The Internet Protocol Suite

Total Page:16

File Type:pdf, Size:1020Kb

The Internet Protocol Suite What is the Internet? Commercial worth of Internet G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk The 1969 Start of Internet project Time to get a market of 50 Million People: Internet 1983 ! 214 hosts (50 in Arpanet ; 164 in MilNet) 1990! 200,000 hosts (start of “Internet”) Radio took 38 years Protocol 1995! 7 M hosts (30 M users) 1997 22.5 M hosts (50 M users) TV took 13 years Suite 2004 250 M hosts (798 M users ; 1/6 world population) 2008 ??? The Internet took 4 years The Network Layer (IP) – Once opened to the general public One current estimate: The Interface Layers (e.g. Ethernet) ! 2,300 M Telephones ! 1,340 M Mobile phones Routing between networks ! 600 M PCs Statistics from the IITF Report released on April 15, 1998 Transport (TCP, UDP, and applications) The Emerging Digital Economy http://www.ecommerce.gov/emerging.htm Internet Protocol Stack IP Protocol Stack The Power of IP G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk Layering of Protocols Applications End-to-End Principle Middleware IP under everything email ftp web ! decouple transmission from application Transport chat ! networks (IS) do not care what they carry irc VoIP ! hosts (ES) do not care how it gets there TVoIP IP-hosts can control how they use the network Internet Protocol IP Profound impact on regulation client server Middleware FTP FTP TransportLinks Ethernet IP on everything Fibre 3G Physical IP Ethernet Enet Enet Ethernet Layer driver driver Some Internet Players People expect Internet connectivity Video/Multimedia is Important! G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk 40000 Applications Middleware 30000 Transport 20000 Internet “above the wire Protocol 10000 and below the application” “By the year 2016, no one under the age of forty will remember a world without personal computer. The Ambient Video (webcams) 0 TransportLinks average twenty year old will find it hard to imagine a Internet Video to TV 2008 2009 2010 2011 2012 2013 time when there wasn't any email to check or Web Internet Video to PC Physical Internet Voice sites to visit.” Internet Gaming Layer – George Christian, 2006. File Sharing Web/Email IP Appliances IP Packets G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk Messages (large blocks of data) Internet are split into smaller pieces, called “Packets” Protocol Each packet (PDU) has: A header (known as the PCI) The Connection-Less Network Service ! Well-defined format ! Destination address , source address, type, ... The 20 byte IP Packet Header A payload (known as the SDU) IP Network Layer Addresses ! A piece of the data to be communicated Name Resolution (name to IP Address) Internet Addresses IP Header Internet Architecture G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk 0 15 16 31 Arranged in four levels: 129.23.5.9 Addresses of End Systems ! Core Routers (No user networks connected) 4 IHL ToS/DSCP 16-bit total length ! Distribution Routers (Regional networks) 16-bit identification flags 13-bit fragment offset ! Access Routers (Internet Service Providers) 139.133.204.18 ! Home / Corporate networks TTL protocol 16-bit header checksum 32-bit source IP address 32-bit destination IP address options (if any) 20 bytes data 139.133.1.2 139.133.1.3 139.133.10.7 RFC 791 Internet Addresses OrganisationOrganisation of names of Names and and addresses Addresses G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst I need to send to: abdn.ac.uk There are two ways of identifying a computer, using: Name Resolution ! A name 139.133.204.18 ! A network address Name and Addresses Mail to: [email protected] Flat v. Hierarchical Structures Names and addresses may be organised using: The DNS ! A flat structure ! A hierarchical structure 139.133.1.2 139.133.1.3 139.133.10.7 Flat Structure The Telephone Numbering System The Domain name Service Tree Flat Structure ITU Telephone Numbering System G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst G Fairhurst root National Insurance Number us uk edu org com NZ 341865 B Country Albania UK Uganda USA Zim 355 44 256 1 263 Lon Man Area Abdn co ac ieee Batch of numbers 171 1224 1212 allocated to Serialan office number Exchange 27 49 Number indicates