Efficient, DoS-Resistant, Secure Key Exchange for Internet Protocols∗ William Aiello Steven M. Bellovin Matt Blaze AT&T Labs Research AT&T Labs Research AT&T Labs Research
[email protected] [email protected] [email protected] Ran Canetti John Ioannidis Angelos D. Keromytis IBM T.J. Watson Research Center AT&T Labs Research Columbia University
[email protected] [email protected] [email protected] Omer Reingold AT&T Labs Research
[email protected] Categories and Subject Descriptors While it might be possible to “patch” the IKE protocol to fix C.2.0 [Security and Protection]: Key Agreement Protocols some of these problems, it may be perferable to construct a new protocol that more narrorwly addresses the requirements “from the ground up.” We set out to engineer a new key exchange protocol General Terms specifically for Internet security applications. We call our new pro- Security, Reliability, Standardization tocol “JFK,” which stands for “Just Fast Keying.” Keywords 1.1 Design Goals We seek a protocol with the following characteristics: Cryptography, Denial of Service Attacks Security: No one other than the participants may have access to ABSTRACT the generated key. We describe JFK, a new key exchange protocol, primarily designed PFS: It must approach Perfect Forward Secrecy. for use in the IP Security Architecture. It is simple, efficient, and secure; we sketch a proof of the latter property. JFK also has a Privacy: It must preserve the privacy of the initiator and/or re- number of novel engineering parameters that permit a variety of sponder, insofar as possible.