M. Fierz first turned to biology, hoping to achieve biophysical studies. But, prior to 1933, Gottingen was also a sort of Mecca for mathematics and theoretical physics and unquestionably this CERN COURIER condition helped shape his future. With the Nazi purges starting in the spring of 1933, valuable minds began to leave Germany. Away from Gottingen came such men is published monthly for the staff of the as Max Born and Herman Weyl ; back to Zurich came Markus Fierz. European Organization for Nuclear Re­ Continuing his studies in physics, mathemathies and philosophy at the University search. It is distributed free of charge to of Zurich, he had the opportunity to attend Professor Carl G.
    [Show full text]