Autoconfiguration for IP Networking: Enabling Local Communication

Total Page:16

File Type:pdf, Size:1020Kb

Autoconfiguration for IP Networking: Enabling Local Communication On the Wire Autoconfiguration for IP Networking: Enabling Local Communication Erik Guttman Sun Microsystems, Germany It would be ideal if a host implementation of the devices via IP. In this tutorial, I examine the back- Internet protocol suite could be entirely self-con- ground, current status, and future prospects for figuring. This would allow the whole suite to be zero configuration networking. implemented in ROM or cast into silicon, it would simplify diskless workstations, and it would be an Zero Configuration Networking immense boon to harried LAN administrators as Automatic configuration parameters have different well as system vendors. We have not reached this properties from those assigned by static and ideal; in fact, we are not even close. —RFC 11221 dynamic configuration. They are ephemeral; they will likely be different each time they are obtained P hosts and network infrastructure have histor- and might even change at any time. Automatical- ically been difficult to configure—requiring net- ly configured hosts actively participate in assign- I work services and relying on highly trained net- ing and maintaining their configuration parame- work administrators—but emerging networking ters, which have only local significance. Autonomy protocols promise to enable hosts to establish IP net- from network services implies that hosts must net- works without prior configuration or network ser- work configuration. vices. Even very simple devices with few computing In direct contrast, normal IP configuration is resources will be able to communicate via standards- persistent (especially for servers), or at the very track protocols wherever they are attached. Current least, stable. The IP protocol suite aims at scala- IETF standardization efforts, such as those in the bility, especially with respect to configuration. Zeroconf working group, aim to make this form of Addresses and names often have global signifi- networking simple and inexpensive. cance, which has proven essential for enabling Hosts that are permanently connected to an Internet growth. Obtaining and managing global administered network are usually assigned static addresses and names requires a great deal of network configurations by network administrators. administrative work, however. These processes are Other hosts are attached to administered networks not at all automatic and likely never will be. (such as corporate local-area networks or dial-in Despite these differences, the essential zero con- accounts) using dynamic network configuration. figuration networking protocols really imply In these, all necessary parameters are assigned to changes to only the lower layers of IP-enabled the host by a network configuration service, which devices. (See the sidebar “IP Host Layering” for an also requires configuration. In many situations— introduction to the terminology required for dis- impromptu meetings, administered network mis- cussing automatic configuration.) configurations, or network service failures, for Existing network-based applications will work example—establishing an IP network is desirable, without modification over enhanced network ser- but administering it can be impractical or impos- vice and application layers using standard interfaces. sible. In these cases, automatic network configu- Indeed, users should not even be aware that the net- ration of parameters is valuable for hosts. The IETF work service layer has been configured automati- Zeroconf WG’s real goal is to enable direct com- cally rather than statically or dynamically. munications between two or more computing Four functions will benefit from zero configu- IEEE INTERNET COMPUTING 1089-7801/01/$10.00©2001 IEEE http://computer.org/internet/ MAY • JUNE 2001 81 Tutorial IP Host Layering features. Adopting emerging zero configuration Layering provides the foundation for numerous, stable extensible comput- protocol standards will let us retire proprietary net- ing platforms. Figure A depicts the pervasive layered architecture, often working—a move that has broad support. Even net- called the IP stack, which is used for Internet hosts.This roughly corre- work equipment vendors uniformly accept that sponds to the OSI seven-layer model.1 The figure excludes the OSI pre- proprietary network protocols have seen their day sentation and session layers. IP applications implement data presentation and should be replaced by IP standards. functions themselves. Session features such as encryption, compression, or For reasons of