Characterization of Monilinia Linhartiana Isolates

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Monilinia Linhartiana Isolates Journal of Plant Pathology (2017), 99 (3), 583-591 Edizioni ETS Pisa, 2017 583 CHARACTERIZATION OF MONILINIA LINHARTIANA ISOLATES A. Lantos1, M. Petróczy1, R. Oláh2 and L. Palkovics1 1Faculty of Horticultural Science, Department of Plant Pathology, Szent István University, 44 Ménesi Road, Budapest H-1118, Hungary 2Faculty of Horticultural Science, Department of Entomology, Szent István University, 44 Ménesi Road, Budapest H-1118, Hungary SUMMARY as reported from the Mediterranean region (Altinyay, 1972; Moral et al., 2008; Nevado et al., 2011). Monilinia linhartiana is a significant fungal pathogen of M. linhartiana (Prill. and Delacr.) N.F. Buchw. (ana- quince causing leaf blotch, shoot blight and mummifica- morph: Monilia cydoniae Schellenb.) was first described tion of developing young fruits. In our study, five isolates by the Hungarian botanist and mycologist György Lin- originating from infected quince shoots were character- hart, and was named after him (Wormald, 1926). In Hun- ized. Morphological characteristics were determined be- gary, the disease has been observed since the 1930s (Glits, fore performing molecular assays. Three genomic regions 2000), although the pathogen has rarely appeared in recent were sequenced and analysed: the ITS region, a polymor- decades. Nowadays the total area of quince orchards is phic region and the β-tubulin gene. The ITS region (ITS1- steadily increasing in Hungary, thus the pathogen showed 5.8 rDNA-ITS2) sequences of different Monilinia species up again causing infection more frequently. In Turkey, the showed high similarity, thus M. linhartiana isolates could fungus was studied in detail in the 1970s (Altinyay, 1972) not be safely separated from M. aucupariae isolates. By con- and it is still present nowadays (Ünlü and Boyraz, 2010), verse, based on the 28S rDNA sequences, M. linhartiana but no further studies have been conducted. Recent stud- isolates could be distinguished from the closely related ies were only carried out in Spain by Moral et al. (2011) species, offering prospects for the unambiguous identifi- who examined the pathogen by molecular methods, and cation of Monilinia species. The 28S rDNA and β-tubulin reconsidered the existing plant protection strategies. genes of M. linhartiana were sequenced for the first time. M. linhartiana colonises leaves, shoots and young fruits of quince (Naidenov, 1915), overwintering in pseudoscle- Keywords: beta-tubulin, disjunctors, ITS, Monilinia lin- rotial or mycelial form in twigs (Altinyay, 1972). Two in- hartiana, quince, 28S rDNA. fection cycles can be distinguished during the vegetation period. Ascospores as primary inoculum infect the young leaves and the mycelium spreads along the shoots. The secondary inoculum develops on the surface of primary infected leaves, and infects the flowers or young fruits. In early spring, apothecia with ascospores develop on stromatized fruit mummies (pseudosclerotia). The life INTRODUCTION cycle of M. linhartiana is closely related to the host plant phenology (Moral et al., 2011), as the first apothecia ap- Quinces (Cydonia oblonga) have been grown for centu- pear at the bud break stage of quince. Ascospores infect ries in Europe, where summers are sufficiently hot for the the young leaves, causing foliar necrosis along the primary fruit to fully ripen, Turkey being the world’s leading pro- veins starting from the base of the leaf. Wormald (1926) ducer (Topcu et al., 2015). Shoot blight and fruit rot caused observed that the infection spreads rapidly; the fungus by Monilinia spp. are significant diseases of quince, which penetrates through the petioles into the axis of the shoots requires chemical treatments every year. Brown rot symp- and blights them. Conidial coating appears on the necro- toms caused by Monilinia fructigena or Monilinia fructicola, tised tissues (Sumstine, 1913). Conidia induce the second- occasionally by Monilinia laxa or Monilinia polystroma, ap- ary infection and attack the young fruits. The infected pear on mature fruits (Chalkley, 2015). Monilinia linhar- fruits shrivel on the shoots or fall to the ground, but co- tiana causes leaf blotch, shoot blight and mummification nidia never develop on their surfaces (Batra, 1991). These of young fruits. However, the disease caused by M. lin- infected fruits turn into pseudosclerotial structures. hartiana is one of the most destructive diseases of quince M. linhartiana belongs to the section Disjunctoriae of worldwide (Batra, 1991). Yield losses could reach 90-95%, the genus Monilinia. Conidial chains contain small modi- fied conidia called disjunctors, which can be found be- tween macroconidia (Honey, 1936). The species of the sec- Corresponding author: L. Palkovics Fax: + 3613057324 tion are monotrophic, inhabiting a single host, or are oli- E-mail: [email protected] gotrophic for they attack several species of one host genus 584 Characterization of M. linhartiana isolates Journal of Plant Pathology (2017), 99 (3), 583-591 (Batra, 1991). In the section Junctoriae, the macroconidia