issuing bbc abdn ed office and nothing about individual Subscriber Line 2201 2497 www erg cs ITU E.164 geographic domains generic domains Flat v Hierarchical Structure Internet Email Evolution of the DNS Flat v Hierarchical Structure G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst Hierarchical! ! ! ! ! ! Flat I need to send to: A single file abdn.ac.uk ! /etc/hosts (in unix) 139.133.204.18 Easy to remember! ! ! ! Difficult to remember ! entered by person setting-up computer Abbreviated name possible! No unique abbreviations Mail to: A central file (at internic.arpa) Easy to find location of name! Only uniquely identifies [email protected] ! downloaded to /etc/hosts (using ftp) Difficult to change location!! Easy to change location Locally administer names! ! Names allocated centrally A distributed database ! clients send a request (query) e.g. telephone no. e.g. 139.133.1.2 139.133.1.3 139.133.10.7 Postcode social security no. ! a dns sends a response (resolution) IP name (DNS) IP address Most systems still also have a “/etc/hosts” and some also use a LAN name server DNS Stack Internet Email: dns query Internet Email: dns response G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk DNS Stub DNS dns stub resolver dns stub resolver Resolver Server 139.133.204.18 139.133.204.18 Mail to: I need to send to: [email protected] abdn.ac.uk I need to send to: abdn.ac.uk local dns server local dns server 139.133.1.2 139.133.1.2 client needs to resolve a “name” to an “address” “abdn.ac.uk” “abdn.ac.uk” to communicate to destination is 139.133.204.18 is 139.133.204.18 Sending the Email Recursive Lookup DNSDNS Client Client Cache Cache G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk Recursion asks server to do what is needed to resolve dns stub resolver dns stub resolver DNS Client Request Mail to:139.133.204.18 139.133.204.18 (recursion-bit set) 139.133.204.18 In Local Cache? No Yes Mail to: I need to send to: [email protected] abdn.ac.uk Cache entry Yes out of date? Fetch value from DNS server No local dns server Use cached local dns server (referrals without recursion-bit set) value Store in Cache 139.133.1.2 “uk” is W “uk.ac” “abdn. “abdn.ac.uk” is X ac.uk” is 139.133.204.18 is Y DNS Cache DNS Records DNS Resolution G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk DNS Records have various types: Browser/Application sends name to resolver (DNS client) dns cache MX records used for Mail Exchange “abdn.ac.uk” Resolver checks own cache (local files, etc) is 139.133.204.18 mail.abdn.ac.uk 3600 IN MX 500 backup.abdn.ac.uk mail.abdn.ac.uk 3600 IN MX 5 mailserver.abdn.ac.uk If not resolved, contacts DNS Server dns stub resolver mail.abdn.ac.uk 3600 IN MX 10 mailserver1.abdn.ac.uk (resolver knows this IP address) 139.133.204.18 Email uses the lowest numbered reachable mail server If not resolved, contacts root DNS server (.) May redirect to other server(s) Other formats also use the DNS: I need to send to: http://www.abdn.ac.uk Resolver given 1 or more addresses abdn.ac.uk ftp://ftp.abdn.ac.uk (resolver caches the answer for some time) sip://[email protected] local dns server Browser/Application given lowest numbered server dns cache “abdn.ac.uk” is 139.133.204.18 NamingNaming & Addressing: & Addressing Summary - Summary IP LANs G Fairhurst G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk A name is a symbol - designed for human reading An address is a data structure understood by a network Organisation may be hierarchical or flat Interface Layers (L1 & L2) A name server provides a service to change between network addresses and network names To know who's who on the Internet a computer must Encapsulation for Ethernet Addresses allocated to network as an address block know the address of a name server ! e.g. Aberdeen University allocated 139.133.x.x Address Resolution Protocol (arp) Each System (ES or IS): ! One (or more) unique IP address per NIC ! All addresses start with the same address prefix ! e.g. 139.133.1.5, 139.133.208.1 IP Interfaces Dynamic Host Configuration Protocol IP Address Allocation G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk G Fairhurst, http://www.erg.abdn.ac.uk Network Layer Sometimes a host doesn"t know its IP address Operating Quite common for dial-up, ADSL, etc ...