scalability and reducing impact persistence between protocol transactions are added in an ad hoc fashion on existing networks, the zero configuration pro- at various layers. tocols’ effect on the overall network must be lim- Each layer provides services to the layer above it through standard inter- ited. The algorithms used for zero configuration faces. If lower layers provide the same functionality using the same inter- protocols generally use multicast. In practice, these faces, services can be implemented in different ways; new mechanisms protocols are limited to either a single network link defined at the network services layer can thus support unmodified exist- (that is, routers do not forward these protocol mes- ing applications.Avoiding changes in upper layers eases the adoption of new sages) or to a set of networks (where some routers Internet technologies. Network service layer enhancements that require are configured as boundaries, over which protocol client applications (such as e-mail readers and Web browsers) to be upgrad- messages are not forwarded). ed are not broadly adopted. Each layer could be automati- Defining an Approach cally configured. In practice, the less Those working on IETF zero configuration proto- configuration required, the better, Application col standardization (currently in the Zeroconf, Ser- because simpler technology works vice Location Protocol, DNS Extensions, and IPng Transport service more predictably and eases deploy- working groups) have considered two main ment. The transport service, link Network service approaches to overcoming the differences between control, and media access layers configured and automatic operation. rarely require configuration in Link control The first strategy requires transitions between Internet hosts. By contrast, the local and global configuration and has been application and network service explored through consumer-oriented operating layers nearly always require config- Physical network system software since 1998. This strategy implies uration in order to operate at all. that hosts would support automatic configuration only for as long as they lacked global configura- References Figure A. Internet host layering. Zero tion. The two modes are exclusive, and the pres- 1. A.Tanenbaum, Computer Networks, Sec- configuration protocols will be implemented ence of a dynamic configuration service requires ond Edition, Prentice-Hall, Englewood at the application and network service a transition from automatic (local) to dynamic Cliffs, N. J., 1989. layers of the Internet protocol stack. (global) configuration. An example of this transition strategy is the network interface autoconfiguration protocol ration protocols, in the context of both IPv4 and adopted for desktop operating systems from Apple IPv6. With no modification to existing interfaces, and Microsoft. This protocol (which the IETF has zero configuration protocols will improve name- not yet standardized) enables a host to simply to-address translation (at the application level) and choose an unassigned IP address from a reserved IP interface configuration (at the network level). range. The host then attempts to obtain (global) IP Functions previously unavailable to IP hosts will configuration parameters from the network via the introduce new interfaces: service discovery at the Dynamic Host Configuration Protocol.2 The host application layer and multicast address allocation issues periodic DHCP requests, which will eventu- at the network layer. ally succeed in reaching a DHCP server if one ever These additional services will not disrupt exist- becomes available on the network. Once a DHCP ing applications. They will “raise the bar” by pro- server responds and offers IP configuration para- viding additional features long absent from the meters, these replace automatic configuration. Internet protocol suite, but (in the case of service This mechanism works fine for clients discovery) available in proprietary network proto- employing common client-server protocols col suites from Apple, Microsoft, and Novell. (See because very few make use of long-duration the sidebar “Early Autoconfiguration Efforts”, next connections. Individual network application page). These proprietary protocols continue to be operations result in distinct transactions even used only because of their ease-of-configuration when connections fail. If the client host experi- 82 MAY • JUNE 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING On the Wire Early Autoconfiguration Efforts ences network reconfiguration, applications sim- ply establish new connections. The Internet Protocol suite emerged as the data communication standard for If a server’s configuration changes, however, a network run by and for researchers.Their design goals were primarily inter- recovery is not so easy: Client applications cease operability, extensibility, and scalability. IP networks achieved growth and to function if they cannot find a server. Servers enabled global communication by using unique