sucrose, 5.0 g peptone, 15.0 g agar powder, 10.0 g malt are joined directly, like the conidial chains of M. laxa or extract/litre) media. Mycelial plugs (5 mm in diameter) M. fructicola. These pathogens are polytrophics, infecting from single-spore cultures were transferred to the center several genera of a family. The identification and classifi- of the agar plates, and incubated in the dark at 24°C. cation of the species is feasible based on host specificity, Colour, structure, growth rate, pigmentation, conidia morphology of stromata and conidial chains, shape and production and growth rate (mm/24 h) of the isolates size of the conidia, and cultural characteristics on cultiva- were determined. tion media (Batra, 1991). However, closely related species cannot be differentiated in all cases by morphology and Pathogenicity tests. The pathogenicity of M. linhartiana cultural characteristics (van Leeuwen and van Kesteren, isolates was tested on young leaves, young fruits (approx. 1998), whereas reliable identification can be obtained by 3-4 cm in diameter) and fruits of Cydonia oblonga. Before PCR-based methods (De Cal and Melgarejo, 1999). inoculation, the surface of leaves and fruits was disinfected Molecular studies of the internal transcribed spacer with 70% ethanol for 1 min, then washed in sterile water. (ITS) region are generally applied for the identification of The petioles of the leaves and the fruit peels were pricked Ascomycota fungi, and are also appropriate for phylogenet- by a sterile needle, then mycelial plugs (3 mm in diam- ic and evolutionary studies (Capote et al., 2012). Carbone eter) were placed into the punctures. For control, sterile and Kohn (1993) examined the ITS region of Sclerotiniace- PDA plugs were used. Five pieces of each organ (shoots ae, separating the sections Junctoriae and Disjunctoriae of and fruits) per isolate were inoculated. On each shoot two the genus Monilinia. Several brown rot species have been leaves were inoculated, while in the case of young and ma- characterized by the ITS1-5.8S rDNA-ITS2 region (Holst- ture fruits only one mycelial plug was inserted per fruit. Jensen et al., 1997; Fulton et al., 1999; Ioos and Frey, 2000). Inoculated materials were placed into large sterile glass Holst-Jensen et al. (1997) found cospeciation between host vessels on glass beads and incubated under natural light and pathogen. Species of the section Junctoriae infect rosa- at 22-25°C for 3 weeks in 95 ± 2 RH. ceous hosts with stone or pome fruits. Four evolutionary lineages were found in the section Disjunctoriae: one group Molecular investigations. DNA was extracted using the of species on dry stone fruits of rosaceous hosts, one group cetyl-trimethyl-ammonium-bromide (CTAB) method (Ma- of species on capsular fruits of ericaceous hosts, one group niatis et al., 1989), followed by phenol-chloroform extrac- of species on sweet berry fruits of ericaceous hosts, and tion and isoamyl alcohol (24:1) precipitation carried out one parasite species of Crataegus sp. Moral et al. (2011) according to a protocol described by Gell et al. (2007b). studied the ITS region of M. linhartiana, and the phyloge- Three genomic regions were examined by PCR: the ITS netic analyses demonstrated that the pathogen was closely region and the 28S rDNA gene (primers ITS5 and NL4), related to Monilinia mali and Monilinia amelanchieris and the β-tubulin gene (primers BT-forw and BT-rev), and a other Monilinia species infecting dry stone fruits of rosa- polymorphic region (primers UniMon-F and UniMon-R) ceous hosts. (Table 2). The BT primer pair was designed using the data of McKay et al. (1998). Each PCR reaction mixture con- tained 100 ng of fungal DNA, 1 mM of both primers, and MATERIALS AND METHODS Dream Taq Green PCR Master Mix 2× (Thermo Scien- tific, Lithuania) diluted to a final volume of 50 μl. During Sample collection and isolation. Infected shoots show- PCR reactions, the initial denaturation step (94°C, 3 min) ing typical symptoms were collected in different locations was followed by 35 cycles as shown in Table 2. Final elon- across Hungary in 2013 and 2014, and in Turkey in 2015 gation was 10 min at 72°C. PCR products were separated from orchards and gardens (Table 1). Conidia from infect- in 1% GelRed (Biotium Inc. USA) stained agarose gel, ed leaves were transferred onto Petri dishes containing and purified using the High Pure PCR Product Purifi- potato dextrose agar (PDA, BioLab Zrt., Hungary), and cation Kit (Roche, Germany) according to the manufac- individual conidia were separated and placed onto culture turer’s protocol. Final DNA concentrations were verified medium under an inverted microscope. Petri dishes were by spectrophotometry (NanoDrop 2000). Fragments were incubated in the dark at 24°C for 10 days. sequenced in an ABI Prism automatic sequencer (Base- Clear B.V., Leiden, The Netherlands) in three replicates. Morphological and cultural characteristics. The Nucleotide sequence identities and protein sequence simi- symptoms visible on the infected parts and the appear- larities were determined by BLAST analyses (Altschul et ance of conidial chains were observed, and the length al., 1999).