Recommended publications
  • The Internet in Iot—OSI, TCP/IP, Ipv4, Ipv6 and Internet Routing
    Chapter 2 The Internet in IoT—OSI, TCP/IP, IPv4, IPv6 and Internet Routing Reliable and efficient communication is considered one of the most complex tasks in large-scale networks. Nearly all data networks in use today are based on the Open Systems Interconnection (OSI) standard. The OSI model was introduced by the International Organization for Standardization (ISO), in 1984, to address this composite problem. ISO is a global federation of national standards organizations representing over 100 countries. The model is intended to describe and standardize the main communication functions of any telecommunication or computing system without regard to their underlying internal structure and technology. Its goal is the interoperability of diverse communication systems with standard protocols. The OSI is a conceptual model of how various components communicate in data-based networks. It uses “divide and conquer” concept to virtually break down network communication responsibilities into smaller functions, called layers, so they are easier to learn and develop. With well-defined standard interfaces between layers, OSI model supports modular engineering and multivendor interoperability. 2.1 The Open Systems Interconnection Model The OSI model consists of seven layers as shown in Fig. 2.1: physical (Layer 1), data link (Layer 2), network (Layer 3), transport (Layer 4), session (Layer 5), presentation (Layer 6), and application (Layer 7). Each layer provides some well-defined services to the adjacent layer further up or down the stack, although the distinction can become a bit less defined in Layers 6 and 7 with some services overlapping the two layers. • OSI Layer 7—Application Layer: Starting from the top, the application layer is an abstraction layer that specifies the shared protocols and interface methods used by hosts in a communications network.
    [Show full text]
  • User Datagram Protocol - Wikipedia, the Free Encyclopedia Página 1 De 6
    User Datagram Protocol - Wikipedia, the free encyclopedia Página 1 de 6 User Datagram Protocol From Wikipedia, the free encyclopedia The five-layer TCP/IP model User Datagram Protocol (UDP) is one of the core 5. Application layer protocols of the Internet protocol suite. Using UDP, programs on networked computers can send short DHCP · DNS · FTP · Gopher · HTTP · messages sometimes known as datagrams (using IMAP4 · IRC · NNTP · XMPP · POP3 · Datagram Sockets) to one another. UDP is sometimes SIP · SMTP · SNMP · SSH · TELNET · called the Universal Datagram Protocol. RPC · RTCP · RTSP · TLS · SDP · UDP does not guarantee reliability or ordering in the SOAP · GTP · STUN · NTP · (more) way that TCP does. Datagrams may arrive out of order, 4. Transport layer appear duplicated, or go missing without notice. TCP · UDP · DCCP · SCTP · RTP · Avoiding the overhead of checking whether every RSVP · IGMP · (more) packet actually arrived makes UDP faster and more 3. Network/Internet layer efficient, at least for applications that do not need IP (IPv4 · IPv6) · OSPF · IS-IS · BGP · guaranteed delivery. Time-sensitive applications often IPsec · ARP · RARP · RIP · ICMP · use UDP because dropped packets are preferable to ICMPv6 · (more) delayed packets. UDP's stateless nature is also useful 2. Data link layer for servers that answer small queries from huge 802.11 · 802.16 · Wi-Fi · WiMAX · numbers of clients. Unlike TCP, UDP supports packet ATM · DTM · Token ring · Ethernet · broadcast (sending to all on local network) and FDDI · Frame Relay · GPRS · EVDO · multicasting (send to all subscribers). HSPA · HDLC · PPP · PPTP · L2TP · ISDN · (more) Common network applications that use UDP include 1.