Recommended publications
  • Ipv6-Ipsec And
    IPSec and SSL Virtual Private Networks ITU/APNIC/MICT IPv6 Security Workshop 23rd – 27th May 2016 Bangkok Last updated 29 June 2014 1 Acknowledgment p Content sourced from n Merike Kaeo of Double Shot Security n Contact: [email protected] Virtual Private Networks p Creates a secure tunnel over a public network p Any VPN is not automagically secure n You need to add security functionality to create secure VPNs n That means using firewalls for access control n And probably IPsec or SSL/TLS for confidentiality and data origin authentication 3 VPN Protocols p IPsec (Internet Protocol Security) n Open standard for VPN implementation n Operates on the network layer Other VPN Implementations p MPLS VPN n Used for large and small enterprises n Pseudowire, VPLS, VPRN p GRE Tunnel n Packet encapsulation protocol developed by Cisco n Not encrypted n Implemented with IPsec p L2TP IPsec n Uses L2TP protocol n Usually implemented along with IPsec n IPsec provides the secure channel, while L2TP provides the tunnel What is IPSec? Internet IPSec p IETF standard that enables encrypted communication between peers: n Consists of open standards for securing private communications n Network layer encryption ensuring data confidentiality, integrity, and authentication n Scales from small to very large networks What Does IPsec Provide ? p Confidentiality….many algorithms to choose from p Data integrity and source authentication n Data “signed” by sender and “signature” verified by the recipient n Modification of data can be detected by signature “verification”
    [Show full text]
  • 1. Ipv4 Sites Reaching Global Ipv4 Internet
    1. IPv4 Sites Reaching Global IPv4 Internet Private IPv4 Internet IPv4 NAT • Keep IPv4 service as unchanged as possible, even without enough addresses • Single global IPv4 address shared across more than one subscriber SP IPv6 Network Private Tunnel for IPv4 (public, private, port-limited, etc....) IPv4 Internet IPv4 • Scenario #2 - Service Providers Running out of Private IPv4 space • IPv4 / IPv6 encapsulations/tunnels • Tunnels setup by DHCP, Routing, etc. between a GW and Router • Wherever the NAT lands, it is important that the user keeps control of it • Provides a path to delivering IPv6 SP IPv6 Network Tunnel for IPv4 (public, private, port-limited, etc....) IPv4 Internet • Scenario #3a “Wireless Greenfield” • IPv4 / IPv6 encapsulations/tunnels • Tunnels setup between a host and a Router • IPv4 binding for host applications, transport over IPv6 • Wherever the NAT lands, it is important that the user keeps control of it 3 - 5 Translation Options IPv6 Internet IPv4 Internet IPv6 IPv4 My IPv6 Network IPv6 Internet IPv4 Internet • “Scenario #3” • NAT64/DNS64.... - Stateful, DNSSEC Challenges, DNS64 location, etc. My IPv6 Network IPv6 Internet IPv4 Internet • “Scenario #5” • IVI - NAT-PT..... Expose only certain IPv6 servers, etc. MY IPv4 Network IPv6 Internet IPv4 Internet • “Scenario #4” • NAT64 - 1:1, Stateless, DNSSEC OK, no DNS64 MY IPv4 Network IPv6 Internet IPv4 Internet • Already solved by existing transition mechanisms?? (teredo, etc). Scenarios 1 - 5 1. IPv4 Sites Reaching Global IPv4 Internet Private IPv4 Internet IPv4 NAT • Keep IPv4 service as unchanged as possible, even without enough addresses • Single global IPv4 address shared across more than one subscriber 2. Service Providers Running out of Private IPv4 space ISP Private IPv4 Private Network IPv4 IPv4 Internet • Service Providers with large, privately addressed, IPv4 networks • Organic growth plus pressure to free global addresses for customer use contribute to the problem • The SP Private networks in question generally do not need to reach the Internet at large 3.
    [Show full text]
  • Internet Protocol Suite