Recommended publications
  • (US) 38E.85. a 38E SEE", A
    USOO957398OB2 (12) United States Patent (10) Patent No.: US 9,573,980 B2 Thompson et al. (45) Date of Patent: Feb. 21, 2017 (54) FUSION PROTEINS AND METHODS FOR 7.919,678 B2 4/2011 Mironov STIMULATING PLANT GROWTH, 88: R: g: Ei. al. 1 PROTECTING PLANTS FROM PATHOGENS, 3:42: ... g3 is et al. A61K 39.00 AND MMOBILIZING BACILLUS SPORES 2003/0228679 A1 12.2003 Smith et al." ON PLANT ROOTS 2004/OO77090 A1 4/2004 Short 2010/0205690 A1 8/2010 Blä sing et al. (71) Applicant: Spogen Biotech Inc., Columbia, MO 2010/0233.124 Al 9, 2010 Stewart et al. (US) 38E.85. A 38E SEE",teWart et aal. (72) Inventors: Brian Thompson, Columbia, MO (US); 5,3542011/0321197 AllA. '55.12/2011 SE",Schön et al.i. Katie Thompson, Columbia, MO (US) 2012fO259101 A1 10, 2012 Tan et al. 2012fO266327 A1 10, 2012 Sanz Molinero et al. (73) Assignee: Spogen Biotech Inc., Columbia, MO 2014/0259225 A1 9, 2014 Frank et al. US (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CA 2146822 A1 10, 1995 patent is extended or adjusted under 35 EP O 792 363 B1 12/2003 U.S.C. 154(b) by 0 days. EP 1590466 B1 9, 2010 EP 2069504 B1 6, 2015 (21) Appl. No.: 14/213,525 WO O2/OO232 A2 1/2002 WO O306684.6 A1 8, 2003 1-1. WO 2005/028654 A1 3/2005 (22) Filed: Mar. 14, 2014 WO 2006/O12366 A2 2/2006 O O WO 2007/078127 A1 7/2007 (65) Prior Publication Data WO 2007/086898 A2 8, 2007 WO 2009037329 A2 3, 2009 US 2014/0274707 A1 Sep.
    [Show full text]
  • Shifts in Diversification Rates and Host Jump Frequencies Shaped the Diversity of Host Range Among Sclerotiniaceae Fungal Plant Pathogens
    Original citation: Navaud, Olivier, Barbacci, Adelin, Taylor, Andrew, Clarkson, John P. and Raffaele, Sylvain (2018) Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens. Molecular Ecology . doi:10.1111/mec.14523 Permanent WRAP URL: http://wrap.warwick.ac.uk/100464 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/ A note on versions: The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Received: 30 May 2017 | Revised: 26 January 2018 | Accepted: 29 January 2018 DOI: 10.1111/mec.14523 ORIGINAL ARTICLE Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens Olivier Navaud1 | Adelin Barbacci1 | Andrew Taylor2 | John P. Clarkson2 | Sylvain Raffaele1 1LIPM, Universite de Toulouse, INRA, CNRS, Castanet-Tolosan, France Abstract 2Warwick Crop Centre, School of Life The range of hosts that a parasite can infect in nature is a trait determined by its Sciences, University of Warwick, Coventry, own evolutionary history and that of its potential hosts. However, knowledge on UK host range diversity and evolution at the family level is often lacking.