    [Show full text]
  • Hotspot Feature for Wi-Fi Clients with RADIUS User Authentication on Digi Transport
    Application Note 56 Hotspot feature for Wi-Fi clients with RADIUS User Authentication on Digi TransPort. Digi Support November 2015 1 Contents 1 Introduction ......................................................................................................................................... 4 1.1 Outline ......................................................................................................................................... 4 1.2 Assumptions ................................................................................................................................ 4 1.3 Corrections .................................................................................................................................. 4 2 Version .................................................................................................................................................5 3 Configuration .......................................................................................................................................5 3.1 Mobile Interface Configuration .....................................................................................................5 3.2 Ethernet Interface Configuration ................................................................................................. 6 3.2.1 ETH 0 Configuration ................................................................................................................. 6 3.2.2 ETH 12 Logical Interface Configuration ....................................................................................
    [Show full text]
  • Ipv6-Ipsec And
    IPSec and SSL Virtual Private Networks ITU/APNIC/MICT IPv6 Security Workshop 23rd – 27th May 2016 Bangkok Last updated 29 June 2014 1 Acknowledgment p Content sourced from n Merike Kaeo of Double Shot Security n Contact: [email protected] Virtual Private Networks p Creates a secure tunnel over a public network p Any VPN is not automagically secure n You need to add security functionality to create secure VPNs n That means using firewalls for access control n And probably IPsec or SSL/TLS for confidentiality and data origin authentication 3 VPN Protocols p IPsec (Internet Protocol Security) n Open standard for VPN implementation n Operates on the network layer Other VPN Implementations p MPLS VPN n Used for large and small enterprises n Pseudowire, VPLS, VPRN p GRE Tunnel n Packet encapsulation protocol developed by Cisco n Not encrypted n Implemented with IPsec p L2TP IPsec n Uses L2TP protocol n Usually implemented along with IPsec n IPsec provides the secure channel, while L2TP provides the tunnel What is IPSec? Internet IPSec p IETF standard that enables encrypted communication between peers: n Consists of open standards for securing private communications n Network layer encryption ensuring data confidentiality, integrity, and authentication n Scales from small to very large networks What Does IPsec Provide ? p Confidentiality….many algorithms to choose from p Data integrity and source authentication n Data “signed” by sender and “signature” verified by the recipient n Modification of data can be detected by signature “verification”
    [Show full text]
  • 1. Ipv4 Sites Reaching Global Ipv4 Internet
    1. IPv4 Sites Reaching Global IPv4 Internet Private IPv4 Internet IPv4 NAT • Keep IPv4 service as unchanged as possible, even without enough addresses • Single global IPv4 address shared across more than one subscriber SP IPv6 Network Private Tunnel for IPv4 (public, private, port-limited, etc....) IPv4 Internet IPv4 • Scenario #2 - Service Providers Running out of Private IPv4 space • IPv4 / IPv6 encapsulations/tunnels • Tunnels setup by DHCP, Routing, etc. between a GW and Router • Wherever the NAT lands, it is important that the user keeps control of it • Provides a path to delivering IPv6 SP IPv6 Network Tunnel for IPv4 (public, private, port-limited, etc....) IPv4 Internet • Scenario #3a “Wireless Greenfield” • IPv4 / IPv6 encapsulations/tunnels • Tunnels setup between a host and a Router • IPv4 binding for host applications, transport over IPv6 • Wherever the NAT lands, it is important that the user keeps control of it 3 - 5 Translation Options IPv6 Internet IPv4 Internet IPv6 IPv4 My IPv6 Network IPv6 Internet IPv4 Internet • “Scenario #3” • NAT64/DNS64.... - Stateful, DNSSEC Challenges, DNS64 location, etc. My IPv6 Network IPv6 Internet IPv4 Internet • “Scenario #5” • IVI - NAT-PT..... Expose only certain IPv6 servers, etc. MY IPv4 Network IPv6 Internet IPv4 Internet • “Scenario #4” • NAT64 - 1:1, Stateless, DNSSEC OK, no DNS64 MY IPv4 Network IPv6 Internet IPv4 Internet • Already solved by existing transition mechanisms?? (teredo, etc). Scenarios 1 - 5 1. IPv4 Sites Reaching Global IPv4 Internet Private IPv4 Internet IPv4 NAT • Keep IPv4 service as unchanged as possible, even without enough addresses • Single global IPv4 address shared across more than one subscriber 2. Service Providers Running out of Private IPv4 space ISP Private IPv4 Private Network IPv4 IPv4 Internet • Service Providers with large, privately addressed, IPv4 networks • Organic growth plus pressure to free global addresses for customer use contribute to the problem • The SP Private networks in question generally do not need to reach the Internet at large 3.