    InternetInternet ProtocolProtocol SuiteSuite Srinidhi Varadarajan InternetInternet ProtocolProtocol Suite:Suite: TransportTransport • TCP: Transmission Control Protocol • Byte stream transfer • Reliable, connection-oriented service • Point-to-point (one-to-one) service only • UDP: User Datagram Protocol • Unreliable (“best effort”) datagram service • Point-to-point, multicast (one-to-many), and • broadcast (one-to-all) InternetInternet ProtocolProtocol Suite:Suite: NetworkNetwork z IP: Internet Protocol – Unreliable service – Performs routing – Supported by routing protocols, • e.g. RIP, IS-IS, • OSPF, IGP, and BGP z ICMP: Internet Control Message Protocol – Used by IP (primarily) to exchange error and control messages with other nodes z IGMP: Internet Group Management Protocol – Used for controlling multicast (one-to-many transmission) for UDP datagrams InternetInternet ProtocolProtocol Suite:Suite: DataData LinkLink z ARP: Address Resolution Protocol – Translates from an IP (network) address to a network interface (hardware) address, e.g. IP address-to-Ethernet address or IP address-to- FDDI address z RARP: Reverse Address Resolution Protocol – Translates from a network interface (hardware) address to an IP (network) address AddressAddress ResolutionResolution ProtocolProtocol (ARP)(ARP) ARP Query What is the Ethernet Address of 130.245.20.2 Ethernet ARP Response IP Source 0A:03:23:65:09:FB IP Destination IP: 130.245.20.1 IP: 130.245.20.2 Ethernet: 0A:03:21:60:09:FA Ethernet: 0A:03:23:65:09:FB z Maps IP addresses to Ethernet Addresses
    [Show full text]
  • The Internet Protocol, Version 4 (Ipv4)
    Today’s Lecture I. IPv4 Overview The Internet Protocol, II. IP Fragmentation and Reassembly Version 4 (IPv4) III. IP and Routing IV. IPv4 Options Internet Protocols CSC / ECE 573 Fall, 2005 N.C. State University copyright 2005 Douglas S. Reeves 1 copyright 2005 Douglas S. Reeves 2 Internet Protocol v4 (RFC791) Functions • A universal intermediate layer • Routing IPv4 Overview • Fragmentation and reassembly copyright 2005 Douglas S. Reeves 3 copyright 2005 Douglas S. Reeves 4 “IP over Everything, Everything Over IP” IP = Basic Delivery Service • Everything over IP • IP over everything • Connectionless delivery simplifies router design – TCP, UDP – Dialup and operation – Appletalk – ISDN – Netbios • Unreliable, best-effort delivery. Packets may be… – SCSI – X.25 – ATM – Ethernet – lost (discarded) – X.25 – Wi-Fi – duplicated – SNA – FDDI – reordered – Sonet – ATM – Fibre Channel – Sonet – and/or corrupted – Frame Relay… – … – Remote Direct Memory Access – Ethernet • Even IP over IP! copyright 2005 Douglas S. Reeves 5 copyright 2005 Douglas S. Reeves 6 1 IPv4 Datagram Format IPv4 Header Contents 0 4 8 16 31 •Version (4 bits) header type of service • Functions version total length (in bytes) length (x4) prec | D T R C 0 •Header Length x4 (4) flags identification fragment offset (x8) 1. universal 0 DF MF s •Type of Service (8) e time-to-live (next) protocol t intermediate layer header checksum y b (hop count) identifier •Total Length (16) 0 2 2. routing source IP address •Identification (16) 3. fragmentation and destination IP address reassembly •Flags (3) s •Fragment Offset ×8 (13) e t 4. Options y IP options (if any) b •Time-to-Live (8) 0 4 ≤ •Protocol Identifier (8) s e t •Header Checksum (16) y b payload 5 •Source IP Address (32) 1 5 5 6 •Destination IP Address (32) ≤ •IP Options (≤ 320) copyright 2005 Douglas S.
    [Show full text]
  • SOCKS Protocol Version 6
    SOCKS Protocol Version 6 draft-olteanu-intarea-socks-6-08 Vladimir Olteanu IETF 106 What’s new ● DNS provided by SOCKS ● Options for Happy Eyeballs at the proxy Clients need DNS-like features ● A and AAAA – LD_PRELOAD for non-SOCKS-aware apps: gedaddrinfo() separate from connect() – Happy Eyeballs: need to do queries separately ● TXT – ESNI ● MX, Service Binding, etc. – <Insert future use case here> Providing DNS-like features ● Individual SOCKS options (removed in -08) – Have to keep up with use cases – Duplicate DNS functionality – Until -07: A, AAAA, PTR ● Having the client use DNS – Hard to convey policies: resolver IPs, plaintext / over TLS / over HTTPS etc., maybe credentials, etc. – Provide a DNS proxy Why not separate DNS from SOCKS? Client Proxy Server HTTP/SOCKS :1080 HTTP :80 DNS :53 Why not separate DNS from SOCKS? Client Proxy Server HTTP/SOCKS :1080 HTTP :80 DNS :53 WHICH TOR CIRCUIT? ● Need context for DNS query – Otherwise: privacy leaks, suboptimal CDN use DNS provided by SOCKS ● Clients make CONNECT request to 0.0.0.0:53 – Proxy needn’t provide a valid bind address ● Plaintext DNS over SOCKS (opt. over TLS) – TCP by default: SOCKS + UDP more cumbersome to use ● Implementation in Sixtysocks – Run separate DNS proxy locally – Translate 0.0.0.0:53 to 127.0.0.1:53 Happy Eyeballs ● RFC 8305: resolve and connect to a server using both IPv4 and IPv6, keep only one connection – Failover from IPv6 to IPv4 – Better responsiveness if one is faster ● Clients can implement Happy Eyeballs locally – Have DNS + CONNECT Happy Eyeballs:
    [Show full text]
  • 61A Lecture 35 Distributed Computing Internet Protocol Transmission