    [Show full text]
  • 1 Shifts in Diversification Rates and Host Jump Frequencies Shaped the Diversity of Host Range Among 1 Sclerotiniaceae Fungal Pl
    bioRxiv preprint doi: https://doi.org/10.1101/229930; this version posted December 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Shifts in diversification rates and host jump frequencies shaped the diversity of host range among 2 Sclerotiniaceae fungal plant pathogens 3 Olivier Navaud1, Adelin Barbacci1, Andrew Taylor2, John P. Clarkson2, Sylvain Raffaele1* 4 5 1 LIPM, Université de Toulouse, INRA, CNRS, Castanet‐Tolosan, France 6 2 Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 7 9EF, UK 8 9 * Correspondence: [email protected] 10 11 12 13 14 1 bioRxiv preprint doi: https://doi.org/10.1101/229930; this version posted December 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 15 Abstract 16 The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary 17 history and that of its potential hosts. However, knowledge on host range diversity and evolution at 18 the family level is often lacking. Here, we investigate host range variation and diversification trends 19 within the Sclerotiniaceae, a family of Ascomycete fungi. Using a phylogenetic framework, we 20 associate diversification rates, the frequency of host jump events, and host range variation during the 21 evolution of this family.
    [Show full text]
  • Diplomová Práce
    MENDELOVA UNIVERZITA V BRN Ě ZAHRADNICKÁ FAKULTA V LEDNICI DIPLOMOVÁ PRÁCE BRNO 2015 Bc. Veronika Schlesingerová Mendelova univerzita v Brn ě Zahradnická fakulta v Lednici Význam hub rodu Monilia a jejich hostitelé Vedoucí práce: Vypracovala doc. Ing. Ivana Šafránková, Ph.D. Bc. Veronika Schlesingerová Brno 2015 PROHLÁŠENÍ Prohlašuji, že jsem práci „Význam hub rodu Monilia a jejich hostitelé“ vypracovala samostatn ě a veškeré použité prameny a informace jsou uvedeny v seznamu použité literatury. Souhlasím, aby moje práce byla zve řejn ěna v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách ve zn ění pozd ějších p ředpis ů a v souladu s platnou Sm ěrnicí o zve řej ňování vysokoškolských záv ěre čných prací. Jsem si v ědoma, že se na moji práci vztahuje zákon č. 121/2000 Sb., autorský zákon, a že Mendelova univerzita v Brn ě má právo na uzav ření licen ční smlouvy a užití této práce jako školního díla podle § 60 odst. 1 autorského zákona. Dále se zavazuji, že p řed sepsáním licen ční smlouvy o využití díla jinou osobou (subjektem) si vyžádám písemné stanovisko univerzity o tom, že p ředm ětná licen ční smlouva není v rozporu s oprávn ěnými zájmy univerzity a zavazuji se uhradit p řípadný přísp ěvek na úhradu náklad ů spojených se vznikem díla a to až do jejich skute čné výše. dne ......................................... podpis .................................... Pod ěkování: Ráda bych pod ěkovala mé vedoucí práce doc. Ing. Ivan ě Šafránkové Ph.D. za vedení diplomové práce a čas strávený p ři konzultacích. Dále bych ráda pod ěkovala manželovi a nejbližší rodin ě za morální podporu.