    [Show full text]
  • Multiple Internet Connections by Balancing Traffic and Managing Failover with Zeroshell
    Multiple Internet Connections by Balancing Traffic and Managing Failover With Zeroshell The purpose of this document is to describe the creation of a router to access a network that uses multiple Internet connections in order to balance the outgoing LAN demand and to obtain network access redundancy, managing fault situations for one or multiple lines. To reach our objective, we shall use the Net Balancer module by Zeroshell. Lastly, we shall examine the possibility of aggregation (Bonding) of VPN aimed at increasing the bandwidth for point-to-point connection between remote locations via the Internet. Is it really possible to increase the Internet connection bandwidth? The answer to this question is not, "yes, absolutely." It depends on what you mean by increasing the Internet connection bandwidth. In essence, the Net Balancer distributes requests originating from the LAN by round-robin (weighed) policy over multiple Internet gateways. In other words, if at a given point in time there is only one LAN user making only one TCP connection (e.g. he executes only one download from the web), his traffic will flow from a single gateway, thus it would not benefit from balanced connections. Instead, if the LAN is crowded with users, each executing multiple requests at the same time, as a whole, their connections will have access to a higher bandwidth, equal to the sum of the single-access bandwidths. We then conclude that a single connection may never have more bandwidth than what offered by a single link, while multiple simultaneous connections will, on average, altogether have access to a greater bandwidth, which will stretch to the sum of the bandwidths of all the Internet links being balanced.
    [Show full text]
  • Is QUIC a Better Choice Than TCP in the 5G Core Network Service Based Architecture?
    DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN Master in Communication Systems Date: November 22, 2020 Supervisor at KTH: Marco Chiesa Supervisor at Ericsson: Zaheduzzaman Sarker Examiner: Peter Sjödin School of Electrical Engineering and Computer Science Host company: Ericsson AB Swedish title: Är QUIC ett bättre val än TCP i 5G Core Network Service Based Architecture? iii Abstract The development of the 5G Cellular Network required a new 5G Core Network and has put higher requirements on its protocol stack. For decades, TCP has been the transport protocol of choice on the Internet. In recent years, major Internet players such as Google, Facebook and CloudFlare have opted to use the new QUIC transport protocol. The design assumptions of the Internet (best-effort delivery) differs from those of the Core Network. The aim of this study is to investigate whether QUIC’s benefits on the Internet will translate to the 5G Core Network Service Based Architecture. A testbed was set up to emulate traffic patterns between Network Functions. The results show that QUIC reduces average request latency to half of that of TCP, for a majority of cases, and doubles the throughput even under optimal network conditions with no packet loss and low (20 ms) RTT. Additionally, by measuring request start and end times “on the wire”, without taking into account QUIC’s shorter connection establishment, we believe the results indicate QUIC’s suitability also under the long-lived (standing) connection model.