    Announcements • Homework 9 (6 pts) due Wednesday 11/26 @ 11:59pm ! Homework Party Monday 6pm-8pm in 2050 VLSB • Guest in live lecture, TA Soumya Basu, on Monday 11/24 • Optional Scheme recursive art contest due Monday 12/1 @ 11:59pm 61A Lecture 35 • No lecture on Wednesday 11/26 (turkey) • No lab on Tuesday 11/25 & Wednesday 11/26 • The week of 12/1: Homework 10 due Wednesday 12/3 & Quiz 3 due Thursday 12/4 on SQL Monday, November 24 ! The lab on SQL (12/2 & 12/3) will be an excellent place to get homework help 2 Distributed Computing A distributed computing application consists of multiple programs running on multiple computers that together coordinate to perform some task. • Computation is performed in parallel by many computers. • Information can be restricted to certain computers. • Redundancy and geographic diversity improve reliability. Distributed Computing Characteristics of distributed computing: • Computers are independent — they do not share memory. • Coordination is enabled by messages passed across a network. • Individual programs have differentiating roles. Distributed computing for large-scale data processing: • Databases respond to queries over a network. • Data sets can be partitioned across multiple machines (next lecture). 4 Network Messages Computers communicate via messages: sequences of bytes transmitted over a network. Messages can serve many purposes: • Send data to another computer • Request data from another computer • Instruct a program to call a function on some arguments. Internet Protocol • Transfer a program to be executed by another computer. Messages conform to a message protocol adopted by both the sender (to encode the message) & receiver (to interpret the message).
    [Show full text]
  • Domain Name System 1 Domain Name System
    Domain Name System 1 Domain Name System The Domain Name System (DNS) is a hierarchical distributed naming system for computers, services, or any resource connected to the Internet or a private network. It associates various information with domain names assigned to each of the participating entities. A Domain Name Service translates queries for domain names (which are easier to understand and utilize when accessing the internet) into IP addresses for the purpose of locating computer services and devices worldwide. An often-used analogy to explain the Domain Name System is that it serves as the phone book for the Internet by translating human-friendly computer hostnames into IP addresses. For example, the domain name www.example.com translates to the addresses 192.0.43.10 (IPv4) and 2620:0:2d0:200::10 (IPv6). The Domain Name System makes it possible to assign domain names to groups of Internet resources and users in a meaningful way, independent of each entity's physical location. Because of this, World Wide Web (WWW) hyperlinks and Internet contact information can remain consistent and constant even if the current Internet routing arrangements change or the participant uses a mobile device. Internet domain names are easier to remember than IP addresses such as 208.77.188.166 (IPv4) or 2001:db8:1f70::999:de8:7648:6e8 (IPv6). Users take advantage of this when they recite meaningful Uniform Resource Locators (URLs) and e-mail addresses without having to know how the computer actually locates them. The Domain Name System distributes the responsibility of assigning domain names and mapping those names to IP addresses by designating authoritative name servers for each domain.
    [Show full text]
  • Nist Sp 800-77 Rev. 1 Guide to Ipsec Vpns
    NIST Special Publication 800-77 Revision 1 Guide to IPsec VPNs Elaine Barker Quynh Dang Sheila Frankel Karen Scarfone Paul Wouters This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-77r1 C O M P U T E R S E C U R I T Y NIST Special Publication 800-77 Revision 1 Guide to IPsec VPNs Elaine Barker Quynh Dang Sheila Frankel* Computer Security Division Information Technology Laboratory Karen Scarfone Scarfone Cybersecurity Clifton, VA Paul Wouters Red Hat Toronto, ON, Canada *Former employee; all work for this publication was done while at NIST This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-77r1 June 2020 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including minimum requirements for federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority.
    [Show full text]
  • Guidelines for the Secure Deployment of Ipv6
    Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks NIST Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Dr. Patrick D. Gallagher, Director GUIDELINES FOR THE SECURE DEPLOYMENT OF IPV6 Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-119 Natl. Inst. Stand. Technol. Spec. Publ. 800-119, 188 pages (Dec. 2010) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately.