    [Show full text]
  • A Monilinia Fructicola És a Monilia Polystroma Megjelenése Magyarországon És a Védekezés Újabb Lehetősége
    Doktori (PhD) Értekezés A MONILINIA FRUCTICOLA ÉS A MONILIA POLYSTROMA MEGJELENÉSE MAGYARORSZÁGON ÉS A VÉDEKEZÉS ÚJABB LEHETŐSÉGE Horváthné Petróczy Marietta Budapest 2009 A Budapesti Corvinus Egyetem Élettudományi Területi Doktori Tanács 2009. október 6.-ai határozatában a nyilvános vita lefolytatására az alábbi bíráló Bizottságot jelölte ki: BÍRÁLÓ BIZOTTSÁG: Elnöke Rimóczi Imre, DSc Tagjai Dancsné Rozsnyay Zsuzsanna, CSc Zámboriné Németh Éva, DSc Barna Balázs, DSc Simon Gergely, PhD Opponensek Bakonyi József, CSc Holb Imre, PhD Titkár Simon Gergely, PhD TARTALOMJEGYZÉK Rövidítések jegyzéke 4 1. BEVEZETÉS 5 1.1. Célkitűzések 7 2. IRODALMI ÁTTEKINTÉS 8 2.1. Monilinia fajok, rendszertani besorolásuk 8 2.2. Monilinia fajok jelentősége 9 2.3. Monilinia fajok földrajzi elterjedése 11 2.4. Monilinia fajok gazdanövényköre 12 2.5. Monilinia fajok okozta tünetek 14 2.5.1. Gyümölcsrothadás 16 2.5.2. Virág- és hajtáselhalás 17 2.5.3. Rákos sebek 19 2.6. Monilinia fajok azonosítása 19 2.6.1. Monilinia fajok morfológiai és tenyészbélyegei 19 2.6.2. Monilinia fajok azonosítása molekuláris módszerrel 25 2.7. Az illóolajok hatása növénykórokozók ellen 26 2.7.1. Az illóolajok hatása Monilinia fajok ellen 28 3. ANYAG ÉS MÓDSZER 30 3.1. A vizsgálat helye és ideje 30 3.2. A vizsgálat anyaga 30 3.2.1. Izolátumok 30 3.2.2. Növények 35 3.2.3. Plazmid és baktérium törzs klónozáshoz 35 3.2.4. Primerek 36 3.2.5. Táptalajok, enzimek, kitek, illóolajok, növényvédő szer 37 3.2.6. Eszközök 38 3.3. A vizsgálat módszere 39 3.3.1. A növényi részek gyűjtése és tárolása 39 3.3.2.
    [Show full text]
  • Characterising Plant Pathogen Communities and Their Environmental Drivers at a National Scale
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Characterising plant pathogen communities and their environmental drivers at a national scale A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Andreas Makiola Lincoln University, New Zealand 2019 General abstract Plant pathogens play a critical role for global food security, conservation of natural ecosystems and future resilience and sustainability of ecosystem services in general. Thus, it is crucial to understand the large-scale processes that shape plant pathogen communities. The recent drop in DNA sequencing costs offers, for the first time, the opportunity to study multiple plant pathogens simultaneously in their naturally occurring environment effectively at large scale. In this thesis, my aims were (1) to employ next-generation sequencing (NGS) based metabarcoding for the detection and identification of plant pathogens at the ecosystem scale in New Zealand, (2) to characterise plant pathogen communities, and (3) to determine the environmental drivers of these communities. First, I investigated the suitability of NGS for the detection, identification and quantification of plant pathogens using rust fungi as a model system.
    [Show full text]
  • The Entry Conditions in This Schedule Only Apply to Species in the Plants
    Malus Note: The entry conditions in this schedule only apply to species in the Plants Biosecurity Index listed under Import Specifications for Nursery Stock as “see 155.02.06 under Malus”, and are additional to those specified in sections 1, 2 and 3 of the import health standard. 1. Type of Malus nursery stock approved for entry into New Zealand Cuttings (stem only); plants in tissue culture Malus can be imported into Level 2 post entry quarantine from MAF-accredited facilities, or into Level 3 post entry quarantine from non-accredited facilities. 2. Pests of Malus Refer to the pest list. 3. Entry conditions for: 3.1 Malus cuttings and tissue culture from offshore MAF-accredited facilities in any country An offshore accredited facility is a facility that has been accredited to the MAF Standard PIT.OS.TRA.ACPQF to undertake phytosanitary activities. For Malus, the accredited facility operator must also have an agreement with MAF on the phytosanitary measures to be undertaken for Malus. Refer to the “Inspection, Testing and Treatment Requirements for Malus”. (i) Documentation Phytosanitary certificate: a completed phytosanitary certificate issued by the NPPO of the exporting country must accompany all Malus nursery stock exported to New Zealand. Import permit: an import permit is required. (ii) Phytosanitary requirements Before a phytosanitary certificate is issued, the NPPO of the exporting country must be satisfied that the following activities required by MAF have been undertaken. The Malus cuttings / plants in tissue culture [choose ONE option] have been: - inspected in accordance with appropriate official procedures and found to be free of any visually detectable regulated pests.