    [Show full text]
  • Lecture: TCP/IP 2
    TCP/IP- Lecture 2 [email protected] How TCP/IP Works • The four-layer model is a common model for describing TCP/IP networking, but it isn’t the only model. • The ARPAnet model, for instance, as described in RFC 871, describes three layers: the Network Interface layer, the Host-to- Host layer, and the Process-Level/Applications layer. • Other descriptions of TCP/IP call for a five-layer model, with Physical and Data Link layers in place of the Network Access layer (to match OSI). Still other models might exclude either the Network Access or the Application layer, which are less uniform and harder to define than the intermediate layers. • The names of the layers also vary. The ARPAnet layer names still appear in some discussions of TCP/IP, and the Internet layer is sometimes called the Internetwork layer or the Network layer. [email protected] 2 [email protected] 3 TCP/IP Model • Network Access layer: Provides an interface with the physical network. Formats the data for the transmission medium and addresses data for the subnet based on physical hardware addresses. Provides error control for data delivered on the physical network. • Internet layer: Provides logical, hardware-independent addressing so that data can pass among subnets with different physical architectures. Provides routing to reduce traffic and support delivery across the internetwork. (The term internetwork refers to an interconnected, greater network of local area networks (LANs), such as what you find in a large company or on the Internet.) Relates physical addresses (used at the Network Access layer) to logical addresses.
    [Show full text]
  • Connecting to the Internet Date
    Connecting to the Internet Dial-up Connection: Computers that are serving only as clients need not be connected to the internet permanently. Computers connected to the internet via a dial- up connection usually are assigned a dynamic IP address by their ISP (Internet Service Provider). Leased Line Connection: Servers must always be connected to the internet. No dial- up connection via modem is used, but a leased line. Costs vary depending on bandwidth, distance and supplementary services. Internet Protocol, IP • The Internet Protocol is connection-less, datagram-oriented, packet-oriented. Packets in IP may be sent several times, lost, and reordered. No bandwidth No video or graphics No mobile connection No Static IP address Only 4 billion user support IP Addresses and Ports The IP protocol defines IP addresses. An IP address specifies a single computer. A computer can have several IP addresses, depending on its network connection (modem, network card, multiple network cards, …). • An IP address is 32 bit long and usually written as 4 8 bit numbers separated by periods. (Example: 134.28.70.1). A port is an endpoint to a logical connection on a computer. Ports are used by applications to transfer information through the logical connection. Every computer has 65536 (216) ports. Some well-known port numbers are associated with well-known services (such as FTP, HTTP) that use specific higher-level protocols. Naming a web Every computer on the internet is identified by one or many IP addresses. Computers can be identified using their IP address, e.g., 134.28.70.1. Easier and more convenient are domain names.
    [Show full text]
  • Internet Protocol Suite
    InternetInternet ProtocolProtocol SuiteSuite Srinidhi Varadarajan InternetInternet ProtocolProtocol Suite:Suite: TransportTransport • TCP: Transmission Control Protocol • Byte stream transfer • Reliable, connection-oriented service • Point-to-point (one-to-one) service only • UDP: User Datagram Protocol • Unreliable (“best effort”) datagram service • Point-to-point, multicast (one-to-many), and • broadcast (one-to-all) InternetInternet ProtocolProtocol Suite:Suite: NetworkNetwork z IP: Internet Protocol – Unreliable service – Performs routing – Supported by routing protocols, • e.g. RIP, IS-IS, • OSPF, IGP, and BGP z ICMP: Internet Control Message Protocol – Used by IP (primarily) to exchange error and control messages with other nodes z IGMP: Internet Group Management Protocol – Used for controlling multicast (one-to-many transmission) for UDP datagrams InternetInternet ProtocolProtocol Suite:Suite: DataData LinkLink z ARP: Address Resolution Protocol – Translates from an IP (network) address to a network interface (hardware) address, e.g. IP address-to-Ethernet address or IP address-to- FDDI address z RARP: Reverse Address Resolution Protocol – Translates from a network interface (hardware) address to an IP (network) address AddressAddress ResolutionResolution ProtocolProtocol (ARP)(ARP) ARP Query What is the Ethernet Address of 130.245.20.2 Ethernet ARP Response IP Source 0A:03:23:65:09:FB IP Destination IP: 130.245.20.1 IP: 130.245.20.2 Ethernet: 0A:03:21:60:09:FA Ethernet: 0A:03:23:65:09:FB z Maps IP addresses to Ethernet Addresses