    [Show full text]
  • Towards Securing the Internet of Things with QUIC
    Towards securing the Internet of Things with QUIC Lars Eggert Technical Director, Networking 2020-2-23 QUIC: a fast, secure, evolvable transport protocol for the Internet § Fast better user experience than TCP/TLS for HTTP and other content § Secure always-encrypted end-to-end security, resist pervasive monitoring § Evolvable prevent network from ossifying, can deploy new versions easily § Transport support TCP semantics & more (realtime media, etc.) provide better abstractions, avoid known TCP issues UDP CC TLS HTTP 2 © 2020 NetApp, Inc. All rights reserved. What motivated QUIC? 3 © 2020 NetApp, Inc. All rights reserved. The Internet hourglass Classical version email WWW phone... § Inspired by OSI “seven-layer” model Layer 7 § Minus presentation (6) and session (5) SMTP HTTP RTP... § “IP on everything” TCP UDP… Layer 4 § All link tech looks the same (approx.) § Transport layer provides IP Layer 3 communication abstractions to apps § Unicast/multicast ethernet PPP… § Multiplexing Layer 2 § Streams/messages CSMA async sonet... § Reliability (full/partial) Boardwatch Magazine, Aug. 1994. § Flow/congestion control copper fiber radio... Layer 1 § … Steve Deering. Watching the Waist of the Protocol Hourglass. Keynote, IEEE ICNP 1998, Austin, TX, USA. http://www.ieee- 4 © 2020 NetApp, Inc. All rights reserved. icnp.org/1998/Keynote.ppt The Internet hourglass 2015 version (ca.)In the meantime... § The waist has split: IPv4 and IPv6 • The interface at the endpoint is Applications Layer 7 largely§ TCP theis samedrowning as itout has UDP been: § HTTP and TLS are de facto part of HTTP • "Thetransport network is a file descriptor" TLS Layer 4 • The§ waistConsequence: of the hourglass web apps has on creptIPv4/6 TCP up to HTTP: even less flexible.
    [Show full text]
  • Internet Address Space: Economic Considerations in the Management of Ipv4”, OECD Digital Economy Papers, No
    Please cite this paper as: OECD (2008-06-18), “Internet Address Space: Economic Considerations in the Management of IPv4”, OECD Digital Economy Papers, No. 145, OECD Publishing, Paris. http://dx.doi.org/10.1787/230461618475 OECD Digital Economy Papers No. 145 Internet Address Space ECONOMIC CONSIDERATIONS IN THE MANAGEMENT OF IPV4 OECD DSTI/ICCP(2007)20/FINAL FOREWORD The report provides an analysis of economic considerations associated with the transition from IPv4 to IPv6. It provides background analysis supporting the forthcoming ICCP-organised Ministerial-level meeting on ―The Future of the Internet Economy‖, to take place in Seoul, Korea on 17-18 June 2008. This report was prepared by Ms. Karine Perset of the OECD‘s Directorate for Science Technology and Industry. It was declassified by the ICCP Committee at its 54th Session on 5-7 March 2008. It is published under the responsibility of the Secretary-General of the OECD. This paper has greatly benefited from the expert input of Geoff Huston from APNIC, David Conrad from the IANA, Patrick Grossetête from CISCO Systems, Bill Woodcock from Packet Clearing House, Marcelo Bagnulo Braun from the University of Madrid, Alain Durand from Comcast, and Vincent Bataille from Mulot Déclic, although interpretations, unless otherwise stated, are those of the author. 2 DSTI/ICCP(2007)20/FINAL TABLE OF CONTENTS FOREWORD ................................................................................................................................................... 2 MAIN POINTS ..............................................................................................................................................
    [Show full text]
  • Guidelines on Firewalls and Firewall Policy
    Special Publication 800-41 Revision 1 Guidelines on Firewalls and Firewall Policy Recommendations of the National Institute of Standards and Technology Karen Scarfone Paul Hoffman NIST Special Publication 800-41 Guidelines on Firewalls and Firewall Revision 1 Policy Recommendations of the National Institute of Standards and Technology Karen Scarfone Paul Hoffman C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 September 2009 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Deputy Director GUIDELINES ON FIREWALLS AND FIREWALL POLICY Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-41 Revision 1 Natl. Inst. Stand. Technol. Spec. Publ. 800-41 rev1, 48 pages (Sep. 2009) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately.
    [Show full text]