    [Show full text]
  • WO 2018/035387 Al 22 February 2018 (22.02.2018) W ! P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization III International Bureau (10) International Publication Number (43) International Publication Date WO 2018/035387 Al 22 February 2018 (22.02.2018) W ! P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12N 15/10 (2006.01) C12N 15/85 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12N 15/63 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2017/047458 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, 17 August 2017 (17.08.2017) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/376,372 17 August 2016 (17.08.2016) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/437,03 1 20 December 2016 (20.12.2016) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicants: THE BROAD INSTITUTE, INC.
    [Show full text]
  • Nouvelle Méthode De Dépistage De Phytopathogènes Fongiques Et De Plantes Au Potentiel Envahissant Par Métabarcodage
    Nouvelle méthode de dépistage de phytopathogènes fongiques et de plantes au potentiel envahissant par métabarcodage Thèse Emilie Tremblay Doctorat en microbiologie Philosophiæ doctor (Ph. D.) Québec, Canada © Emilie Tremblay, 2019 NOUVELLE MÉTHODE DE DÉPISTAGE DE PHYTOPATHOGÈNES FONGIQUES ET DE PLANTES AU POTENTIEL ENVAHISSANT PAR MÉTABARCODAGE Thèse ÉMILIE D. TREMBLAY Sous la direction de : Claude Lemieux, directeur de recherche Guillaume Bilodeau, codirecteur de recherche Résumé Les dommages causés par les pathogènes des plantes sont une menace redoutable pour l’environnement, la diversité, ainsi que pour une partie considérable des ressources naturelles forestières et agronomiques telles que les arbres, les plantes et les récoltes. Les endroits situés à proximité des ports d’importation pour le commerce international et des sites de décharge de déchets verts sont considérés comme étant à risque pour l’introduction d’organismes exotiques et indésirables tels que des insectes, des phytopathogènes et des plantes envahissantes. Bien qu’il existe plusieurs méthodes développées et validées selon des standards établis visant à détecter certains genres préoccupants ou espèces ciblées, la plupart d’entre elles sont mal adaptées aux analyses à grande échelle ou sont limitées en ce qui concerne le nombre d’organismes différents pouvant être détectés simultanément. L’objectif principal de ce projet était de développer une méthode de détection nouvelle, plus rapide, à haut débit, hyper sensible et couvrant de plus grandes superficies afin de contribuer à l’amélioration des méthodes de dépistage et de lutte contre les phytopathogènes et les espèces envahissantes. Le projet a tiré avantage d’enquêtes en entomologie d’envergure nationale et préétablies par l’Agence Canadienne d’Inspection des Aliments en réutilisant les liquides de préservation provenant de pièges à insectes.
    [Show full text]
  • Shifts in Diversification Rates and Host Jump Frequencies Shaped the Diversity of Host Range Among Sclerotiniaceae Fungal Plant Pathogens
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Warwick Research Archives Portal Repository Original citation: Navaud, Olivier, Barbacci, Adelin, Taylor, Andrew, Clarkson, John P. and Raffaele, Sylvain (2018) Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens. Molecular Ecology . doi:10.1111/mec.14523 Permanent WRAP URL: http://wrap.warwick.ac.uk/100464 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/ A note on versions: The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Received: 30 May 2017 | Revised: 26 January 2018 | Accepted: 29 January 2018 DOI: 10.1111/mec.14523 ORIGINAL ARTICLE Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens Olivier Navaud1 | Adelin Barbacci1 | Andrew Taylor2 | John P. Clarkson2 | Sylvain Raffaele1 1LIPM, Universite de Toulouse, INRA, CNRS, Castanet-Tolosan, France Abstract 2Warwick Crop Centre, School of Life The range of hosts that a parasite can infect in nature is a trait determined by its Sciences, University of Warwick, Coventry, own evolutionary history and that of its potential hosts.