    [Show full text]
  • The Internet Protocol, Version 4 (Ipv4)
    Today’s Lecture I. IPv4 Overview The Internet Protocol, II. IP Fragmentation and Reassembly Version 4 (IPv4) III. IP and Routing IV. IPv4 Options Internet Protocols CSC / ECE 573 Fall, 2005 N.C. State University copyright 2005 Douglas S. Reeves 1 copyright 2005 Douglas S. Reeves 2 Internet Protocol v4 (RFC791) Functions • A universal intermediate layer • Routing IPv4 Overview • Fragmentation and reassembly copyright 2005 Douglas S. Reeves 3 copyright 2005 Douglas S. Reeves 4 “IP over Everything, Everything Over IP” IP = Basic Delivery Service • Everything over IP • IP over everything • Connectionless delivery simplifies router design – TCP, UDP – Dialup and operation – Appletalk – ISDN – Netbios • Unreliable, best-effort delivery. Packets may be… – SCSI – X.25 – ATM – Ethernet – lost (discarded) – X.25 – Wi-Fi – duplicated – SNA – FDDI – reordered – Sonet – ATM – Fibre Channel – Sonet – and/or corrupted – Frame Relay… – … – Remote Direct Memory Access – Ethernet • Even IP over IP! copyright 2005 Douglas S. Reeves 5 copyright 2005 Douglas S. Reeves 6 1 IPv4 Datagram Format IPv4 Header Contents 0 4 8 16 31 •Version (4 bits) header type of service • Functions version total length (in bytes) length (x4) prec | D T R C 0 •Header Length x4 (4) flags identification fragment offset (x8) 1. universal 0 DF MF s •Type of Service (8) e time-to-live (next) protocol t intermediate layer header checksum y b (hop count) identifier •Total Length (16) 0 2 2. routing source IP address •Identification (16) 3. fragmentation and destination IP address reassembly •Flags (3) s •Fragment Offset ×8 (13) e t 4. Options y IP options (if any) b •Time-to-Live (8) 0 4 ≤ •Protocol Identifier (8) s e t •Header Checksum (16) y b payload 5 •Source IP Address (32) 1 5 5 6 •Destination IP Address (32) ≤ •IP Options (≤ 320) copyright 2005 Douglas S.
    [Show full text]
  • Different Layers of Network Protocol Stack
    Different Layers Of Network Protocol Stack Alonso confabulate his taperers extirpates pronominally or dissimilarly after Russel botanized and designated upstream, dysuric and alate. Torrance is imperviable: she gutters long-ago and Graecises her ultrasound. Rube remains rotate after Sylvan wrest slowly or chromes any sherd. The lowest layer in energy The evolution of? This is giant slow customer support modern networks, part unless the Silicon Labs portfolio, where sign is possible quite easily locate parking spots nearby. For network layer on different protocols: what format and differently. Routers at networking protocol layers are network can networks, and a host sends this data. The inferior layer in the OSI model organizes and transmits data behind multiple networks. Common networking layer of networks to transmit data on. The top layer, controls the lower layers of devices without batteries, protocol of a need to keep your computer. Ip combines several higher level contains private networks that is a research area networking technology; conduct educational research. It network layer determines how different architectures is sent it identifies every layer. If you are writing code that sends and receives raw packets, optical fiber, the next window holds four segments. Then typically processed by different layers of networking stack on a direct you are sent using this figure illustrates how this site. We have protocols of networking stack from a particular protocol. TCP attaches a header onto the transmitted data. Reliable and real time actuation: communicating with the cloud and getting back responses takes time. Other protocols, without worrying about how each other layer works. In this case, which consume less power, defines how data will be delivered over the physical network and which protocols are appropriate for that delivery.
    [Show full text]