    [Show full text]
  • 국가 생물종 목록집 「자낭균문, 글로메로균문, 접합균문, 점균문, 난균문」 National List of Species of Korea 「Ascomycota, Glomeromycota, Zygomycota, Myxomycota, Oomycota」
    발 간 등 록 번 호 11-1480592-000941-01 국가 생물종 목록집 「자낭균문, 글로메로균문, 접합균문, 점균문, 난균문」 National List of Species of Korea 「Ascomycota, Glomeromycota, Zygomycota, Myxomycota, Oomycota」 국가 생물종 목록 National List of Species of Korea 「자낭균문, 글로메로균문, 접합균문, 점균문, 난균문」 「Ascomycota, Glomeromycota, Zygomycota, Myxomycota, Oomycota」 이윤수(강원대학교 교수) 정희영(경북대학교 교수) 이향범(전남대학교 교수) 김성환(단국대학교 교수) 신광수(대전대학교 교수) 엄 안 흠 (한국교원대학교 교수) 김창무(국립생물자원관) 이승열(경북대학교 원생) (사) 한 국 균 학 회 환경부 국립생물자원관 National Institute of Biological Resources Ministry of Environment, Korea National List of Species of Korea 「Ascomycota, Glomeromycota, Zygomycota, Myxomycota, Oomycota」 Youn Su Lee1, Hee-Young Jung2, Hyang Burm Lee3, Seong Hwan Kim4, Kwang-Soo Shin5, Ahn-Heum Eom6, Changmu Kim7, Seung-Yeol Lee2, KSM8 1Division of Bioresource Sciences, Kangwon National University, 2School of Applied Biosciences, Kyungpook National University 3Division of Food Technology, Biotechnology and Agrochemistry, Chonnam National University, 4Department of Microbiology, Dankook University 5Division of Life Science, Daejeon University 6Department of Biology Education, Korea National University of Education 7Biological Resources Utilization Department, NIBR, Korea, 8Korean Society of Mycology National Institute of Biological Resources Ministry of Environment, Korea 발 간 사 지구상의 생물다양성은 우리 삶의 기초를 이루고 있으며, 최근에는 선진국뿐만 아니라 개발도상국에서도 산업의 초석입니다. 2010년 제 10차 생물다양성협약 총회에서 생물 자원을 활용하여 발생되는 이익을 공유하기 위한 국제적 지침인 나고야 의정서가 채택 되었고, 2014년 10월 의정서가 발효되었습니다. 이에 따라 생물자원을 둘러싼 국가 간의 경쟁에 대비하여 국가 생물주권 확보 및 효율적인 관리가 매우 중요합니다. 2013년에는 국가 차원에서 생물다양성을 체계적으로 보전하고 관리하며 아울러 지속 가능한 이용을 도모하기 위한 ‘생물다양성 보전 및 이용에 관한 법률’이 시행되고 있습 니다.
    [Show full text]
  • Fungos De Import.Ncia Quarenten.Ria.Pmd
    Empresa Brasileira de Pesquisa Agropecuária Centro Nacional de Pesquisa Recursos Genéticos e Biotecnologia Ministério da Agricultura, Pecuária e Abastecimento Fungos de Expressão Quarentenária para as Fruteiras de Clima Temperado no Brasil Editores Maria de Fátima Santos Marta Aguiar Sabo Mendes Ana Angélica Alves Felix Brasília, DF 2002 Exemplares desta publicação podem ser adquiridos na: Embrapa - Recursos Genéticos e Biotecnologia Serviço de Atendimento ao Cidadão Parque Estação Biológica, Av. W5 Norte (Final) - Brasília, DF CEP 70770-900 - Caixa Postal 02372 PABX: (61) 448-4600 Fax: (61) 340-3624 http://www.cenargen.embrapa.br e.mail:[email protected] Comitê de Publicações da Unidade Presidente: José Manuel Cabral de Sousa Dias Secretária-Executiva: Miraci de Arruda Camara Pontual Membros: Antônio Costa Allem Marcos Rodrigues de Faria Marta Aguiar Sabo Mendes Sueli Correa Marques de Mello Vera Tavares Campos Carneiro Suplentes: Edson Junqueira Leite José Roberto de Alencar Moreira Supervisor Editorial: Miraci de Arruda Camara Pontual Revisor de texto: Miraci de Arruda Camara Pontual Normalização Bibliográfica: Maria Alice Bianchi Tratamento de Ilustrações: Alysson Messias da Silva Editoração Eletrônica: Alysson Messias da Silva Capa: Alysson Messia da Silva 1a edição 1a impressão (2002): tiragem 300 Todos os direitos reservados. A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei no 9.610). Santos, Maria de Fátima. Fungos de Expressão Quarentenária para as Fruteiras de Clima Temperado no Brasil / Maria de Fátima Santos...[et al.]. - Brasília: Embrapa Recursos Genéticos e Biotecnologia, 2002. 192 p. - ISBN: 85-87697-18-8 1. Fruteiras - Clima Temperado - Doença - Fungo. I. Santos, Maria de Fátima.
    [Show full text]